首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The NH2 terminus of the yeast F1-ATPase beta subunit precursor directs the import of this protein into mitochondria. To define the functionally important components of this import signal, oligonucleotide-directed mutagenesis was used to introduce a series of deletion and missense mutations into the gene encoding the F1-beta subunit precursor. Among these mutations were three nonoverlapping deletions, two within the 19-amino-acid presequence (delta 5-12 and delta 16-19) and one within the mature protein (delta 28-34). Characterization of the mitochondrial import properties of various mutant F1-beta subunit proteins containing different combinations of these deletions showed that import was blocked only when all three deletions were combined. Mutant proteins containing all possible single and pairwise combinations of these deletions were found to retain the ability to direct mitochondrial import of the F1-beta subunit. These data suggest that the F1-beta subunit contains redundant import information at its NH2 terminus. In fact, we found that deletion of the entire F1-beta subunit presequence did not prevent import, indicating that a functional mitochondrial import signal is present near the NH2 terminus of the mature protein. Furthermore, by analyzing mitochondrial import of the various mutant proteins in [rho-] yeast, we obtained evidence that different segments of the F1-beta subunit import signal may act in an additive or cooperative manner to optimize the import properties of this protein.  相似文献   

2.
ATP hydrolysis by F1-ATPase is strongly inhibited by cationic rhodamines; neutral rhodamines are very poor inhibitors. Rhodamine 6G is a noncompetitive inhibitor of purified F0F1-ATPase and submitochondrial particles, however, an uncompetitive inhibitor of F1-ATPase (KI approximately equal to 2.4 microM for all three enzyme forms). Ethidium bromide is a noncompetitive inhibitor of F0F1-ATPase, submitochondrial particles and also F1-ATPase (KI approximately equal to 270 microM). Neither of the inhibitors affects the negative cooperativity (nH approximately equal to 0.7). The non-identical binding sites for rhodamine 6G and ethidium bromide are located on the F1-moiety and are topologically distinct from the catalytic site. Binding of the inhibitors prevents the conformational changes essential for energy transduction. It is concluded that the inhibitor binding sites are involved in proton translocation. In F1-ATPase, binding of MgATP at a catalytic site causes conformational changes, which allosterically induce the correct structure of the rhodamine 6G binding site. In F0F1-ATPase, this conformation of the F1-moiety exists a priori, due to allosteric interactions with F0-subunits. The binding site for ethidium bromide on F1-ATPase does not require substrate binding at the catalytic site and is not affected by F0F1-subunit interactions.  相似文献   

3.
Cytochrome oxidase subunits I, II, and III, the mitochondrial DNA-encoded proteins, are inserted across the inner membrane by the Oxa1p-containing translocator in a membrane potential-dependent manner. Oxa1p is also involved in the insertion of the cytoplasmically synthesized precursor of Oxa1p itself into the inner membrane from the matrix via the conservative sorting pathway. The mechanism of insertion of the other mitochondrially synthesized proteins, however, is unexplored. The insertion of the mitochondrial DNA-encoded subunit 8 of F(1)F(0)-ATPase (Su8) across the inner membrane was analyzed in vitro using the inverted inner membrane vesicles and the Escherichia coli lysate-synthesized substrate. This assay revealed that the N-terminal segment of Su8 inserted across the membrane to the intermembrane space and assumed the correct trans-cis topology depending on the mitochondrial matrix fraction. This translocation reaction was similar to those of Sec-independent, direct insertion pathways of E. coli and chloroplast thylakoid membranes. (i) It required neither nucleotide triphosphates nor membrane potential, and hydrophobic forces drove the process. (ii) It did not require protease-sensitive membrane components facing the matrix space. (iii) It could be inserted across liposomes in the correct topology in a matrix fraction-dependent manner. Thus, a novel mechanism conserved in bacteria and chloroplasts also functions in the insertion of Su8 across the mitochondrial inner membrane.  相似文献   

4.
ATP4, the structural gene for yeast F0F1 ATPase subunit 4   总被引:1,自引:0,他引:1  
A plasmid containing the gene coding for the Saccharomyces cerevisiae F0F1 ATPase subunit 4 was isolated from a yeast genomic DNA library using the oligonucleotide probe procedure. The gene and the surrounding regions were cloned into M13 tg 130 and M13 tg 131 phage vectors. A 732-base-pair open reading frame encoding a 244-amino-acid polypeptide is described. The nucleotide sequence predicts that subunit 4 is probably derived from a precursor protein with a hydrophilic and basic 35-amino-acid leader sequence. Mature subunit 4 contains 209 amino acid residues and the predicted molecular mass is 23250 Da. This subunit presents amphiphilic behaviour with two distinct domains. A high alpha-helix content of 77% was predicted from the sequence. Subunit 4 shows homology with the b subunit of Escherichia coli ATP synthase.  相似文献   

5.
A yeast nuclear pet mutant of Saccharomyces cerevisiae lacking any detectable mitochondrial F1-ATPase activity was genetically complemented upon transformation with a pool of wild type genomic DNA fragments carried in the yeast Escherchia coli shuttle vector YEp 13. Plasmid-dependent complementation restored both growth of the pet mutant on a nonfermentable carbon source as well as functional mitochondrial ATPase activity. Characterization of the complementing plasmid by plasmid deletion analysis indicated that the complementing gene was contained on adjoining BamH1 fragments with a combined length of 3.05 kilobases. Gel analysis of the product of this DNA by in vitro translation in a rabbit reticulocyte lysate programmed with yeast mRNA hybrid selected by the plasmid revealed a product which could be immunoprecipitated by antisera against the beta subunit of the yeast mitochondrial ATPase complex. A comparison of the protein sequence derived from partial DNA sequence analysis indicated that the beta subunit of the yeast mitochondrial ATPase complex exhibits greater than 70% conservation of protein sequence when compared to the same subunit from the ATPase of E. coli, beef heart, and chloroplast. The gene coding the beta subunit (subunit 2) of yeast mitochondrial adenosine triphosphatase is designated ATP2. The utilization of cloned nuclear structural genes of mitochondrial proteins for the analysis of the post-translational targeting and import events in organelle assembly is discussed.  相似文献   

6.
The stoichiometry of subunit 8 in yeast mitochondrial F(1)F(0)-ATP synthase (mtATPase) has been evaluated using an immunoprecipitation approach. Single HA or FLAG epitopes were introduced at the N-terminus of subunit 8. Expression of each tagged subunit 8 variant in yeast cells lacking endogenous subunit 8 restored a respiratory phenotype and had little measurable effect on ATP hydrolase activity of the isolated enzyme. Moreover, the two epitope-tagged subunit 8 variants could be stably co-expressed in the same host cells and both of HA-Y8 and FLAG-Y8 could be detected in ATP synthase complexes isolated by native gel electrophoresis. Mitochondria isolated from each yeast strain were solubilized to release ATP synthase complexes in either the monomeric or dimeric forms. In each case, monoclonal antibodies directed against either the FLAG or HA epitope could immunoprecipitate intact ATP synthase complexes. When both HA-Y8 and FLAG-Y8 were co-expressed in cells, monomeric ATP synthases contained only a single subunit 8 variant after immunoprecipitation, corresponding to the particular antibody used (HA or FLAG). By contrast, both subunit 8 variants were recovered in samples of immunoprecipitated dimeric ATP synthase complexes, irrespective of the antibody used. We conclude that each monomeric yeast mitochondrial ATP synthase complex contains a single copy of subunit 8.  相似文献   

7.
The atp6 gene, encoding the ATP6 subunit of F(1)F(0)-ATP synthase, has thus far been found only as an mtDNA-encoded gene. However, atp6 is absent from mtDNAs of some species, including that of Chlamydomonas reinhardtii. Analysis of C. reinhardtii expressed sequence tags revealed three overlapping sequences that encoded a protein with similarity to ATP6 proteins. PCR and 5'- and 3'-RACE were used to obtain the complete cDNA and genomic sequences of C. reinhardtii atp6. The atp6 gene exhibited characteristics of a nucleus-encoded gene: Southern hybridization signals consistent with nuclear localization, the presence of introns, and a codon usage and a polyadenylation signal typical of nuclear genes. The corresponding ATP6 protein was confirmed as a subunit of the mitochondrial F(1)F(0)-ATP synthase from C. reinhardtii by N-terminal sequencing. The predicted ATP6 polypeptide has a 107-amino acid cleavable mitochondrial targeting sequence. The mean hydrophobicity of the protein is decreased in those transmembrane regions that are predicted not to participate directly in proton translocation or in intersubunit contacts with the multimeric ring of c subunits. This is the first example of a mitochondrial protein with more than two transmembrane stretches, directly involved in proton translocation, that is nucleus-encoded.  相似文献   

8.
Construction of a yeast mutant lacking the mitochondrial nuclease.   总被引:11,自引:4,他引:11       下载免费PDF全文
The nuclear gene from Saccharomyces cerevisiae that encodes the major mitochondrial nuclease was cloned. Gene sequences were identified from a lambda gt11 library by antibodies specific to the mitochondrial nuclease. DNA from the phage recombinant was used to isolate the entire nuclease gene from a plasmid library. Yeast strains containing the nuclease gene on a multicopy plasmid vector overproduced mitochondrial nuclease 20-40 times relative to a wild-type strain. Strains containing a null allele of the nuclease gene lacked all traces of mitochondrial nuclease. Both cell types, however, were phenotypically wild-type indicating that the nuclease is not an essential enzyme for mitochondrial function. The locus encoding the mitochondrial nuclease is termed NUC1.  相似文献   

9.
The yeast mitochondrial ATPase has been genetically modified to include a His(6) Ni-affinity tag on the amino end of the mature beta-subunit. The modified beta-subunit is imported into the mitochondrion, properly processed to the mature form, and assembled into a mature and fully active ATP synthase. The F(1)-ATPase has been purified from submitochondrial particles after release from the membrane with chloroform, followed by Ni-chelate-affinity and gel filtration chromatography. The final enzyme is a homogeneous preparation with full activity and no apparent degradation products. This enzyme preparation has been used to obtain crystals that diffract to better than 2.8 A resolution.  相似文献   

10.
Yeast mitochondrial ATP synthase has three regulatory proteins, ATPase inhibitor, 9K protein, and 15K protein. The 9K protein binds directly to purified F1-ATPase, as does the ATPase inhibitor, but the 15K protein does not [Hashimoto, T. et al. (1987) J. Biochem. 102, 685-692]. In the present study, we found that 15K protein bound to purified F1F0-ATPase, forming an equimolar complex with the enzyme. The apparent dissociation constant was calculated to be 1.4 x 10(-5) M. The ATPase inhibitor and 9K protein also bound to F1F0-ATPase in the presence of ATP and Mg2+, and the dissociation constants of their bindings were about 3 X 10(-6) M. They bound to the enzyme competitively in the absence of 15K protein, but in its presence, they bound in equimolar amounts to the enzyme. The ATP-hydrolyzing activity of the enzyme-ligand complex was greatly influenced by the order of bindings of ATPase inhibitor and 9K protein: when the ATPase inhibitor was bound first, the activity of the enzyme was inhibited completely and was not restored by 9K protein, but when 9K protein was added first, the activity was inhibited only partially even after equimolar binding of the ATPase inhibitor to the enzyme. These observations strongly suggest that the 15K protein binds to the F0 part and functions to hold the ATPase inhibitor or 9K protein on the F1 subunit.  相似文献   

11.
The lack of mitochondrial porin is not lethal in Saccharomyces cerevisiae, but it impairs some respiratory functions and, therefore, growth on nonfermentable carbon sources such as glycerol. However, after a lag phase porinless mutant cells adapt to growth on glycerol, accumulating large amounts of an 86-kilodalton (kDa) protein (M. Dihanich, K. Suda, and G. Schatz, EMBO J. 6:723-728, 1987) and of a 5-kilobase RNA. Immunogold labeling localized the 86 kDa-protein exclusively to the cytosol fraction, although most of it cosedimented with the microsome fraction in earlier cell fractionations. This discrepancy was resolved when the 86-kDa protein was identified as the major coat protein in viruslike particles (VLPs) which is encoded by a double-stranded RNA (L-A RNA). Elimination of VLPs in the original porinless strain by introduction of the mak10 or the mak3 mutation increased the respiratory defect and prolonged its lag phase on nonfermentable carbon sources. The fact that the simultaneous loss of VLPs and respiratory functions are the introduction of mak10 or mak3 occurred even in some porin-containing wild-type strains suggests that there is a link between VLP and mitochondrial functions.  相似文献   

12.
Myocardial ischemic preconditioning and mitochondrial F1F0-ATPase activity   总被引:1,自引:0,他引:1  
A short period of ischemia followed by reperfusion (ischemic preconditioning) is known to trigger mechanisms that contribute to the prevention of ATP depletion. In ischemic conditions, most of the ATP hydrolysis can be attributed to mitochondrial F1F0-ATPase (ATP synthase). The purpose of the present study was to examine the effect of myocardial ischemic preconditioning on the kinetics of ATP hydrolysis by F1F0-ATPase. Preconditioning was accomplished by three 3-min periods of global ischemia separated by 3 min of reperfusion. Steady state ATP hydrolysis rates in both control and preconditioned mitochondria were not significantly different. This suggests that a large influence of the enzyme on the preconditioning mechanism may be excluded. However, the time required by the reaction to reach the steady state rate was increased in the preconditioned group before sustained ischemia, and it was even more enhanced in the first 5 min of reperfusion (101 ± 3.0 sec in preconditioned vs. 83.4 ± 4.4 sec in controls, p 0.05). These results suggest that this transient increase in activation time may contribute to the cardioprotection by slowing the ATP depletion in the very critical early phase of post-ischemic reperfusion.  相似文献   

13.
A conserved gene encoding the 57-kDa subunit of the yeast vacuolar H+-ATPase   总被引:12,自引:0,他引:12  
The peripheral (catalytic) sector of vacuolar H+-ATPases contains five different polypeptides denoted as subunits A-E in order of decreasing molecular masses from 72 to 33 kDa. The gene encoding subunit B (57 kDa) of yeast vacuolar H+-ATPase was cloned on a 5-kilobase pair genomic DNA fragment and sequenced. Four open reading frames were identified in the sequenced DNA. One of them encodes a protein of 504 amino acids with a calculated Mr of 56,557. Hydropathy plot revealed no apparent transmembrane segments. Southern analysis demonstrated that a single gene encodes this polypeptide in the yeast genome. The amino acid sequence exhibits extensive identity with the homologous protein from the plant Arabidopsis (77%). This polypeptide also contains regions of homology with the alpha subunits of H+-ATPases from mitochondria, chloroplasts, and bacteria. However, less similarity was detected when it was compared with the beta subunits of those enzymes. The implication of these phenomena on the evolution of proton pumps is discussed.  相似文献   

14.
The nuclear gene OXA1 encodes a protein located within the mitochondrial inner membrane that is required for the biogenesis of both cytochrome c oxidase (Cox) and ATPase. In the absence of Oxa1p, the translocation of the mitochondrially encoded subunit Cox2p to the intermembrane space (also referred to as export) is prevented, and it has been proposed that Oxa1p could be a component of a general mitochondrial export machinery. We have examined the role of Oxa1p in light of its relationships with two mitochondrial proteases, the matrix protease Afg3p-Rca1p and the intermembrane space protease Yme1p, by analyzing the assembly and activity of the Cox and ATPase complexes in Deltaoxa1, Deltaoxa1Deltaafg3, and Deltaoxa1Deltayme1 mutants. We show that membrane subunits of both complexes are specifically degraded in the absence of Oxa1p. Neither Afg3p nor Yme1p is responsible for the degradation of Cox subunits. However, the F(0) subunits Atp4p, Atp6p, and Atp17p are stabilized in the Deltaoxa1Deltayme1 double mutant, and oligomycin-sensitive ATPase activity is restored, showing that the increased stability of the ATPase subunits allows significant translocation and assembly to occur even in the absence of Oxa1p. These results suggest that Oxa1p is not essential for the export of ATPase subunits. In addition, although respiratory function is dispensable in Saccharomyces cerevisiae, we show that the simultaneous inactivation of AFG3 and YME1 is lethal and that the essential function does not reside in their protease activity.  相似文献   

15.
Within the mitochondrial F(1)F(0)-ATP synthase, the nucleus-encoded delta-F(1) subunit plays a critical role in coupling the enzyme proton translocating and ATP synthesis activities. In Saccharomyces cerevisiae, deletion of the delta subunit gene (Deltadelta) was shown to result in a massive destabilization of the mitochondrial genome (mitochondrial DNA; mtDNA) in the form of 100% rho(-)/rho degrees petites (i.e. cells missing a large portion (>50%) of the mtDNA (rho(-)) or totally devoid of mtDNA (rho degrees )). Previous work has suggested that the absence of complete mtDNA (rho(+)) in Deltadelta yeast is a consequence of an uncoupling of the ATP synthase in the form of a passive proton transport through the enzyme (i.e. not coupled to ATP synthesis). However, it was unclear why or how this ATP synthase defect destabilized the mtDNA. We investigated this question using a nonrespiratory gene (ARG8(m)) inserted into the mtDNA. We first show that retention of functional mtDNA is lethal to Deltadelta yeast. We further show that combined with a nuclear mutation (Deltaatp4) preventing the ATP synthase proton channel assembly, a lack of delta subunit fails to destabilize the mtDNA, and rho(+) Deltadelta cells become viable. We conclude that Deltadelta yeast cannot survive when it has the ability to synthesize the ATP synthase proton channel. Accordingly, the rho(-)/rho degrees mutation can be viewed as a rescuing event, because this mutation prevents the synthesis of the two mtDNA-encoded subunits (Atp6p and Atp9p) forming the core of this channel. This is the first report of what we have called a "petite obligate" mutant of S. cerevisiae.  相似文献   

16.
By means of a yeast genome database search, we have identified an open reading frame located on chromosome XVI of Saccharomyces cerevisiae that encodes a protein with 53% amino acid similarity to the 11.3-kDa subunit g of bovine mitochondrial F1F0-ATP synthase. We have designated this ORF ATP20, and its product subunit g. A null mutant strain, constructed by insertion of the HIS3 gene into the coding region of ATP20, retained oxidative phosphorylation function. Assembly of F1F0-ATP synthase in the atp20-null strain was not affected in the absence of subunit g and levels of oligomycin-sensitive ATP hydrolase activity in mitochondria were normal. Immunoprecipitation of F1F0-ATP synthase from mitochondrial lysates prepared from atp20-null cells expressing a variant of subunit g with a hexahistidine motif indicated that this polypeptide was associated with other well-characterized subunits of the yeast complex. Whilst mitochondria isolated from the atp20-null strain had the same oxidative phosphorylation efficiency (ATP : O) as that of the control strain, the atp20-null strain displayed approximately a 30% reduction in both respiratory capacity and ATP synthetic rate. The absence of subunit g also reduced the activity of cytochrome c oxidase, and altered the kinetic control of this complex as demonstrated by experiments titrating ATP synthetic activity with cyanide. These results indicate that subunit g is associated with F1F0-ATP synthase and is required for maximal levels of respiration, ATP synthesis and cytochrome c oxidase activity in yeast.  相似文献   

17.
18.
The mitochondrial F1F0 complex is highly sensitive to macrolide antibiotics and especially targeted by oligomycins. These compounds bind to the membrane-embedded sector F0 and block proton conductance through the inner membrane, thus inhibiting both ATP synthesis and hydrolysis. Oligomycin sensitivity is universally recognized as a clue of the functional integrity and matching between F0 and F1. Since oligomycin binding implies multiple interactions with amino acid residues of F0, amino acid substitutions often affect the inhibition efficiency. Moreover, variegated factors spanning from membrane properties to xenobiotic incorporation and detachment of the oligomycin-insensitive F1 sector can alter the oligomycin sensitivity of the enzyme complex. The overview on the multiple factors involved strengthens the link between altered oligomycin sensitivity and physiopathological conditions associated with defective ATPases. An improved understanding of the mechanisms involved may also favor drug design to counteract oxidative damage, which stems from most mitochondrial dysfunctions.  相似文献   

19.
20.
Mitochondrial F1-ATPase is an oligomeric enzyme composed of five distinct subunit polypeptides. The alpha and beta subunits make up the bulk of protein mass of F1. In Saccharomyces cerevisiae both subunits are synthesized as precursors with amino-terminal targeting signals that are removed upon translocation of the proteins to the matrix compartment. Recently, two different complementation groups (G13, G57), consisting of yeast nuclear mutants with defective F1, have been described. Biochemical analyses indicate that the mutational block in both groups of mutants affects a critical step needed for the assembly of the alpha and beta subunits into the F1 oligomer after their transport into mitochondria. In this study the ATP12 gene representative of the nuclear respiratory-deficient mutant of S. cerevisiae (pet) complementation group G57 has been cloned and the encoded product partially characterized. The ATP12 reading frame is 975 base pairs long and codes for a protein of Mr = 36,587. The ATP12 protein is not homologous to the subunits of F1 whose sequences are known, nor does it exhibit significant primary structure similarity to any known protein. In vitro import assays indicate that ATP12 protein is synthesized as a precursor approximately 3 kDa larger than the mature protein. The mitochondrial localization of the protein has been confirmed by Western blot analysis of mitochondrial proteins with an antibody against a hybrid protein expressed from a trpE-ATP12 fusion. Fractionation of mitochondria indicates further that the ATP12 protein is either a minor component of the matrix compartment or is weakly bound to the matrix side of the inner membrane. The molecular weight of the native protein, estimated from its sedimentation properties in sucrose gradients, is at least two times larger than the monomer. This suggests that the ATP12 protein is probably part of a larger complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号