首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An intrinsic ATPase inhibitor and 9-kDa protein are regulatory factors of mitochondrial ATP synthase in Saccharomyces cerevisiae. A gene encoding the ATPase inhibitor was isolated from a yeast genomic library with synthetic oligonucleotides as hybridization probes and was sequenced. The deduced amino acid sequence showed that the precursor protein contains an amino-terminal presequence of 22 amino acid residues. Mutant strains that did not contain the inhibitor and/or the 9-kDa protein were constructed by transformation of cells with their in vitro disrupted genes. The disruption of the chromosomal copy in recombinant cells was verified by Southern blot analysis, and the absence of the proteins in the mutant cells was confirmed by Western blot analysis. All the mutants could grow on a nonfermentable carbon source and the oxidative phosphorylation activities of their isolated mitochondria were the same as that of normal mitochondria. However, an uncoupler, carbonylcyanide-m-chlorophenylhydrazone, induced marked ATP hydrolysis in the inhibitor-deficient mitochondria, but not in normal mitochondria. These observations suggest that the ATPase inhibitor inhibits ATP hydrolysis by F1F0-ATPase only when the membrane potential is lost.  相似文献   

2.
Yeast mitochondrial ATP synthase has three regulatory proteins; ATPase inhibitor, 9K protein, and 15K protein. A mutant yeast lacking these three regulatory factors was constructed by gene disruption. Rates of ATP synthesis of both wild-type and the mutant yeast mitochondria decreased with decrease of respiration, while their membrane potential was maintained at 170-160 mV under various respiration rates. When mitochondrial respiration was blocked by antimycin A, the membrane potential of both types of mitochondria was maintained at about 160 mV by ATP hydrolysis. ATP hydrolyzing activity of F(1)FoATPase solubilized from normal mitochondria decreased in proportion to the rate of ATP synthesis, while the activity of the mutant F(1)FoATPase was constant regardless of changes in the rate of phosphorylation. These observations strongly suggest that F(1)FoATPase in the phosphorylating mitochondria is a mixture of two types of enzyme, phosphorylating and non-phosphorylating enzymes, whose ratio is determined by the rate of respiration and that the ATPase inhibitor binds preferentially to the non-phosphorylating enzyme.  相似文献   

3.
Yeast mitochondrial ATP synthase has three regulatory proteins, ATPase inhibitor, 9K protein, and 15K protein. The 9K protein binds directly to purified F1-ATPase, as does the ATPase inhibitor, but the 15K protein does not [Hashimoto, T. et al. (1987) J. Biochem. 102, 685-692]. In the present study, we found that 15K protein bound to purified F1F0-ATPase, forming an equimolar complex with the enzyme. The apparent dissociation constant was calculated to be 1.4 x 10(-5) M. The ATPase inhibitor and 9K protein also bound to F1F0-ATPase in the presence of ATP and Mg2+, and the dissociation constants of their bindings were about 3 X 10(-6) M. They bound to the enzyme competitively in the absence of 15K protein, but in its presence, they bound in equimolar amounts to the enzyme. The ATP-hydrolyzing activity of the enzyme-ligand complex was greatly influenced by the order of bindings of ATPase inhibitor and 9K protein: when the ATPase inhibitor was bound first, the activity of the enzyme was inhibited completely and was not restored by 9K protein, but when 9K protein was added first, the activity was inhibited only partially even after equimolar binding of the ATPase inhibitor to the enzyme. These observations strongly suggest that the 15K protein binds to the F0 part and functions to hold the ATPase inhibitor or 9K protein on the F1 subunit.  相似文献   

4.
A regulatory subunit of yeast mitochondrial ATP synthase, 9K protein, formed an equimolar complex with F1-ATPase in the presence of ATP and Mg2+, indicating that the binding of the protein to the enzyme took place in a similar manner to that of ATPase inhibitor. The ATP-hydrolyzing activity of F1-ATPase decreased 40% on binding of the 9K protein, and the remaining activity was resistant to external ATPase inhibitor. The apparent dissociation constant of the F1-ATPase-9K complex was determined by gel permeation chromatography to be 3.7 X 10(-6) M, which was in the same order of magnitude as that of enzyme-ATPase inhibitor complex (4.2 x 10(-6) M). When added simultaneously the binding of the inhibitor and 9K protein to F1-ATPase were competitive and the sum of their bindings did not exceed 1 mol per mol of enzyme. However, the binding of each protein ligand to F1-ATPase took more than 1 min for completion, and when one of these two proteins was added 10 min after the other, it did not replace the other. These observations strongly suggest that membrane-bound F1-ATPase always binds to either the 9K protein or ATPase inhibitor in intact mitochondria and that the complexes with the two ligands are active and inactive counterparts, respectively.  相似文献   

5.
The yeast F1F0-ATP synthase forms dimeric complexes in the mitochondrial inner membrane and in a manner that is supported by the F0-sector subunits, Su e and Su g. Furthermore, it has recently been demonstrated that the binding of the F1F0-ATPase natural inhibitor protein to purified bovine F1-sectors can promote their dimerization in solution (Cabezon, E., Arechaga, I., Jonathan P., Butler, G., and Walker J. E. (2000) J. Biol. Chem. 275, 28353-28355). It was unclear until now whether the binding of the inhibitor protein to the F1 domains contributes to the process of F1F0-ATP synthase dimerization in intact mitochondria. Here we have directly addressed the involvement of the yeast inhibitor protein, Inh1, and its known accessory proteins, Stf1 and Stf2, in the formation of the yeast F1F0-ATP synthase dimer. Using mitochondria isolated from null mutants deficient in Inh1, Stf1, and Stf2, we demonstrate that formation of the F(1)F(0)-ATP synthase dimers is not adversely affected by the absence of these proteins. Furthermore, we demonstrate that the F1F0-ATPase monomers present in su e null mutant mitochondria can be as effectively inhibited by Inh1, as its dimeric counterpart in wild-type mitochondria. We conclude that dimerization of the F1F0-ATP synthase complexes involves a physical interaction of the membrane-embedded F0 sectors from two monomeric complexes and in a manner that is independent of inhibitory activity of the Inh1 and accessory proteins.  相似文献   

6.
A yeast nuclear gene (ATP10) is reported whose product is essential for the assembly of a functional mitochondrial ATPase complex. Mutations in ATP10 induce a loss of rutamycin sensitivity in the mitochondrial ATPase but do not affect respiratory enzymes. This phenotype has been correlated with a defect in the F0 sector of the ATPase. The wild type ATP10 gene has been cloned by transformation of an atp 10 mutant with a yeast genomic library. The gene codes for a protein of Mr = 30,293. The primary structure of the ATP10 product is not related to any known subunit of the yeast or mammalian mitochondrial ATPase complexes. To further clarify the role of this new protein in the assembly of the ATPase, an antibody was prepared against a hybrid protein expressed from a trpE/ATP 10 fusion gene. The antibody recognizes a 30-kDa protein present in wild type mitochondria. The protein is associated with the mitochondrial membrane but does not co-fractionate either with F1 or with the rutamycin-sensitive F1-F0 complex. These data suggest that the ATP10 product is not a subunit of the ATPase complex but rather is required for the assembly of the F0 sector of the complex.  相似文献   

7.
The wild-type yeast nuclear gene MST1 complements mutants defective in mitochondrial protein synthesis. The gene has been sequenced and shown to code for a protein of 54,030 kDa. The predicted product of MST1 is 36% identical over its 462 residues to the Escherichia coli threonyl-tRNA synthetase. Amino-acylation of wild-type mitochondrial tRNAs with a mitochondrial extract from mst1 mutants fail to acylate tRNAThr1 (anticodon: 3'-GAU-5') but show normal acylation of tRNAThr2 (anticodon: 3'-UGU-5'). These data suggest the presence of two separate threonyl-tRNA synthetases in yeast mitochondria. Antibodies were prepared against a trpE/MST1 fusion protein containing the 321 residues from the amino-terminal region of the E. coli anthranilate synthetase and 118 residues of the mitochondrial threonyl-tRNA synthetase. Antibodies to the fusion protein detect a 50-55-kDa protein in wild type yeast mitochondria but not in mitochondria of a strain in which the chromosomal MST1 gene was replaced by a copy of the same gene disrupted by insertion of the yeast LEU2 gene. The ability of the mutant with the inactive MST1 gene to charge tRNAThr2 argues strongly for the existence of a second threonyl-tRNA synthetase gene.  相似文献   

8.
9.
The mitochondrial F(1)F(0)-ATP synthase is a multimeric enzyme complex composed of at least 16 unique peptides with an overall molecular mass of approximately 600 kDa. F(1)-ATPase is composed of alpha(3)beta(3)gammadeltaepsilon with an overall molecular mass of 370 kDa. The genes encoding bovine F(1)-ATPase have been expressed in a quintuple yeast Saccharomyces cerevisiae deletion mutant (DeltaalphaDeltabetaDeltagammaDeltadeltaDeltaepsilon). This strain expressing bovine F(1) is unable to grow on medium containing a non-fermentable carbon source (YPG), indicating that the enzyme is non-functional. However, daughter strains were easily selected for growth on YPG medium and these were evolved for improved growth on YPG medium. The evolution of the strains was presumably due to mutations, but mutations in the genes encoding the subunits of the bovine F(1)-ATPase were not required for the ability of the cell to grow on YPG medium. The bovine enzyme expressed in yeast was partially purified to a specific activity of about half of that of the enzyme purified from bovine heart mitochondria. These results indicate that the molecular machinery required for the assembly of the mitochondrial ATP synthase is conserved from bovine and yeast and suggest that yeast may be useful for the expression, mutagenesis, and analysis of the mammalian F(1)- or F(1)F(0)-ATP synthase.  相似文献   

10.
By means of a yeast genome database search, we have identified an open reading frame located on chromosome XVI of Saccharomyces cerevisiae that encodes a protein with 53% amino acid similarity to the 11.3-kDa subunit g of bovine mitochondrial F1F0-ATP synthase. We have designated this ORF ATP20, and its product subunit g. A null mutant strain, constructed by insertion of the HIS3 gene into the coding region of ATP20, retained oxidative phosphorylation function. Assembly of F1F0-ATP synthase in the atp20-null strain was not affected in the absence of subunit g and levels of oligomycin-sensitive ATP hydrolase activity in mitochondria were normal. Immunoprecipitation of F1F0-ATP synthase from mitochondrial lysates prepared from atp20-null cells expressing a variant of subunit g with a hexahistidine motif indicated that this polypeptide was associated with other well-characterized subunits of the yeast complex. Whilst mitochondria isolated from the atp20-null strain had the same oxidative phosphorylation efficiency (ATP : O) as that of the control strain, the atp20-null strain displayed approximately a 30% reduction in both respiratory capacity and ATP synthetic rate. The absence of subunit g also reduced the activity of cytochrome c oxidase, and altered the kinetic control of this complex as demonstrated by experiments titrating ATP synthetic activity with cyanide. These results indicate that subunit g is associated with F1F0-ATP synthase and is required for maximal levels of respiration, ATP synthesis and cytochrome c oxidase activity in yeast.  相似文献   

11.
Yme1p, an ATP-dependent protease localized in the mitochondrial inner membrane, is required for the growth of yeast lacking an intact mitochondrial genome. Specific dominant mutations in the genes encoding the alpha- and gamma-subunits of the mitochondrial F(1)F(0)-ATPase suppress the slow-growth phenotype of yeast that simultaneously lack Yme1p and mitochondrial DNA. F(1)F(0)-ATPase activity is reduced in yeast lacking Yme1p and is restored in yme1 strains bearing suppressing mutations in F(1)-ATPase structural genes. Mitochondria isolated from yme1 yeast generated a membrane potential upon the addition of succinate, but unlike mitochondria isolated either from wild-type yeast or from yeast bearing yme1 and a suppressing mutation, were unable to generate a membrane potential upon the addition of ATP. Nuclear-encoded F(0) subunits accumulate in yme1 yeast lacking mitochondrial DNA; however, deletion of genes encoding those subunits did not suppress the requirement of yme1 yeast for intact mitochondrial DNA. In contrast, deletion of INH1, which encodes an inhibitor of the F(1)F(0)-ATPase, partially suppressed the growth defect of yme1 yeast lacking mitochondrial DNA. We conclude that Yme1p is in part responsible for assuring sufficient F(1)F(0)-ATPase activity to generate a membrane potential in mitochondria lacking mitochondrial DNA and propose that Yme1p accomplishes this by catalyzing the turnover of protein inhibitors of the F(1)F(0)-ATPase.  相似文献   

12.
An intrinsic ATPase inhibitor inhibits the ATP-hydrolyzing activity of mitochondrial F1F0-ATPase and is released from its binding site on the enzyme upon energization of mitochondrial membranes to allow phosphorylation of ADP. The mitochondrial activity to synthesize ATP is not influenced by the absence of the inhibitor protein. The enzyme activity to hydrolyze ATP is induced by dissipation of the membrane potential in the absence of the inhibitor. Thus, the inhibitor is not responsible for oxidative phosphorylation, but acts only to inhibit ATP hydrolysis by F1F0-ATPase upon deenergization of mitochondrial membranes. The inhibitor protein forms a regulatory complex with two stabilizing factors, 9K and 15K proteins, which facilitate the binding of the inhibitor to F1F0-ATPase and stabilize the resultant inactivated enzyme. The 9K protein, having a sequence very similar to the inhibitor, binds directly to F1 in a manner similar to the inhibitor. The 15K protein binds to the F0 part and holds the inhibitor and the 9K protein on F1F0-ATPase even when one of them is detached from the F1 part.  相似文献   

13.
The yeast mitochondrial outer membrane contains a major 70 kd protein with an amino-terminal hydrophobic membrane anchor and a hydrophilic 60 kd domain exposed to the cytosol. We now show that this protein (which we term MAS70) accelerates the mitochondrial import of many (but not all) precursor proteins. Anti-MAS70 IgGs or removal of MAS70 from the mitochondria by either mild trypsin treatment or by disrupting the nuclear MAS70 gene inhibits import of the F1-ATPase beta-subunit, the ADP/ATP translocator, and of several other precursors into isolated mitochondria by up to 75%, but has little effect on the import of porin. Intact cells of a mas70 null mutant import the F1-ATPase alpha-subunit and beta-subunits, cytochrome c1 and other precursors at least several fold more slowly than wild-type cells. Removal of MAS70 from wild-type mitochondria inhibits binding of the ADP/ATP translocator to the mitochondrial surface, indicating that MAS70 mediates one of the earliest import steps. Several precursors are thus imported by a pathway in which MAS70 functions as a receptor-like component. MAS70 is not essential for import of these precursors, but only accelerates this process.  相似文献   

14.
F0F1-ATPase of plant mitochondria: isolation and polypeptide composition   总被引:1,自引:0,他引:1  
A simple and high yield purification procedure for the isolation of F0F1-ATPase from spinach leaf mitochondria has been developed. This is the first report concerning purification and composition of the plant mitochondrial F0F1-ATPase. The enzyme is selectively extracted from inner membrane vesicles with the zwitterionic detergent, 3-[(3-cholamidopropyl) dimethyl ammonio]-1- propane sulfonate (CHAPS). The purified enzyme exhibits a high oligomycin-sensitive ATPase activity (3,6 mumol.min-1.mg-1). SDS-PAGE of the purified F0F1-ATPase complex reveals protein bands of molecular masses of 54 kDa (F1 alpha,beta), 33 kDa (F1 gamma), 28 kDa, 23 kDa, 21 kDa (F1 delta), 18.5 kDa, 15 kDa, 10.5 kDa, 9.5 kDa (F1 epsilon) and 8.5 kDa. All polypeptides migrate as one complex in a polyacrylamide gradient gel under non-denaturing conditions in the presence of 0.1% Triton X-100. Five polypeptides could be identified as subunits of F1. Polypeptides of molecular masses 28 kDa, 23 kDa, 18.5 kDa, 15 kDa, 10.5 kDa, 9.5 kDa and 8.5 kDa constitute the F0 part of the complex. Our results show that polypeptide composition of the plant mitochondrial F0 differs from other eukaryotic F0 of yeast, mammals and chloroplasts.  相似文献   

15.
Assembly of F1-ATPase in isolated mitochondria   总被引:2,自引:0,他引:2  
The assembly of the proton-translocating ATPase complex was studied in isolated mitochondria by incubating yeast mitochondria with radiolabeled precursors of mitochondrial proteins which had been made in a cell-free protein synthesis system. Following such an incubation, the ATPase complex (F1F0) was isolated. Newly assembled F1-ATPase was detected by autoradiography of the isolated enzyme, only peptide subunits which had been made in vitro and imported into the isolated mitochondria could be radioactive. Incorporation of radiolabeled ATPase subunits into the enzyme does not occur in the presence of an uncoupler of oxidative phosphorylation or of a divalent metal chelator, nor does it occur in submitochondrial particles rather than intact mitochondria. Incorporation of labeled ATPase subunits into the enzyme can be completed by unlabeled subunits, provided the unlabeled proteins are added before the mitochondria are incubated with radioactive precursors. These findings suggest that F1-ATPase is assembled from a pool of subunits in mitochondria.  相似文献   

16.
The content of an intrinsic ATPase inhibitor in mitochondria was determined by a radioimmunoassay procedure which showed the molar ratio of the inhibitor to ATPase to be 1:1. The ratio in submitochondrial particles, where half of the enzyme was activated, was the same as that of mitochondria, indicating that the inhibitor protein has affinity for the mitochondrial membrane as well as for F1-ATPase. The inhibitor protein could be removed from the mitochondrial membrane by incubation with 0.5 M Na2SO4 and concomitantly the enzyme was fully activated. The enzyme fully activated by the salt treatment was inactivated again by the externally added ATPase inhibitor in the presence of ATP and Mg2+. The enzyme-inhibitor complex (inactive) on the mitochondrial membrane was more stable than the solubilized enzyme-inhibitor complex but gradually dissociated in the absence of ATP and Mg2+. However, in mitochondria, the enzyme activity was inhibited even in the absence of the cofactors. A protein factor stabilizing the enzyme-inhibitor complex on the mitochondrial membrane was isolated from yeast mitochondria. This factor stabilized the inhibitor complex of membrane-bound ATPase while having no effect on that of purified F1-ATPase. It also efficiently facilitated the binding of the inhibitor to membrane-bound ATPase to form the complex, which reversibly dissociated at slightly alkaline pH.  相似文献   

17.
Mitochondrial ATP synthase (F1Fo-ATPase) catalyzes the terminal step of oxidative phosphorylation. In this paper, we demonstrate the functional expression of the hexahistidine-tagged beta-subunit of yeast ATP synthase and the purification of the F1-ATPase from yeast cells. A gene encoding the beta-subunit from Saccharomyces cerevisiae was modified to encode a protein of which the original N-terminus import signal sequence was replaced by a sequence containing the import signal sequence of a mitochondrial ATPase inhibitor, its processing site, and six consecutive histidines. Expression of the modified gene generated a functional F1Fo complex in host yeast cells lacking a functional copy of the endogenous ATP2 gene, as judged by growth of rescued cells on lactate medium. F1 was extracted from the yeast mitochondria by chloroform treatment and purified by immobilized metal affinity chromatography and gel filtration chromatography. The specific activity of the purified F1 was comparable to that of the wild-type enzyme, and the F1 contained all of the 5 known subunits (alpha, beta, gamma, delta, and epsilon). Moreover, the activity of the F1 was completely inhibited by the specific ATPase inhibitor protein, IF1. These results indicate that F1 containing the tagged beta-subunit is fully assembled and active. The application of this novel procedure simplifies the number of steps required for the isolation of F1 used for studying the molecular mechanism of catalysis and regulation of the enzyme.  相似文献   

18.
Spinach leaf mitochondrial F0F1 ATPase has been purified and is shown to consist of twelve polypeptides. Five of the polypeptides constitute the F1 part of the enzyme. The remaining polypeptides, with molecular masses of 28 kDa, 23 kDa, 18.5 kDa, 15 kDa, 10.5 kDa, 9.5 kDa and 8.5 kDa, belong to the F0 part of the enzyme. This is the first report concerning identification of the subunits of the plant mitochondrial F0. The identification of the components is achieved on the basis of the N-terminal amino acid sequence analysis and Western blot technique using monospecific antibodies against proteins characterized in other sources. The 28-kDa protein crossreacts with antibodies against the subunit of bovine heart ATPase with N-terminal Pro-Val-Pro- which corresponds to subunit F0b of Escherichia coli F0F1. Sequence analysis of the N-terminal 32 amino acids of the 23-kDa protein reveals that this protein is similar to mammalian oligomycin-sensitivity-conferring protein and corresponds to the F1 delta subunit of the chloroplast and E. coli ATPases. The 18.5-kDa protein crossreacts with antibodies against subunit 6 of the beef heart F0 and its N-terminal sequence of 14 amino acids shows a high degree of sequence similarity to the conserved regions at N-terminus of the ATPase subunits 6 from different sources. ATPase subunit 6 corresponds to subunit F0a of the E. coli enzyme. The 15-kDa protein and the 10.5-kDa protein crossreact with antibodies against F6 and the endogenous ATPase inhibitor protein of beef heart F0F1-ATPase, respectively. The 9.5-kDa protein is an N,N'-dicyclohexylcarbodiimide-binding protein corresponding to subunit F0c of the E. coli enzyme. The 8.5-kDa protein is of unknown identity. The isolated spinach mitochondrial F0F1 ATPase catalyzes oligomycin-sensitive ATPase activity of 3.5 mumol.mg-1.min-1. The enzyme catalyzes also hydrolysis of GTP (7.5 mumol.mg-1.min-1) and ITP (4.4 mumol.mg-1.min-1). Hydrolysis of ATP was stimulated fivefold in the presence of amphiphilic detergents, however the hydrolysis of other nucleotides could not be stimulated by these agents. These results show that the plant mitochondrial F0F1 ATPase complex differs in composition from the other mitochondrial, chloroplast and bacterial ATPases. The enzyme is, however, more closely related to the yeast mitochondrial ATPase and to the animal mitochondrial ATPase than to the chloroplast enzyme. The plant mitochondrial enzyme, however, exhibits catalytic properties which are characteristic for the chloroplast enzyme.  相似文献   

19.
Respiratory-deficient mutants of Saccharomyces cerevisiae assigned to pet complementation group G72 are impaired in mitochondrial protein synthesis. The loss of this activity has been correlated with the inability of the mutants to acylate the two methionyl-tRNAs of yeast mitochondria. A nuclear gene (MSM1) capable of complementing the respiratory deficiency has been cloned by transformation of the G72 mutant C122/U3 with a yeast genomic library. In situ disruption of the MSM1 gene in a wild-type haploid strain of yeast induces a respiratory-deficient phenotype but does not affect the ability of the mutant to grow on fermentable substrates indicating that the product of MSM1 functions only in mitochondrial protein synthesis. Mitochondrial extracts prepared from the mutant with the disrupted copy of MSM1 were found to be defective in acylation of the two mitochondrial methionyl-tRNAs thereby confirming the identity of MSM1 as the structural gene for the mitochondrial methionyl-tRNA synthetase. The sequence of the protein encoded by MSM1 is similar to the Escherichia coli and yeast cytoplasmic methionyl-tRNA synthetases. Based on the primary-sequence similarities of the three proteins, the mitochondrial enzyme appears to be more related to the bacterial than to the yeast cytoplasmic methionyl-tRNA synthetase.  相似文献   

20.
Machida K  Tanaka T 《FEBS letters》1999,462(1-2):108-112
An isoprenoid farnesol (FOH) inhibited cellular oxygen consumption and induced mitochondrial generation of reactive oxygen species (ROS) in cells of Saccharomyces cerevisiae in correlation with hyperpolarization of the mitochondrial transmembrane potential (mtDeltaPsi). The FOH-induced events were coordinately abolished with the F(1)-ATPase inhibitor sodium azide as well as the F(0)F(1)-ATPase inhibitor oligomycin, suggesting the dependence of ROS generation on mtDeltaPsi hyperpolarization mediated by the proton pumping function of F(0)F(1)-ATPase as a result of ATP hydrolysis. The role of F(1)-ATPase activity in mtDeltaPsi hyperpolarization was supported by the intracellular depletion of ATP in FOH-treated cells and its protection with sodium azide. An indirect mechanism was suggested to exist in the regulation of F(0)F(1)-ATPase by FOH to accelerate its ATP-hydrolyzing activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号