首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fine structure of the leaf nodules of Ardisia crispa is described. The bacterial endophyte in mature nodules is extracellular, forming a compact mass which is encompassed within a 5–6 cell thick sheath of modified mesophyll cells. Processes from these sheath cells invade the bacterial mass providing a host surface across which exchange of metabolites may take place. Considerable pleomorphism is exhibited by the bacteria, paralleling that found in other symbiotic associations in which the host can influence the morphology of the microsymbiont. The spherical, highly granate chloroplasts, rich in starch, which are characteristic of the spongy mesophyll leaf cells, are replaced, in the modified sheath cells, by a degenerate plastid form containing membrane whorls. Lipid reserves appear to replace the starch in the sheath cells. The significance of these changes is discussed.  相似文献   

2.
The fine structure of the leaf nodules of Ardisia crispa is described. The bacterial endophyte in mature nodules is extracellular, forming a compact mass which is encompassed within a 5–6 cell thick sheath of modified mesophyll cells. Processes from these sheath cells invade the bacterial mass providing a host surface across which exchange of metabolites may take place. Considerable pleomorphism is exhibited by the bacteria, paralleling that found in other symbiotic associations in which the host can influence the morphology of the microsymbiont. The spherical, highly granate chloroplasts, rich in starch, which are characteristic of the spongy mesophyll leaf cells, are replaced, in the modified sheath cells, by a degenerate plastid form containing membrane whorls. Lipid reserves appear to replace the starch in the sheath cells. The significance of these changes is discussed.  相似文献   

3.
The development and mature structure of bacterial leaf nodules in Psychotria bacteriophila were studied by using light and electron microscopy. Bacteria in mucilage surrounding the shoot apex pass through certain stomates in leaf primordia into the substomatal chamber. These chambers enlarge and become nodules as the yound leaves grow out of the apical region. Surrounding mesophyll cells grow into each nodule and form a cellular reticulum whose interstices are occupied by bacteria. Each intrusive mesophyll cell wall is unusually thick and continually supplemented by vesicles originating from dictyosomes. The gram-negative bacteria are often surrounded by capsules. Nodule bacteria contain several crystal-like dense bodies. A population of normal, dividing, and degenerating bacteria is found in each nodule. Extensive membranes occur between the bacteria. A hypothesis is proposed to explain certain aspects of this obligate symbiotic relationship.  相似文献   

4.
Cytokinin activity based on two bioassays was at least 100-fold higher in Psychotria punctata leaf discs with bacterial nodules than in discs without them. Nodulated discs from young leaves yielded 0.4 to 6 μg of cytokinin (zeatin equivalents) per g fresh weight of leaf tissue, whereas non-nodulated discs from the same leaves yielded 0 to 0.003 μg per g fresh weight. These estimates probably include free-base cytokinins and, if present, any nucleoside cytokinins precipitable by acidic silver nitrate. Cytokinin concentrations in Psychotria leaf nodules appear to be higher than normally found in green leaves of other plants. In l-butanol-acetic acid-water (12:3:5, v/v), the one peak of activity chromatographed with an RF similar to zeatin's, but both number and identity of the active substance(s) remain unknown. These findings suggest that a cytokinin is produced by bacteria in leaf nodules of P. punctata and that it is involved in the symbiosis.  相似文献   

5.
Leaf Nodule Development in Psychotria kirkii Hiern. (Rubiaceae)   总被引:2,自引:0,他引:2  
The initiation, development and structure of the leaf nodulesof the Rubiaceous shrub Psychotria kirkii Hiern. has been studiedin detail at the ultrastructural level. Bacteria, maintainedin the shoot tip in the secretions from dendroid colleters,invade the substomatal chamber of stomatal pores which formprecociously on the abaxial leaf surface. Proliferation of theepidermis around the pore pushes the bacterial cavity deep intothe lamina, thus forming a small internal nodule. Endophyte-mediatedschizogeny of the cells surroundng the nodule causes it to expandwhile at the same time giving rise to an interconnected reticulumof invasive host cells which are involved in metabolite exchangebetween microoganisms and host plant. Bacterial morphology changesafter entry of the microsymbiont into the host plant and, bythe time the nodule is mature, the bacteria exhibit distinctpleomorphism. Senescent nodules are shown to accumulate lipidand starch. The developmental process is discussed in the lightof existing information on this symbiosis. Psychotria kirkii, leaf nodule development, symbiosis, ultrastructure  相似文献   

6.
Burkholderia endophytes were identified within the leaves of non-nodulated members of the genus Psychotria. In contrast to leaf-nodulated Psychotria species, which are known to accommodate their endosymbionts into specialized endosymbiont-housing structures, non-nodulated species lack bacterial leaf nodules and harbor endosymbionts intercellularly between mesophyll cells. Based on molecular data (rps16, trnG, and trnLF), the phylogenetic reconstruction of the host plants revealed a separate origin of leaf-nodulated and non-nodulated Psychotria species. Despite a distinct phylogenetic position of the two host clades, the endophytes of the non-nodulated plants were not placed into a single monophyletic group but were found to be closely related to the leaf-nodulated endosymbionts. The observation of genetically similar endophytes in both nodulated and non-nodulated Psychotria lineages suggests that the host plant is playing a crucial role in the induction of leaf nodule formation. Moreover, the concentration of endosymbionts into specialized leaf nodules may be considered as a more derived evolutionary adaptation of the host plant, serving as an interface structure to facilitate metabolic exchange between plant and endosymbiont.  相似文献   

7.
Summary In 6-month growth experiments it was found that leaf-nodulatedPsychotria mucronata seedlings grown in N-poor soil showed a restricted growth and developed severe nitrogen-deficiency symptoms in the leaves. Plants in the same soil supplied with NO3-N showed healthy growth and dark green leaves. Detached Psychotria leaves bearing leaf nodules exposed to an atmosphere containing N15-labelled nitrogen gas or acetylene gas gave no evidence of nitrogen fixation, either in the light or in the dark or in both in succession. Therefore nitrogen fixation is probably not associated with the leaf nodules. Chlorophyll retention was observed around the leaf nodules in senescent Psychotria leaves. Psychotria leaf-nodule discs placed on oat leaves cause chlorophyll retention in the oat leaves below the discs. As chlorophyll retention is a common bioassay for cytokinins, these results indicate that a cytokinin-like substance is involved. With the aid of autoradiography and C14-labelled α-amino-isobutyric acid it was shown that this amino acid accumulates in the leaf nodules. Such directed transport is also a property of cytokinin.  相似文献   

8.
A. P. Kausch  H. T. Horner 《Planta》1985,164(1):35-43
Three peroxisomal enzymes, glycolate oxidase, urate oxidase and catalase were localized cytochemically in Psychotria punctata (Rubiaceae) leaves and Yucca torreyi (Agavaceae) seedling root tips, both of which contain developing and mature calcium-oxalate raphide crystal idioblasts. Glycolate-oxidase (EC 1.1.3.1) and catalase (EC 1.11.1.6) activities were present within leaftype peroxisomes in nonidioblastic mesophyll cells in Psychotria leaves, while urate-oxidase (EC 1.7.3.3) activity could not be conclusively demonstrated in these organelles. Unspecialized peroxisomes in cortical parenchyma of Yucca roots exhibited activities of all three enzymes. Reactionproduct deposits attributable to glycolate-oxidase activity were never observed in peroxisomes of any developing or mature crystal idioblasts of Psychotria or Yucca. Catalase localization indicates that idioblast microbodies are functional peroxisomes. The apparent absence of glycolate oxidase in crystal idioblasts of Psychotria and Yucca casts serious doubt that pathways involving this enzyme are operational in the synthesis of the oxalic acid precipitated as calcium-oxalate crystals in these cells.Abbreviations AMPD 2-amino-2-methyl-1,3-propandiol - CTEM conventional transmission electron microscopy - DAB 3,3-diaminobenzidine tetrahydrochloride - HVEM high-voltage electron microscopy  相似文献   

9.
The dendroid colleters of the leaf nodulated Rubiaceous shrubPsychotria kirkii Hiern. have been studied with respect to theirdevelopment, structure and function. The colleters, which arisefrom the adaxial surface of stipules of apical and lateral shoots,secrete a protein/carbohydrate mucilaginous substance in whichis maintained a colony of leaf nodule bacteria. The colletersare multicellular and multiseriate, consisting of a two to fourcell thick stalk from which radiate up to 70 elongate secretorybranch cells. Cuticle envelops both stalk and branch cells inearly developmental stages and as secretory activity increasesthis cuticle is largely lost in two different ways. The majorpart is forced off the branch cell surface through the passageof a largely carbohydrate component of the mucilage which surroundsthe colleters: a second method of cuticle loss involves thepassage from the cell of small electron-translucent bodies whichbecome coated with cuticle as they exit the cell. The mucilagein which the bacterial cells are found provides a vehicle wherebythe bacteria are able to enter the leaves, thus leading to theinitiation of leaf nodules. Psychotria kirkii Hiern., secretory dendroid colleters, symbiosis, ultrastructure, trichome development  相似文献   

10.
We studied leaf anatomy, using clearings, resin sections, and scanning electron microscopy, from mostly herbarium specimens of 123 species ofDombeya and 11 species ofNesogordonia (Sterculiaceae). Species were placed in seven idioblast categories, ranging from those without any to single and bicelled epidermal forms to multicelled nodules and single mesophyll idioblasts. Idioblast contents are possibly mucilaginous, but were not identified. In these two genera the range of foliar idioblast morphology surpasses that known previously for the entire family. Leaves are dorsiventral with mostly abaxial anomocytic stomata and typical palisade and spongy layers; paraveinal mesophyll is lacking. Miniature glandular (clavates, capitates) and nonglandular (mostly stellate) trichomes occur. Prismatic crystals predominate; epidermal prismatics and mesophyll druses are rare.  相似文献   

11.
Populus euphratica Oliv. is a deciduous poplar species, occurring mainly in riparian areas of China and Middle Eastern countries, and presenting high tolerance to extreme temperatures and high soil salinity. In this study, an optimized protocol for development and propagation of P. euphratica from leaf explants is reported, based on a morphogenic process that involves organogenic nodule differentiation. Adventitious shoot regeneration of P. euphratica from organogenic nodules of leaf explants was achieved within a range of concentrations of α-naphtalenacetic acid and 6-benzylaminopurine, at a fixed 2:1 ratio. Cambial cells started to divide 5 days after inoculation on culture medium and, after 12 days, several organizing centres were already formed. Non-friable callus tissue, together with organization centres, formed structures that evolved to nodules after about 40 days which were, then, able to regenerate new shoots after 50–60 days. The nodules did not separate from the mother explants and were able to successfully give rise to new adventitious shoots. These were rescued and successfully grown and rooted in different culture media, and fully developed plants were obtained. The regeneration system here described for P. euphratica is innovative, reproducible and data from histological studies of the morphogenic process support the classification of the regenerative structures as organogenic nodules.  相似文献   

12.
张爱梅  殷一然  孔维宝  朱学泰  孙坤 《生态学报》2021,41(20):8212-8221
根瘤是微生物侵染植物根部并与之形成的共生结构,这些微生物都可被称为植物内生菌。豆科植物根瘤中的内生菌常常又被称为根瘤菌,而侵染非豆科植物形成根瘤的主要是放线菌弗兰克氏菌,这些非豆科植物又被称为放线菌结瘤植物。西藏沙棘是一种典型的放线菌结瘤植物,由于其分布生境的特殊性,对其根瘤内生菌的研究具有重要的生态意义。对于西藏沙棘根瘤内生菌的研究,培养方法因难以模拟自然条件而不易获得纯培养,高通量测序技术对其多样性的研究提供了便利。因此,本研究以生长在甘肃省天祝县金强河河滩地的西藏沙棘根瘤为材料,采用16S rRNA基因扩增子高通量测序方法,结合OTU分析,对西藏沙棘根瘤内生菌的多样性进行探讨。实验结果表明,西藏沙棘根瘤内生菌具有丰富的多样性,根瘤内的优势属为共生固氮的弗兰克氏菌属(Frankia),其相对丰度为47.63%,共检测到7个弗兰克氏菌属的OTUs;根瘤内除弗兰克氏菌外,还存在大量的非弗兰克氏菌,共检测到1523个OTUs,隶属于22个门、33个纲、69个目、113个科和202个属,相对丰度排名前9的属中有25个非弗兰克氏菌属的OTUs。该研究也表明,西藏沙棘根瘤内生菌具有丰富的多样性,西藏沙棘根瘤中不仅存在着可共生固氮的弗兰克氏菌,并且还分布着非弗兰克氏菌;在同一根瘤样品中,弗兰克氏菌属还具有不同的物种。本研究不仅拓展了西藏沙棘根瘤内生菌多样性的研究方法,还为同一寄主植物中弗兰克氏菌多样性的研究提供了分析思路。  相似文献   

13.
Summary Spontaneous nodules were formed on the primary roots of alfalfa plants in the absence ofRhizobium. Histologically, these white single-to-multilobed structures showed nodule meristems, cortex, endodermis, central zone, and vascular strands. Nodules were devoid of bacteria and infection threads. Instead, the larger cells were completely filled with many starch grains while smaller cells had very few or none. Xylem parenchyma and phloem companion cells exhibited long, filiform and branched wall ingrowths. The characteristic features of both types of transfer cells were polarity of wall ingrowths, high cytoplasmic density, numerous mitochondria, abundant ribosomes, well-developed nucleus and nucleolus, and vesicles originated from rough endoplasmic reticulum. These results were compared with normal nodules induced byRhizobium. Our results suggest that xylem parenchyma and phloem companion transfer cells are active and probably involved in the short distance transport of solutes in and out of spontaneous nodules. Since younger nodules showed short, papillate, and unbranched wall ingrowths, and older tissue showed elongated, filiform and branched wall ingrowths, the development of wall ingrowths seemed to be gradual rather then abrupt. The occurrence of both type-A and -B wall ingrowths suggests that phloem companion transfer cells may be active in loading and unloading of sieve elements. Since there were no symbiotic bacteria and thus no fixed nitrogen, it is tempting to speculate that xylem parenchyma transfer cells may be re-transporting accumulated carbon from starch grains to the rest of the plant body by loading xylem vessels. Fusion of ER-originated vesicles with wall ingrowth membrane indicated the involvement of ER in the membrane formation for elongating wall ingrowths. Since transfer cells were a characteristic feature of both spontaneous andRhizobium-induced nodules, their occurrence and development is controlled by the genetic make-up of alfalfa plant and not by a physiological source or sink emanating from symbiotic bacteria.Abbreviations ATP adenosine triphosphate - ATPase adenosine triphosphatase - EH emergent root hair - EM electron microscope - Nar nodulation in the absence of Rhizobium - RT root tip - RER rough endoplasmic reticulum - YEMG yeast extract mannitol-gluconate  相似文献   

14.
In soybean (Glycine max (L.) Merr.) the uninfected cells of the root nodule are responsible for the final steps in ureide production from recently fixed nitrogen. Stereological methods and an original quantitative method were used to investigate the organization of these cells and their spatial relationships to infected cells in the central region of nodules of soybean inoculated with Rhizobium japonicum strain USDA 3I1B110 and grown with and without nitrogen (as nitrate) in the nutrient medium. The volume occupied by the uninfected tissue was 21% of the total volume of the central infected region for nodules of plants grown without nitrate, and 31% for nodules of plants grown with nitrate. Despite their low relative volume, the uninfected cells outnumbered the much larger infected cells in nodules of plants grown both without and with nitrate. The surface density of the interface between the ininfected and infected tissue in the infected region was similar for nodules in both cases also, the total range being from 24 to 26 mm2/mm3. In nodules of plants grown without nitrate, all sampled infected cells were found to be in contact with at least one uninfected cell. The study demonstrates that although the uninfected tissue in soybean nodules occupies a relatively small volume, it is organized so as to produce a large surface area for interaction with the infected tissue.  相似文献   

15.
Summary To determine the orientation of cortical microtubule arrays in mesophyll cells ofZinnia, a new technique designed to increase the rate of fixation of excised leaf tissue and subsequent permeabilization of mesophyll cell walls was developed. This procedure resulted in immunolabeling of high percentages of mesophyll cells, making it possible to quantify cells with different types of cortical microtubule arrays. When developing palisade mesophyll cells were fixed in situ, most of the cells had cortical microtubules organized in parallel arrays oriented transverse to the long axis. Delay in the transfer of leaf tissue to fixative resulted in increased numbers of cells with random cortical microtubule orientations, indicating that arrays may become reoriented rapidly during leaf excision and cell isolation procedures. The role of wound-induced microtubule reorientation in mesophyll dedifferentiation and tracheary element development is discussed.Abbreviations BSA bovine serum albumin - CMT cortical microtubule - TE tracheary element - TBS tris-buffered saline  相似文献   

16.
G. Jung  A. Hellmann  W. Wernicke 《Planta》1993,190(1):10-16
Changes in the density of microtubular mesh-works were analysed in mesophyll cells and mesophyll derived protoplasts of Nicotiana tabacum L. and Triticum aestivum L. during leaf development. The main purpose of this study was to test whether the low density, if not lack, of microtubular networks recently described in protoplasts that had been isolated from fully differentiated mesophyll cells happened during protoplast isolation or whether the loss of microtubules actually occurred during differentiation of the leaf tissue. Immunofluorescence microscopy showed that the density of the microtubular cytoskeleton in the leaf tissue decreased steadily after cessation of cell growth in both species. Nevertheless, in Triticum microtubule disappearance was swifter and occurred along a gradient from the base to tip of the leaf, a phenomenon reflecting the differences in the ontogeny between the dicotyledonous Nicotiana and the mono-cotyledonous Triticum leaves. Protein extraction from leaf tissues and Western blot analysis indicated that in both species the disappearance of microtubules was the result of a degradation of tubulin and not only due to a depolymerisation into tubulin subunits. When the cell walls were removed from live cells and the protoplasts released, the original patterns of the microtubules became obscured and, particularly in differentiated cells, the integrity and density of the microtubule strands deteriorated. The potential application of the density of the microtubular cytoskeleton as a marker in studies on differentiation and dedifferentiation in mesophyll cells and protoplasts is discussed.We wish to thank Silke Heichel for excellent technical assistance. We also express our thanks to the group of A.M. Lambert at CNRS, Strasbourg, France, for advice during establishment of our Western blot system. The work was supported by a grant of the German Ministry of Science and Technology (BMFT).  相似文献   

17.
Summary Developing and senescing chickpea (Cicer arietinum L.) nodules formed byRhizobium sp. (Cicer) CC 1192 have been shown by light and electron microscopy to have general morphological and ultrastructural features that are characteristic of indeterminate nodules. These features included the presence of persistent meristematic tissue at the distal ends of the multi-lobed nodules, and a gradient of cells at different stages of development towards the proximal point of attachment of the nodules to the parent root. The cytoplasm of infected cells in the nitrogen-fixing region of the nodules was densely packed with symbiosomes, most of which contained a single bacteroid. Infection threads containing bacteria were noted in invaded cells from the nitrogen-fixing region of the nodules. Other features that were observed in chickpea nodules included the presence of electron-dense occlusions in intercellular spaces in the nitrogen-fixing region, and plasmodesmata that connected infected cells with other infected cells and with uninfected cells. No poly--hydroxybutyrate granules were noted in the bacteroids. In later stages of development, infected cells became enlarged and highly vacuolated, and eventually lost their contents. Uninfected cells in the central region were smaller than infected cells and were also highly vacuolated. Some of the degenerative processes that take place in senescing bacteroids were noted.  相似文献   

18.
We examined the development of the aquatic N2-fixing symbiosis between Rhizobium sp. (itNeptunia) and roots of Neptunia natans L. f. (Druce) (previously N. oleracea Lour.) under natural and laboratory conditions. When grown in its native marsh habitat, this unusual aquatic legume does not develop root hairs, the primary sites of rhizobial infection for most temperate legumes. Under natural conditions, the aquatic plant floats and develops nitrogen-fixing nodules at emergence of lateral roots on the primary root and on adventitious roots at stem nodes, but not from the stem itself. Cytological studies using various microscopies revealed that the mode of root infection involved an intercellular route of entry followed by an intracellular route of dissemination within nodule cells. After colonizing the root surface, the bacteria entered the primary root cortex through natural wounds caused by splitting of the epidermis and emergence of young lateral roots, and then stimulated early development of nodules at the base of such roots. The bacteria entered the nodule through pockets between separated host cells, then spread deeper in the nodule through a narrower intercellular route, and eventually evoked the formation of infection threads that penetrated host cells and spread throughout the nodule tissue. Bacteria were released from infection droplets at unwalled ends of infection threads, became enveloped by peribacteroid membranes, and transformed into enlarged bacteroids within symbiosomes. In older nodules, the bacteria within symbiosomes were embedded in an unusual, extensive fibrillar matrix. Cross-inoculation tests of 18 isolates of rhizobia from nodules of N. natans revealed a host specificity enabling effective nodulation of this aquatic legume, with lesser affinity for Medicago sativa and Ornithopus sp., and an inability to nodulate several other crop legume species. Acetylene reduction (N2 fixation) activity was detected in nodules of N. natans growing in aquatic habitats under natural conditions in Southern India. These studies indicate that a specific group of Rhizobium sp. (Neptunia) occupies a unique ecological niche in aquatic environments by entering into a N2-fixing root-nodule symbiosis with Neptunia natans.We thank J. Whallon for technical assistance, G. Truchet, J. Vasse, S. Wagener, J. Beaman, F. DeBruijn, F. Ewers, and A. Squartini for helpful comments, and N.N. Prasad and G. Birla for assistance in conducting field observations. This work was supported by the Michigan Agricultural Experiment Station and National Science Foundation grants DIR-8809640 and BIR-9120006 awarded to the MSU Center for Microbial Ecology. This study is dedicated to the memory of Dr. Joseph C. Burton, a friend and colleague who made many contributions to the study of the Rhizobiumlegume symbiosis.  相似文献   

19.
Differences in water binding were measured in the leaf cells ofMesembryanthemum crystallinum L. plants grown under high-salinity conditions by using nuclear-magnetic-resonance (NMR) imaging. The 7-Tesla proton NMR imaging system yielded a spatial resolution of 20·20·100 m3. Images recorded with different spin-echo times (4.4 ms to 18 ms) showed that the water concentrations in the bladder cells (located on the upper and lower leaf surface), in the mesophyll cells and in the water-conducting vessels were nearly identical. All of the water in the bladder cells and in the water-conducting vessels was found to be mobile, whilst part of the water in the mesophyll cells was bound. Patches of mesophyll cells could be identified which bound water more strongly than the surrounding mesophyll cells. Optical investigations of leaf cross-sections revealed two types of mesophyll cells of different sizes and chloroplast contents. It is therefore likely that in the small-sized mesophyll cells water is strongly bound. A long-term asymmetric water exchange between the mesophyll cells and the bladder cells during Crassulacean acid metabolism has been described in the literature. The high density of these mesophyll cells in the lower epidermis is a possible cause of this asymmetry.Abbreviations CAM Crassulacean acid metabolism - NMR nuclear magnetic resonance - TE spin-echo time  相似文献   

20.
披碱草属3组植物叶片解剖特征及其系统关系   总被引:1,自引:0,他引:1  
采用石蜡切片法对披碱草属中小颖组、宽颖组和长颖组主要代表种的叶片横切面形态学特征进行观察。结果显示:(1)披碱草属3个组植物的叶片均为等面叶,由表皮、叶肉和维管束三部分构成,表现为典型的狐茅型,即表皮细胞形状、大小和排列不均,叶肉无栅栏组织和海绵组织之分,具有双层维管束鞘,周围叶肉细胞呈不规则排列,厚壁组织与表皮相接;但3个组植物在上表皮细胞形状、大小、沟的深浅,以及大型导管数目等叶片横切面特征上存在明显差异。(2)根据3个组植物叶片横切面性状的演化趋势,对各组的演化关系和系统位置分析表明,小颖组最原始,宽颖组较进化,长颖组最高级;小颖组可能直接派生了较进化的宽颖组,并在宽颖组的基础上进而产生了最高级的长颖组;小颖组、宽颖组和长颖组的这一系统关系与利用外部形态特征所获得的演化趋势基本一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号