首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Escherichia coli actin homologue MreB is part of a helical cytoskeletal structure that winds around the cell between the two poles. It has been shown that MreB redistributes during the cell cycle to form circumferential ring structures that flank the cytokinetic FtsZ ring and appear to be associated with division and segregation of the helical cytoskeleton. We show here that the MreB cytoskeletal ring also contains the MreC, MreD, Pbp2 and RodA proteins. Assembly of MreB, MreC, MreD and Pbp2 into the ring structure required the FtsZ ring but no other known components of the cell division machinery, whereas assembly of RodA into the cytoskeletal ring required one or more additional septasomal components. Strikingly, MreB, MreC, MreD and RodA were each able to independently assemble into the cytoskeletal ring and coiled cytoskeletal structures in the absence of any of the other ring components. This excludes the possibility that one or more of these proteins acts as a scaffold for incorporation of the other proteins into these structures. In contrast, incorporation of Pbp2 required the presence of MreC, which may provide a docking site for Pbp2 entry.  相似文献   

2.
The oval shape of pneumococci results from a combination of septal and lateral peptidoglycan synthesis. The septal cross‐wall is synthesized by the divisome, while the elongasome drives cell elongation by inserting new peptidoglycan into the lateral cell wall. Each of these molecular machines contains penicillin‐binding proteins (PBPs), which catalyze the final stages of peptidoglycan synthesis, plus a number of accessory proteins. Much effort has been made to identify these accessory proteins and determine their function. In the present paper we have used a novel approach to identify members of the pneumococcal elongasome that are functionally closely linked to PBP2b. We discovered that cells depleted in PBP2b, a key component of the elongasome, display several distinct phenotypic traits. We searched for proteins that, when depleted or deleted, display the same phenotypic changes. Four proteins, RodA, MreD, DivIVA and Spr0777, were identified by this approach. Together with PBP2b these proteins are essential for the normal function of the elongasome. Furthermore, our findings suggest that DivIVA, which was previously assigned as a divisomal protein, is required to correctly localize the elongasome at the negatively curved membrane region between the septal and lateral cell wall.  相似文献   

3.
In a screen for mutations suppressing the lethal loss of PBP2b in Streptococcus pneumoniae we identified Spr1851 (named EloR), a cytoplasmic protein of unknown function whose inactivation removed the requirement for PBP2b as well as RodA. It follows from this that EloR and the two elongasome proteins must be part of the same functional network. This network also includes StkP, as this serine/threonine kinase phosphorylates EloR on threonine 89 (T89). We found that ΔeloR cells, and cells expressing the phosphoablative form of EloR (EloRT89A), are significantly shorter than wild‐type cells. Furthermore, the phosphomimetic form of EloR (EloRT89E) is not tolerated unless the cell in addition acquires a truncated MreC or non‐functional RodZ protein. By itself, truncation of MreC as well as inactivation of RodZ gives rise to less elongated cells, demonstrating that the stress exerted by the phosphomimetic form of EloR is relieved by suppressor mutations that reduce or abolish the activity of the elongasome. Of note, it was also found that loss of elongasome activity caused by truncation of MreC elicits increased StkP‐mediated phosphorylation of EloR. Together, the results support a model in which phosphorylation of EloR stimulates cell elongation, while dephosphorylation has an inhibitory effect.  相似文献   

4.
Maintenance of rod shape in Escherichia coli requires the shape proteins MreB, MreC, MreD, MrdA (PBP2), and MrdB (RodA). How loss of the Mre proteins affects E. coli viability has been unclear. We generated Mre and Mrd depletion strains under conditions that minimize selective pressure for undefined suppressors and found their phenotypes to be very similar. Cells lacking one or more of the five proteins were fully viable and propagated as small spheres under conditions of slow mass increase but formed large nondividing spheroids with noncanonical FtsZ assembly patterns at higher mass doubling rates. Extra FtsZ was sufficient to suppress lethality in each case, allowing cells to propagate as small spheres under any condition. The failure of each unsuppressed mutant to divide under nonpermissive conditions correlated with the presence of elaborate intracytoplasmic membrane-bound compartments, including vesicles/vacuoles and more-complex systems. Many, if not all, of these compartments formed by FtsZ-independent involution of the cytoplasmic membrane (CM) rather than de novo. Remarkably, while some of the compartments were still continuous with the CM and the periplasm, many were topologically separate, indicating they had been released into the cytoplasm by an endocytic-like membrane fission event. Notably, cells failed to adjust the rate of phospholipid synthesis to their new surface requirements upon depletion of MreBCD, providing a rationale for the “excess” membrane in the resulting spheroids. Both FtsZ and MinD readily assembled on intracytoplasmic membrane surfaces, and we propose that this contributes significantly to the lethal division block seen in all shape mutants under nonpermissive conditions.  相似文献   

5.
In Rhodobacter sphaeroides, MreB, MreC, MreD, PBP2, and RodA are encoded at the same locus. The localizations of PBP2, MreB, and MreC, which have all been implicated in the synthesis of the peptidoglycan layer, were investigated under different growth conditions to gain insight into the relationships between these proteins. Immunofluorescence microscopy showed that PBP2 localized to specific sites at the midcell of elongating cells under both aerobic and photoheterotrophic conditions. Visualizing PBP2 at different stages of the cell cycle showed that in elongating cells, PBP2 was found predominately at the midcell, with asymmetric foci and bands across the cell. PBP2 remained at midcell until the start of septation, after which it moved to midcell of the daughter cells. Deconvolution and three-dimensional reconstructions suggested that PBP2 forms a partial ring at the midcell of newly divided cells and elongated cells, while in septating cells, partial PBP2 rings were present at one-quarter and three-quarter positions. Due to the diffraction limits of light microscopy, these partial rings could represent unresolved helices. Colocalization studies showed that MreC always colocalized with PBP2, while MreB colocalized with PBP2 only during elongation; during septation, MreB remained at the septation site, whereas PBP2 relocalized to the one-quarter and three-quarter positions. These results suggest that PBP2 and MreC are involved in peptidoglycan synthesis during elongation and that this occurs at specific sites close to midcell in R. sphaeroides.  相似文献   

6.
The transmembrane proteins MreC and MreD are present in a wide variety of bacteria and are thought to be involved in cell shape determination. Together with the actin homologue MreB and other morphological elements, they play an essential role in the synthesis of the lateral cell wall in rod-shaped bacteria. In ovococcus, which lack MreB homologues, mreCD are also essential and have been implicated in peripheral cell wall synthesis. In this work we addressed the possible roles of MreC and MreD in the spherical pathogen Staphylococcus aureus. We show that MreC and MreD are not essential for cell viability and do not seem to affect cell morphology, cell volume or cell cycle control. MreC and MreD localize preferentially to the division septa, but do not appear to influence peptidoglycan composition, nor the susceptibility to different antibiotics and to oxidative and osmotic stress agents. Our results suggest that the function of MreCD in S. aureus is not critical for cell division and cell shape determination.  相似文献   

7.
MreB, MreC and MreD are essential cell shape-determining morphogenetic proteins in Gram-positive and in Gram-negative bacteria. While MreB, the bacterial homologue of the eukaryotic cytoskeletal protein actin, has been extensively studied, the roles of MreC and MreD are less well understood. They both are transmembrane proteins. MreC has a predicted single transmembrane domain and the C-terminal part outside the cell membrane. MreC probably functions as a link between the intracellular cytoskeleton and the cell wall synthesizing machinery which is located at the outer surface of the cell membrane. Also proteins involved in cell wall synthesis participate in cell morphogenesis. How these two processes are coordinated is, however, poorly understood. Bacillus subtilis (BS), a non-pathogenic Gram-positive bacterium, is widely used as a model for Gram-positive pathogens, e.g. Staphylococcus aureus (SA). Currently, the structures of MreC from BS and SA are not known. As part of our efforts to elucidate the structure–function relationships of the morphogenetic protein complexes in Gram-positive bacteria, we present the backbone and side chain resonance assignments of the extracytoplasmic domain of MreC from BS.  相似文献   

8.
In Caulobacter crescentus, intact cables of the actin homologue, MreB, are required for the proper spatial positioning of MurG which catalyses the final step in peptidoglycan precursor synthesis. Similarly, in the periplasm, MreC controls the spatial orientation of the penicillin binding proteins and a lytic transglycosylase. We have now found that MreB cables are required for the organization of several other cytosolic murein biosynthetic enzymes such as MraY, MurB, MurC, MurE and MurF. We also show these proteins adopt a subcellular pattern of localization comparable to MurG, suggesting the existence of cytoskeletal‐dependent interactions. Through extensive two‐hybrid analyses, we have now generated a comprehensive interaction map of components of the bacterial morphogenetic complex. In the cytosol, this complex contains both murein biosynthetic enzymes and morphogenetic proteins, including RodA, RodZ and MreD. We show that the integral membrane protein, MreD, is essential for lateral peptidoglycan synthesis, interacts with the precursor synthesizing enzymes MurG and MraY, and additionally, determines MreB localization. Our results suggest that the interdependent localization of MreB and MreD functions to spatially organize a complex of peptidoglycan precursor synthesis proteins, which is required for propagation of a uniform cell shape and catalytically efficient peptidoglycan synthesis.  相似文献   

9.
The definition of bacterial cell shape is a complex process requiring the participation of multiple components of an intricate macromolecular machinery. We aimed at characterizing the determinants involved in cell shape of the helical bacterium Helicobacter pylori. Using a yeast two-hybrid screen with the key cell elongation protein PBP2 as bait, we identified an interaction between PBP2 and MreC. The minimal region of MreC required for this interaction ranges from amino acids 116 to 226. Using recombinant proteins, we showed by affinity and size exclusion chromatographies and surface plasmon resonance that PBP2 and MreC form a stable complex. In vivo, the two proteins display a similar spatial localization and their complex has an apparent 1:1 stoichiometry; these results were confirmed in vitro by analytical ultracentrifugation and chemical cross-linking. Small angle X-ray scattering analyses of the PBP2 : MreC complex suggest that MreC interacts directly with the C-terminal region of PBP2. Depletion of either PBP2 or MreC leads to transition into spherical cells that lose viability. Finally, the specific expression in trans of the minimal interacting domain of MreC with PBP2 in the periplasmic space leads to cell rounding, suggesting that the PBP2/MreC complex formation in vivo is essential for cell morphology.  相似文献   

10.
MreB proteins of Escherichia coli, Bacillus subtilis and Caulobacter crescentus form actin-like cables lying beneath the cell surface. The cables are required to guide longitudinal cell wall synthesis and their absence leads to merodiploid spherical and inflated cells prone to cell lysis. In B. subtilis and C. crescentus, the mreB gene is essential. However, in E. coli, mreB was inferred not to be essential. Using a tight, conditional gene depletion system, we systematically investigated whether the E. coli mreBCD-encoded components were essential. We found that cells depleted of mreBCD became spherical, enlarged and finally lysed. Depletion of each mre gene separately conferred similar gross changes in cell morphology and viability. Thus, the three proteins encoded by mreBCD are all essential and function in the same morphogenetic pathway. Interestingly, the presence of a multicopy plasmid carrying the ftsQAZ genes suppressed the lethality of deletions in the mre operon. Using GFP and cell fractionation methods, we showed that the MreC and MreD proteins were associated with the cell membrane. Using a bacterial two-hybrid system, we found that MreC interacted with both MreB and MreD. In contrast, MreB and MreD did not interact in this assay. Thus, we conclude that the E. coli MreBCD form an essential membrane-bound complex. Curiously, MreB did not form cables in cell depleted for MreC, MreD or RodA, indicating a mutual interdependency between MreB filament morphology and cell shape. Based on these and other observations we propose a model in which the membrane-associated MreBCD complex directs longitudinal cell wall synthesis in a process essential to maintain cell morphology.  相似文献   

11.
The rod‐shaped bacterium Escherichia coli grows by insertion of peptidoglycan into the lateral wall during cell elongation and synthesis of new poles during cell division. The monofunctional transpeptidases PBP2 and PBP3 are part of specialized protein complexes called elongasome and divisome, respectively, which catalyse peptidoglycan extension and maturation. Endogenous immunolabelled PBP2 localized in the cylindrical part of the cell as well as transiently at midcell. Using the novel image analysis tool Coli‐Inspector to analyse protein localization as function of the bacterial cell age, we compared PBP2 localization with that of other E. coli cell elongation and division proteins including PBP3. Interestingly, the midcell localization of the two transpeptidases overlaps in time during the early period of divisome maturation. Försters Resonance Energy Transfer (FRET) experiments revealed an interaction between PBP2 and PBP3 when both are present at midcell. A decrease in the midcell diameter is visible after 40% of the division cycle indicating that the onset of new cell pole synthesis starts much earlier than previously identified by visual inspection. The data support a new model of the division cycle in which the elongasome and divisome interact to prepare for cell division.  相似文献   

12.
During morphological differentiation of Streptomyces coelicolor A3(2), the sporogenic aerial hyphae are transformed into a chain of more than fifty spores in a highly coordinated manner. Synthesis of the thickened spore envelope is directed by the Streptomyces spore wall synthesizing complex SSSC which resembles the elongasome of rod-shaped bacteria. The SSSC includes the eukaryotic type serine/threonine protein kinase (eSTPK) PkaI, encoded within a cluster of five independently transcribed eSTPK genes (SCO4775-4779). To understand the role of PkaI in spore wall synthesis, we screened a S. coelicolor genomic library for PkaI interaction partners by bacterial two-hybrid analyses and identified several proteins with a documented role in sporulation. We inactivated pkaI and deleted the complete SCO4775-4779 cluster. Deletion of pkaI alone delayed sporulation and produced some aberrant spores. The five-fold mutant NLΔ4775-4779 had a more severe defect and produced 18% aberrant spores affected in the integrity of the spore envelope. Moreover, overbalancing phosphorylation activity by expressing a second copy of any of these kinases caused a similar defect. Following co-expression of pkaI with either mreC or pbp2 in E. coli, phosphorylation of MreC and PBP2 was demonstrated and multiple phosphosites were identified by LC-MS/MS. Our data suggest that elaborate protein phosphorylation controls activity of the SSSC to ensure proper sporulation by suppressing premature cross-wall synthesis.  相似文献   

13.
Bacterial cell division is mediated by a set of proteins that assemble to form a large multiprotein complex called the divisome. Recent studies in Bacillus subtilis and Escherichia coli indicate that cell division proteins are involved in multiple cooperative binding interactions, thus presenting a technical challenge to the analysis of these interactions. We report here the use of an E. coli artificial septal targeting system for examining the interactions between the B. subtilis cell division proteins DivIB, FtsL, DivIC, and PBP 2B. This technique involves the fusion of one of the proteins (the “bait”) to ZapA, an E. coli protein targeted to mid-cell, and the fusion of a second potentially interacting partner (the “prey”) to green fluorescent protein (GFP). A positive interaction between two test proteins in E. coli leads to septal localization of the GFP fusion construct, which can be detected by fluorescence microscopy. Using this system, we present evidence for two sets of strong protein-protein interactions between B. subtilis divisomal proteins in E. coli, namely, DivIC with FtsL and DivIB with PBP 2B, that are independent of other B. subtilis cell division proteins and that do not disturb the cytokinesis process in the host cell. Our studies based on the coexpression of three or four of these B. subtilis cell division proteins suggest that interactions among these four proteins are not strong enough to allow the formation of a stable four-protein complex in E. coli in contrast to previous suggestions. Finally, our results demonstrate that E. coli artificial septal targeting is an efficient and alternative approach for detecting and characterizing stable protein-protein interactions within multiprotein complexes from other microorganisms. A salient feature of our approach is that it probably only detects the strongest interactions, thus giving an indication of whether some interactions suggested by other techniques may either be considerably weaker or due to false positives.  相似文献   

14.
Actin homologues of the MreB family have an important role in specifying the morphology of many non-spherical eubacteria. The mreC and mreD genes have been implicated in control of cell morphology but their precise functions are unknown. In Bacillus subtilis the MreB homologue Mbl directs helical insertion of new cell wall material in the cylindrical part of the rod-shaped cell. Depletion of either MreC or MreD abolishes the control of cell shape. In the presence of high concentrations of magnesium cells depleted of MreC or MreD can be propagated indefinitely, although they have a spheroidal shape. We show that growth of the spheroidal mutants is based on insertion of new wall material at cell division sites and that this localized growth is dependent on cell division. Under some conditions the MreC and MreD proteins localize in a helical configuration. This localization pattern resembles that of the helical cables of Mbl protein. These results suggest that MreC and MreD act in a morphogenic pathway that couples the helical cytosolic Mbl cables to the extracellular cell wall synthetic machinery, which is critical for cylindrical elongation of the rod-shaped cells.  相似文献   

15.
The bacterial actin homologue MreB forms helical filaments in the cytoplasm of rod-shaped bacteria where it helps maintain the shape of the cell. MreB is co-transcribed with mreC that encodes a bitopic membrane protein with a major periplasmic domain. Like MreB, MreC is localized in a helical pattern and might be involved in the spatial organization of the peptidoglycan synthesis machinery. Here, we present the structure of the major, periplasmic part of MreC from Listeria monocytogenes at 2.5 A resolution. MreC forms a dimer through an intimate contact along an N-terminal alpha-helix that connects the transmembrane region with two C-terminal beta-domains. The translational relationship between the molecules enables, in principle, filament formation. One of the beta-domains shows structural similarity to the chymotrypsin family of proteins and possesses a highly conserved Thr Ser dipeptide. Unexpectedly, mutagenesis studies show that the dipeptide is dispensable for maintaining cell shape and viability in both Escherichia coil and Bacillus subtilis. Bacterial two-hybrid experiments reveal that MreC Interacts with high-molecular-weight penicillin-binding proteins (PBPs), rather than with low-molecular-weight endo- and carboxypeptidases, indicating that MreC might act as a scaffold to which the murein synthases are recruited in order to spatially organize the synthesis of new cell wall material. Deletion analyses indicate which domains of B. subtilis MreC are required for interaction with MreD as well as with the PBPs.  相似文献   

16.
In ellipsoid‐shaped ovococcus bacteria, such as the pathogen Streptococcus pneumoniae (pneumococcus), side‐wall (peripheral) peptidoglycan (PG) synthesis emanates from midcells and is catalyzed by the essential class B penicillin‐binding protein PBP2b transpeptidase (TP). We report that mutations that inactivate the pneumococcal YceG‐domain protein, Spd_1346 (renamed MltG), remove the requirement for PBP2b. ΔmltG mutants in unencapsulated strains accumulate inactivation mutations of class A PBP1a, which possesses TP and transglycosylase (TG) activities. The ‘synthetic viable’ genetic relationship between Δpbp1a and ΔmltG mutations extends to essential ΔmreCD and ΔrodZ mutations that misregulate peripheral PG synthesis. Remarkably, the single MltG(Y488D) change suppresses the requirement for PBP2b, MreCD, RodZ and RodA. Structural modeling and comparisons, catalytic‐site changes and an interspecies chimera indicate that pneumococcal MltG is the functional homologue of the recently reported MltG endo‐lytic transglycosylase of Escherichia coli. Depletion of pneumococcal MltG or mltG(Y488D) increases sphericity of cells, and MltG localizes with peripheral PG synthesis proteins during division. Finally, growth of Δpbp1a ΔmltG or mltG(Y488D) mutants depends on induction of expression of the WalRK TCS regulon of PG hydrolases. These results fit a model in which MltG releases anchored PG glycan strands synthesized by PBP1a for crosslinking by a PBP2b:RodA complex in peripheral PG synthesis.  相似文献   

17.
RodZ interacts with MreB and both factors are required to maintain the rod shape of Escherichia coli. The assembly of MreB into filaments regulates the subcellular arrangement of a group of enzymes that synthesizes the peptidoglycan (PG) layer. However, it is still unknown how polymerization of MreB determines the rod shape of bacterial cells. Regulatory factor(s) are likely to be involved in controlling the function and dynamics of MreB. We isolated suppressor mutations to partially recover the rod shape in rodZ deletion mutants and found that some of the suppressor mutations occurred in mreB. All of the mreB mutations were in or in the vicinity of domain IA of MreB. Those mreB mutations changed the property of MreB filaments in vivo. In addition, suppressor mutations were found in the periplasmic regions in PBP2 and RodA, encoded by mrdA and mrdB genes. Similar to MreB and RodZ, PBP2 and RodA are pivotal to the cell wall elongation process. Thus, we found that mutations in domain IA of MreB and in the periplasmic domain of PBP2 and RodA can restore growth and rod shape to ΔrodZ cells, possibly by changing the requirements of MreB in the process.  相似文献   

18.
The mre genes of Escherichia coli and Bacillus subtilis are cell shape determination genes. Mutants affected in mre function are spheres instead of the normal rods. Although the mre determinants are not required for viability in E. coli, the mreB determinant is an essential gene in B. subtilis. Conflicting results have been reported as to whether the two membrane-associated proteins MreC and MreD are essential proteins. Furthermore, although the MreB protein has been studied in some detail, the roles of the MreC and MreD proteins in cell shape determination are unknown. We constructed a strain of B. subtilis in which expression of the mreC determinant is dependent upon the addition of isopropyl-beta-D-thiogalactopyranoside to the culture medium. Utilizing this conditional strain, it was shown that mreC is an essential gene in B. subtilis. Furthermore, it was shown that cells lacking sufficient quantities of MreC undergo morphological changes, namely, swelling and twisting of the cells, which is followed by cell lysis. Electron microscopy was utilized to demonstrate that a polymeric material accumulated at one side of the division septum of the cells and that the presence of this material correlated with the bending of the cell. The best explanation for the results is that the MreC protein is involved in the control of septal versus long-axis peptidoglycan synthesis, that cells lacking MreC perform aberrant septal peptidoglycan synthesis, and that lysis results from a deficiency in long-axis peptidoglycan synthesis.  相似文献   

19.
The Bacillus subtilis SpoVE integral membrane protein is essential for the heat resistance of spores, probably because of its involvement in spore peptidoglycan synthesis. We found that an SpoVE-yellow fluorescent protein (YFP) fusion protein becomes localized to the forespore during the earliest stages of engulfment, and this pattern is maintained throughout sporulation. SpoVE belongs to a well-conserved family of proteins that includes the FtsW and RodA proteins of B. subtilis. These proteins are involved in bacterial shape determination, although their function is not known. FtsW is necessary for the formation of the asymmetric septum in sporulation, and we found that an FtsW-YFP fusion localized to this structure prior to the initiation of engulfment in a nonoverlapping pattern with SpoVE-cyan fluorescent protein. Since FtsW and RodA are essential for normal growth, it has not been possible to identify loss-of-function mutations that would greatly facilitate analysis of their function. We took advantage of the fact that SpoVE is not required for growth to obtain point mutations in SpoVE that block the development of spore heat resistance but that allow normal protein expression and targeting to the forespore. These mutant proteins will be invaluable tools for future experiments aimed at elucidating the function of members of the SEDS (“shape, elongation, division, and sporulation”) family of proteins.  相似文献   

20.
SEDS family peptidoglycan (PG) glycosyltransferases, RodA and FtsW, require their cognate transpeptidases PBP2 and FtsI (class B penicillin binding proteins) to synthesize PG along the cell cylinder and at the septum, respectively. The activities of these SEDS-bPBPs complexes are tightly regulated to ensure proper cell elongation and division. In Escherichia coli FtsN switches FtsA and FtsQLB to the active forms that synergize to stimulate FtsWI, but the exact mechanism is not well understood. Previously, we isolated an activation mutation in ftsW (M269I) that allows cell division with reduced FtsN function. To try to understand the basis for activation we isolated additional substitutions at this position and found that only the original substitution produced an active mutant whereas drastic changes resulted in an inactive mutant. In another approach we isolated suppressors of an inactive FtsL mutant and obtained FtsWE289G and FtsIK211I and found they bypassed FtsN. Epistatic analysis of these mutations and others confirmed that the FtsN-triggered activation signal goes from FtsQLB to FtsI to FtsW. Mapping these mutations, as well as others affecting the activity of FtsWI, on the RodA-PBP2 structure revealed they are located at the interaction interface between the extracellular loop 4 (ECL4) of FtsW and the pedestal domain of FtsI (PBP3). This supports a model in which the interaction between the ECL4 of SEDS proteins and the pedestal domain of their cognate bPBPs plays a critical role in the activation mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号