首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Originally annotated as the initiator of fatty acid synthesis (FAS), β‐ketoacyl‐acyl carrier protein synthase III (KAS III) is a unique component of the bacterial FAS system. Novel variants of KAS III have been identified that promote the de novo use of additional extracellular fatty acids by FAS. These KAS III variants prefer longer acyl‐groups, notably octanoyl‐CoA. Acinetobacter baumannii, a clinically important nosocomial pathogen, contains such a multifunctional KAS III (AbKAS III). To characterize the structural basis of its substrate specificity, we determined the crystal structures of AbKAS III in the presence of different substrates. The acyl‐group binding cavity of AbKAS III and co‐crystal structure of AbKAS III and octanoyl‐CoA confirmed that the cavity can accommodate acyl groups with longer alkyl chains. Interestingly, Cys264 formed a disulfide bond with residual CoA used in the crystallization, which distorted helices at the putative interface with acyl‐carrier proteins. The crystal structure of KAS III in the alternate conformation can also be utilized for designing novel antibiotics.  相似文献   

2.
BACKGROUND: beta-ketoacyl-acyl carrier protein synthase (KAS) I is vital for the construction of the unsaturated fatty acid carbon skeletons characterizing E. coli membrane lipids. The new carbon-carbon bonds are created by KAS I in a Claisen condensation performed in a three-step enzymatic reaction. KAS I belongs to the thiolase fold enzymes, of which structures are known for five other enzymes. RESULTS: Structures of the catalytic Cys-Ser KAS I mutant with covalently bound C10 and C12 acyl substrates have been determined to 2.40 and 1.85 A resolution, respectively. The KAS I dimer is not changed by the formation of the complexes but reveals an asymmetric binding of the two substrates bound to the dimer. A detailed model is proposed for the catalysis of KAS I. Of the two histidines required for decarboxylation, one donates a hydrogen bond to the malonyl thioester oxo group, and the other abstracts a proton from the leaving group. CONCLUSIONS: The same mechanism is proposed for KAS II, which also has a Cys-His-His active site triad. Comparison to the active site architectures of other thiolase fold enzymes carrying out a decarboxylation step suggests that chalcone synthase and KAS III with Cys-His-Asn triads use another mechanism in which both the histidine and the asparagine interact with the thioester oxo group. The acyl binding pockets of KAS I and KAS II are so similar that they alone cannot provide the basis for their differences in substrate specificity.  相似文献   

3.
4.
beta-Ketoacyl-[acyl carrier protein (ACP)] synthase forms new carbon-carbon bonds in three steps: transfer of an acyl primer from ACP to the enzyme, decarboxylation of the elongating substrate and its condensation with the acyl primer substrate. Six residues of Escherichia coli beta-ketoacyl-ACP synthase I (KAS I) implicated in these reactions were subjected to site-directed mutagenesis. Analyses of the abilities of C163A, C163S, H298A, D306A, E309A, K328A, and H333A to carry out the three reactions lead to the following conclusions. The active site Cys-163 is not required for decarboxylation, whereas His-298 and His-333 are indispensable. Neither of the histidines is essential for increasing the nucleophilicity of Cys-163 to enable transfer of the acyl primer substrate. Maintenance of the structural integrity of the active site by Asp-306 and Glu-309 is required for decarboxylation but not for transfer. One function of Lys-328 occurs very early in catalysis, potentially before transfer. These results in conjunction with structural analyses of substrate complexes have led to a model for KAS I catalysis [Olsen, J. G., Kadziola, A., von Wettstein-Knowles, P., Siggaard-Andersen, M., and Larsen, S. (2001) Structure 9, 233-243]. Another facet of catalysis revealed by the mutant analyses is that the acyl primer transfer activity of beta-ketoacyl-ACP synthase I is inhibited by free ACP at physiological concentrations. Differences in the inhibitory response by individual mutant proteins indicate that interaction of free ACP with Cys-163, Asp-306, Glu-309, Lys-328, and His-333 might form a sensitive regulatory mechanism for the transfer of acyl primers.  相似文献   

5.
The fab1 mutant of Arabidopsis is partially deficient in activity of beta-ketoacyl-[acyl carrier protein] synthase II (KAS II). This defect results in increased levels of 16:0 fatty acid and is associated with damage and death of the mutants at low temperature. Transformation of fab1 plants with a cDNA from Brassica napus encoding a KAS II enzyme resulted in complementation of both mutant phenotypes. The dual complementation by expression of the single gene proves that low-temperature damage is a consequence of altered membrane unsaturation. The fab1 mutation is a single nucleotide change in Arabidopsis KAS2 that results in a Leu337Phe substitution. The Leu337 residue is conserved among plant and bacterial KAS proteins, and in the crystal structures of E. coli KAS I and KAS II, this leucine abuts a phenylalanine whose imidazole ring extends into the substrate binding cavity causing the fatty acid chain to bend. For functional analysis the equivalent Leu207Phe mutation was introduced into the fabB gene encoding the E. coli KAS I enzyme. Compared to wild-type, the Leu207Phe protein showed a 10-fold decrease in binding affinity for the fatty acid substrate, exhibited a modified behavior during size-exclusion chromatography and was severely impaired in condensation activity. These results suggest that the molecular defect in fab1 plants is a structural instability of the KAS2 gene product induced by insufficient space for the imidazole ring of the mutant phenylalanine residue.  相似文献   

6.
Substrate specificity of condensing enzymes is a predominant factor determining the nature of fatty acyl chains synthesized by type II fatty acid synthase (FAS) enzyme complexes composed of discrete enzymes. The gene (mtKAS) encoding the condensing enzyme, beta-ketoacyl-[acyl carrier protein] (ACP) synthase (KAS), constituent of the mitochondrial FAS was cloned from Arabidopsis thaliana, and its product was purified and characterized. The mtKAS cDNA complemented the KAS II defect in the E. coli CY244 strain mutated in both fabB and fabF encoding KAS I and KAS II, respectively, demonstrating its ability to catalyze the condensation reaction in fatty acid synthesis. In vitro assays using extracts of CY244 containing all E. coli FAS components, except that KAS I and II were replaced by mtKAS, gave C(4)-C(18) fatty acids exhibiting a bimodal distribution with peaks at C(8) and C(14)-C(16). Previously observed bimodal distributions obtained using mitochondrial extracts appear attributable to the mtKAS enzyme in the extracts. Although the mtKAS sequence is most similar to that of bacterial KAS IIs, sensitivity of mtKAS to the antibiotic cerulenin resembles that of E. coli KAS I. In the first or priming condensation reaction of de novo fatty acid synthesis, purified His-tagged mtKAS efficiently utilized malonyl-ACP, but not acetyl-CoA as primer substrate. Intracellular targeting using green fluorescent protein, Western blot, and deletion analyses identified an N-terminal signal conveying mtKAS into mitochondria. Thus, mtKAS with its broad chain length specificity accomplishes all condensation steps in mitochondrial fatty acid synthesis, whereas in plastids three KAS enzymes are required.  相似文献   

7.
BACKGROUND: beta-Keto acyl carrier protein reductase (BKR) catalyzes the pyridine-nucleotide-dependent reduction of a 3-oxoacyl form of acyl carrier protein (ACP), the first reductive step in de novo fatty acid biosynthesis and a reaction often performed in polyketide biosynthesis. The Brassica napus BKR enzyme is NADPH-dependent and forms part of a dissociable type II fatty acid synthetase (FAS). Significant sequence similarity is observed with enoyl acyl carrier protein reductase (ENR), the other reductase of FAS, and the short-chain alcohol dehydrogenase (SDR) family. RESULTS: The first crystal structure of BKR has been determined at 2.3 A resolution in a binary complex with an NADP(+) cofactor. The structure reveals a homotetramer in which each subunit has a classical dinucleotide-binding fold. A triad of Ser154, Tyr167 and Lys171 residues is found at the active site, characteristic of the SDR family. Overall BKR has a very similar structure to ENR with good superimposition of catalytically important groups. Modelling of the substrate into the active site of BKR indicates the need for conformational changes in the enzyme. CONCLUSIONS: A catalytic mechanism can be proposed involving the conserved triad. Helix alpha6 must shift its position to permit substrate binding to BKR and might act as a flexible lid on the active site. The similarities in fold, mechanism and substrate binding between BKR, which catalyzes a carbon-oxygen double-bond reduction, and ENR, the carbon-carbon double-bond oxidoreductase in FAS, suggest a close evolutionary link during the development of the fatty acid biosynthetic pathway.  相似文献   

8.
The human fibrinogen gamma-chain C-terminal segment functions as the platelet integrin binding site as well as the Factor XIIIa cross-linking substrate and thus plays an important role in blood clot formation and stabilization. The three-dimensional structure of this segment has been determined using carrier protein driven crystallization. The C-terminal segment, gamma-(398-411), was attached to a linker sequence at the C-terminus of glutathione S-transferase and the structure of this fusion protein determined at 1.8 A resolution. Functional studies of the chimeric protein demonstrate that the fibrinogen sequence in the presence of the carrier protein retains its specific functions as ligand for platelet integrin alpha(IIb)beta3 (gpIIb/IIIa) and as a cross-linking substrate for Factor XIIIa. The structure obtained for the fibrinogen gamma-chain segment is not affected by crystal packing and can provide the missing links to the recently reported model of cross-linked fibrin.  相似文献   

9.
Mycolic acids are long chain alpha-alkyl branched, beta-hydroxy fatty acids that represent a characteristic component of the Mycobacterium tuberculosis cell wall. Through their covalent attachment to peptidoglycan via an arabinogalactan polysaccharide, they provide the basis for an essential outer envelope membrane. Mycobacteria possess two fatty acid synthases (FAS); FAS-I carries out de novo synthesis of fatty acids while FAS-II is considered to elongate medium chain length fatty acyl primers to provide long chain (C(56)) precursors of mycolic acids. Here we report the crystal structure of Mycobacterium tuberculosis beta-ketoacyl acyl carrier protein synthase (ACP) II mtKasB, a mycobacterial elongation condensing enzyme involved in FAS-II. This enzyme, along with the M. tuberculosis beta-ketoacyl ACP synthase I mtKasA, catalyzes the Claisen-type condensation reaction responsible for fatty acyl elongation in FAS-II and are potential targets for development of novel anti-tubercular drugs. The crystal structure refined to 2.4 A resolution revealed that, like other KAS-II enzymes, mtKasB adopts a thiolase fold but contains unique structural features in the capping region that may be crucial to its preference for longer fatty acyl chains than its counterparts from other bacteria. Modeling of mtKasA using the mtKasB structure as a template predicts the overall structures to be almost identical, but a larger entrance to the active site tunnel is envisaged that might contribute to the greater sensitivity of mtKasA to the inhibitor thiolactomycin (TLM). Modeling of TLM binding in mtKasB shows that the drug fits the active site poorly and results of enzyme inhibition assays using TLM analogues are wholly consistent with our structural observations. Consequently, the structure described here further highlights the potential of TLM as an anti-tubercular lead compound and will aid further exploration of the TLM scaffold towards the design of novel compounds, which inhibit mycobacterial KAS enzymes more effectively.  相似文献   

10.
Thiolases belong to a superfamily of condensing enzymes that includes also beta-ketoacyl acyl carrier protein synthases (KAS enzymes), involved in fatty acid synthesis. Here, we describe the high resolution structure of human cytosolic acetoacetyl-CoA thiolase (CT), both unliganded (at 2.3 angstroms resolution) and in complex with CoA (at 1.6 angstroms resolution). CT catalyses the condensation of two molecules of acetyl-CoA to acetoacetyl-CoA, which is the first reaction of the metabolic pathway leading to the synthesis of cholesterol. CT is a homotetramer of exact 222 symmetry. There is an excess of positively charged residues at the interdimer surface leading towards the CoA-binding pocket, possibly important for the efficient capture of substrates. The geometry of the catalytic site, including the three catalytic residues Cys92, His 353, Cys383, and the two oxyanion holes, is highly conserved between the human and bacterial Zoogloea ramigera thiolase. In human CT, the first oxyanion hole is formed by Wat38 (stabilised by Asn321) and NE2(His353), and the second by N(Cys92) and N(Gly385). The active site of this superfamily is constructed on top of four active site loops, near Cys92, Asn321, His353, and Cys383, respectively. These loops were used for the superpositioning of CT on the bacterial thiolase and on the Escherichia coli KAS I. This comparison indicates that the two thiolase oxyanion holes also exist in KAS I at topologically equivalent positions. Interestingly, the hydrogen bonding interactions at the first oxyanion hole are different in thiolase and KAS I. In KAS I, the hydrogen bonding partners are two histidine NE2 atoms, instead of a water and a NE2 side-chain atom in thiolase. The second oxyanion hole is in both structures shaped by corresponding main chain peptide NH-groups. The possible importance of bound water molecules at the catalytic site of thiolase for the reaction mechanism is discussed.  相似文献   

11.
The cerulenin-insensitive -ketoacyl-acyl carrier protein (ACP) synthase III (KAS III, EC 2.3.1.41) catalyzes the first condensing step of the fatty-acid synthase (FAS) reaction in plants and bacteria, using directly acetyl-CoA as substrate for condensation with malonyl-ACP. In order to identify a possible site for regulation of the biosynthesis of medium-chain fatty acids, the influence of acyl-ACPs of different chain-lengths (C4,C6,C8 and C10) on the activity of KAS III was investigated in vitro using an FAS preparation from seeds of Cuphea lanceolata Ait. (a crop accumulating up to 90% decanoic acid into triacylglycerols) that had been treated with 100 M cerulenin. All acyl-ACPs investigated led to a decrease in the activity of KAS III towards acetyl-CoA, an effect apparently related to the length of the acyl chain. Analysis of the reaction products of the assay revealed that short-chain acyl-ACPs elongated to a very small extent simultaneously with acetyl-CoA. This extent of elongation did not correlate with the decrease in KAS III-activity levels. These data excluded the possibility of competition between acetyl-CoA and acyl-ACPs, but indicated that acyl-ACPs inhibited the enzyme. Decanoyl-ACP caused the highest decrease in enzyme activity (IC50 = 0.45 M), thus being a potent inhibitor of KAS III. Michaelis-Menten kinetics revealed that the inhibition of KAS III by decanoyl-ACP was non-competitive in relation to malonyl-ACP and uncompetitive in relation to acetyl-CoA. Moreover, our data indicate that KAS III has a strict specificity for the elongation of acetyl-CoA. An inhibition of KAS III by acyl-ACPs was observed in experiments using FAS preparations from rape seeds and spinach leaves, but the inhibition of KAS III from C. lanceolata seeds by decanoyl-ACP was approximately 1.5-fold higher. The data provide evidence that acyl-ACPs are involved in the modulation of plant fatty-acid biosynthesis by a feed-back mechanism.Abbreviations ACP acyl carrier protein - DTT dithiothreitol - TCA trichloroacetic acid - ecACP acyl carrier protein from Escherichia coli - FAS fatty-acid synthase - IC50 concentration causing 50% inhibition - KAS -ketoacyl-ACP synthase - NEM N-ethylmaleimide In honour of Professor Hartmut K. Lichtenthaler's sixtieth birthdayThis work was supported by a grant from the German Ministry of Research and Technology (BMFT) and in part by the Fonds der Chemischen Industrie and the Ministry of Science and Research of the State Northrhine-Westfalia. The authors wish to thank Prof. G. Röbbelen (University of Göttingen, Göttingen, Germany) for kindly providing the plant material. This paper is part of the doctoral thesis of Fritzi Maike Brück.  相似文献   

12.
BACKGROUND: Many proteins undergo posttranslational modifications involving covalent attachment of lipid groups. Among them is palmitoylation, a dynamic, reversible process that affects trimeric G proteins and Ras and constitutes a regulatory mechanism for signal transduction pathways. Recently, an acylhydrolase previously identified as lysophospholipase has been shown to function as an acyl protein thioesterase, which catalyzes depalmitoylation of Galpha proteins as well as Ras. Its amino acid sequence suggested that the protein is evolutionarily related to neutral lipases and other thioesterases, but direct structural information was not available. RESULTS: We have solved the crystal structure of the human putative Galpha-regulatory protein acyl thioesterase (hAPT1) with a single data set collected from a crystal containing the wild-type protein. The phases were calculated to 1.8 A resolution based on anomalous scattering from Br(-) ions introduced in the cryoprotectant solution in which the crystal was soaked for 20 s. The model was refined against data extending to a resolution of 1.5 A to an R factor of 18.6%. The enzyme is a member of the ubiquitous alpha/beta hydrolase family, which includes other acylhydrolases such as the palmitoyl protein thioesterase (PPT1). CONCLUSIONS: The human APT1 is closely related to a previously described carboxylesterase from Pseudomonas fluorescens. The active site contains a catalytic triad of Ser-114, His-203, and Asp-169. Like carboxylesterase, hAPT1 appears to be dimeric, although the mutual disposition of molecules in the two dimers differs. Unlike carboxylesterase, the substrate binding pocket and the active site of hAPT1 are occluded by the dimer interface, suggesting that the enzyme must dissociate upon interaction with substrate.  相似文献   

13.
Bile-salt activated lipase (BAL) is a pancreatic enzyme that digests a variety of lipids in the small intestine. A distinct property of BAL is its dependency on bile salts in hydrolyzing substrates of long acyl chains or bulky alcoholic motifs. A crystal structure of the catalytic domain of human BAL (residues 1-538) with two surface mutations (N186D and A298D), which were introduced in attempting to facilitate crystallization, has been determined at 2.3 A resolution. The crystal form belongs to space group P2(1)2(1)2(1) with one monomer per asymmetric unit, and the protein shows an alpha/beta hydrolase fold. In the absence of bound bile salt molecules, the protein possesses a preformed catalytic triad and a functional oxyanion hole. Several surface loops around the active site are mobile, including two loops potentially involved in substrate binding (residues 115-125 and 270-285).  相似文献   

14.
Phosphatidylinositol transfer protein (PITP) is a ubiquitous eukaryotic protein that preferentially binds either phosphatidylinositol or phosphatidylcholine and catalyzes the exchange of these lipids between membranes. Mammalian cytosolic PITPs include the ubiquitously expressed PITPalpha and PITPbeta isoforms (269-270 residues). The crystal structure of rat PITPbeta complexed to dioleoylphosphatidylcholine was determined to 2.18 A resolution with molecular replacement using rat PITPalpha (77% sequence identify) as the phasing model. A structure comparison of the alpha and beta isoforms reveals minimal differences in protein conformation, differences in acyl conformation in the two isoforms, and remarkable conservation of solvent structure around the bound lipid. A comparison of transfer activity by human and rat PITPs, using small unilamellar vesicles with carefully controlled phospholipid composition, indicates that the beta isoforms have minimal differences in transfer preference between PtdIns and PtdCho when donor vesicles contain predominantly PtdCho. When PtdCho and PtdIns are present in equivalent concentrations in donor vesicles, PtdIns transfer occurs at approximately 3-fold the rate of PtdCho. The rat PITPbeta isoform clearly has the most diminished transfer rate of the four proteins studied. With the two rat isoforms, site-directed mutations of two locations within the lipid binding cavity that possess differing biochemical properties were characterized: I84alpha/F83beta and F225alpha/L224beta. The 225/224 locus is more critical in determining substrate specificity. Following the mutation of this locus to the other amino acid, the PtdCho transfer specific activity became PITPalpha (F225L) approximately PITPbeta and PITPbeta (L224F) approximately PITPalpha. The 225alpha/224beta locus plays a modest role in the specificity of both isoforms toward CerPCho.  相似文献   

15.
Malonyl-CoA: acyl carrier protein transacylase (MCAT) is a critical enzyme responsible for the transfer of the malonyl moiety to holo-acyl carrier protein (ACP) forming the malonyl-ACP intermediates in the initiation step of type II fatty acid synthesis (FAS II) in bacteria. MCAT has been considered as an attractive drug target in the discovery of antibacterial agents. In this study, the crystal structure of MCAT from Helicobacter pylori (Hp) at 2.5 angstroms resolution is reported, and the interaction of HpMCAT with HpACP is extensively investigated by using computational docking, GST-pull-down, and surface plasmon resonance (SPR) technology-based assays. The crystal structure results reveal that HpMCAT has a compact folding composed of a large subdomain with a similar core as in alpha/beta hydrolases, and a similar ferredoxin-like small subdomain as in acylphosphatases. The docking result suggests two positively charged areas near the entrance of the active site of HpMCAT as the ACP-binding region. Binding assay research shows that HpMCAT demonstrates a moderately binding ability against HpACP. The solved 3D structure of HpMCAT is expected to supply useful information for the structure-based discovery of novel inhibitors against MCAT, and the quantitative study of HpMCAT interaction with HpACP is hoped to give helpful hints in the understanding of the detailed catalytic mechanisms for HpMCAT.  相似文献   

16.
The dehydratases (DHs) of modular polyketide synthases (PKSs) catalyze dehydrations that occur frequently in the biosynthesis of complex polyketides, yet little is known about them structurally or mechanistically. Here, the structure of a DH domain, isolated from the fourth module of the erythromycin PKS, is presented at 1.85 Å resolution. As with the DH of the highly related animalian fatty acid synthase, the DH monomer possesses a double-hotdog fold. Two symmetry mates within the crystal lattice make a contact that likely represents the DH dimerization interface within an intact PKS. Conserved hydrophobic residues on the DH surface indicate potential interfaces with two other PKS domains, the ketoreductase and the acyl carrier protein. Mutation of an invariant arginine at the hypothesized acyl carrier protein docking site in the context of the erythromycin PKS resulted in decreased production of the erythromycin precursor 6-deoxyerythronolide B. The structure elucidates how the α-hydrogen and β-hydroxyl group of a polyketide substrate interact with the catalytic histidine and aspartic acid in the DH active site prior to dehydration.  相似文献   

17.
X Ji  P Zhang  R N Armstrong  G L Gilliland 《Biochemistry》1992,31(42):10169-10184
The crystal structure of a mu class glutathione S-transferase (EC 2.5.1.18) from rat liver (isoenzyme 3-3) in complex with the physiological substrate glutathione (GSH) has been solved at 2.2-A resolution by multiple isomorphous replacement methods. The enzyme crystallized in the monoclinic space group C2 with unit cell dimensions of a = 87.98 A, b = 69.41 A, c = 81.34 A, and beta = 106.07 degrees. Oligonucleotide-directed site-specific mutagenesis played an important role in the solution of the structure in that the cysteine mutants C86S, C114S, and C173S were used to help locate the positions of mercuric ion sites in nonisomorphous derivatives with ethylmercuric phosphate and to align the sequence with the model derived from MIR phases. A complete model for the protein was not obtained until part of the solvent structure was interpreted. The dimer in the asymmetric unit refined to a crystallographic R = 0.171 for 19,298 data and I > or = 1.5 sigma (I). The final model consists of 4150 atoms, including all non-hydrogen atoms of 434 amino acid residues, two GSH molecules, and oxygen atoms of 474 water molecules. The dimeric enzyme is globular in shape with dimensions of 53 x 62 x 56 A. Crystal contacts are primarily responsible for conformational differences between the two subunits which are related by a noncrystallographic 2-fold axis. The structure of the type 3 subunit can be divided into two domains separated by a short linker, a smaller alpha/beta domain (domain I, residues 1-82), and a larger alpha domain (domain II, residues 90-217). Domain I contains four beta-strands which form a central mixed beta-sheet and three alpha-helices which are arranged in a beta alpha beta alpha beta beta alpha motif. Domain II is composed of five alpha-helices. Domain I can be considered the glutathione binding domain, while domain II seems to be primarily responsible for xenobiotic substrate binding. The active site is located in a deep (19-A) cavity which is composed of three relatively mobile structural elements: the long loop (residues 33-42) of domain I, the alpha 4/alpha 5 helix-turn-helix segment, and the C-terminal tail. GSH is bound at the active site in an extended conformation at one end of the beta-sheet of domain I with its backbone facing the cavity and the sulfur pointing toward the subunit to which it is bound.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
BACKGROUND: Rab geranylgeranyltransferase (RabGGT) catalyzes the addition of two geranylgeranyl groups to the C-terminal cysteine residues of Rab proteins, which is crucial for membrane association and function of these proteins in intracellular vesicular trafficking. Unlike protein farnesyltransferase (FT) and type I geranylgeranyltransferase, which both prenylate monomeric small G proteins or short peptides, RabGGT can prenylate Rab only when Rab is in a complex with Rab escort protein (REP). RESULTS: The crystal structure of rat RabGGT at 2.0 A resolution reveals an assembly of four distinct structural modules. The beta subunit forms an alpha-alpha barrel that contains most of the residues in the active site. The alpha subunit consists of a helical domain, an immunoglobulin (Ig)-like domain, and a leucine-rich repeat (LRR) domain. The N-terminal region of the alpha subunit binds to the active site in the beta subunit; residue His2alpha directly coordinates a zinc ion. The prenyl-binding pocket of RabGGT is deeper than that in FT. CONCLUSIONS: LRR and Ig domains are often involved in protein-protein interactions; in RabGGT they might participate in the recognition and binding of REP. The binding of the N-terminal peptide of the alpha subunit to the active site suggests an autoinhibition mechanism that might contribute to the inability of RabGGT to recognize short peptides or Rab alone as its substrate. Replacement of residues Trp102beta and Tyr154beta in FT by Ser48beta and Leu99beta, respectively, in RabGGT largely determine the different lipid-binding specificities of the two enzymes.  相似文献   

19.
Beta-ketoacyl-acyl carrier protein (ACP) synthase enzymes join short carbon units to construct fatty acyl chains by a three-step Claisen condensation reaction. The reaction starts with a trans thioesterification of the acyl primer substrate from ACP to the enzyme. Subsequently, the donor substrate malonyl-ACP is decarboxylated to form a carbanion intermediate, which in the third step attacks C1 of the primer substrate giving rise to an elongated acyl chain. A subgroup of beta-ketoacyl-ACP synthases, including mitochondrial beta-ketoacyl-ACP synthase, bacterial plus plastid beta-ketoacyl-ACP synthases I and II, and a domain of human fatty acid synthase, have a Cys-His-His triad and also a completely conserved Lys in the active site. To examine the role of these residues in catalysis, H298Q, H298E and six K328 mutants of Escherichia colibeta-ketoacyl-ACP synthase I were constructed and their ability to carry out the trans thioesterification, decarboxylation and/or condensation steps of the reaction was ascertained. The crystal structures of wild-type and eight mutant enzymes with and/or without bound substrate were determined. The H298E enzyme shows residual decarboxylase activity in the pH range 6-8, whereas the H298Q enzyme appears to be completely decarboxylation deficient, showing that H298 serves as a catalytic base in the decarboxylation step. Lys328 has a dual role in catalysis: its charge influences acyl transfer to the active site Cys, and the steric restraint imposed on H333 is of critical importance for decarboxylation activity. This restraint makes H333 an obligate hydrogen bond donor at Nepsilon, directed only towards the active site and malonyl-ACP binding area in the fatty acid complex.  相似文献   

20.
The crystal structures of an acetyl esterase, HerE, and its complex with an inhibitor dimethylarsinic acid have been determined at 1.30- and 1.45-A resolution, respectively. Although the natural substrate for the enzyme is unknown, HerE hydrolyzes the acetyl groups from heroin to yield morphine and from phenyl acetate to yield phenol. Recently, the activity of the enzyme toward heroin has been exploited to develop a heroin biosensor, which affords higher sensitivity than other currently available detection methods. The crystal structure reveals a single domain with the canonical alpha/beta hydrolase fold with an acyl binding pocket that snugly accommodates the acetyl substituent of the substrate and three backbone amides that form a tripartite oxyanion hole. In addition, a covalent adduct was observed between the active site serine and dimethylarsinic acid, which inhibits the enzyme. This crystal structure provides the first example of an As-containing compound in a serine esterase active site and the first example of covalent modification of serine by arsenic. Thus, the HerE complex reveals the structural basis for the broad scope inhibition of serine hydrolases by As(V)-containing organic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号