首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
E. coli is one of the most common species of bacteria colonizing humans and animals. The singularity of E. coli’s genus and species underestimates its multifaceted nature, which is represented by different strains, each with different combinations of distinct virulence factors. In fact, several E. coli pathotypes, or hybrid strains, may be associated with both subclinical infection and a range of clinical conditions, including enteric, urinary, and systemic infections. E. coli may also express DNA-damaging toxins that could impact cancer development. This review summarizes the different E. coli pathotypes in the context of their history, hosts, clinical signs, epidemiology, and control. The pathotypic characterization of E. coli in the context of disease in different animals, including humans, provides comparative and One Health perspectives that will guide future clinical and research investigations of E. coli infections.

Escherichia coli (E. coli) is the most common bacterial model used in research and biotechnology. It is an important cause of morbidity and mortality in humans and animals worldwide, and animal hosts can be involved in the epidemiology of infections.240,367,373,452,727 The adaptive and versatile nature of E. coli argues that ongoing studies should receive a high priority in the context of One Health involving humans, animals, and the environment.240,315,343,727 Two of the 3 E. coli pathogens associated with death in children with moderate-to-severe diarrhea in Asia and Africa are classified into 2 E. coli pathogenic groups (also known as pathotypes or pathovars): enterotoxigenic E. coli (ETEC) and enteropathogenic E. coli (EPEC).367 In global epidemiologic studies, ETEC and EPEC rank among the deadliest causes of foodborne diarrheal illness and are important pathogens for increasing disability adjusted life years.355,382,570 Furthermore, in humans, E. coli is one of the top-ten organisms involved in coinfections, which generally have deleterious effects on health.270ETEC is also an important etiologic agent of diarrhea in the agricultural setting.183 E. coli-associated extraintestinal infections, some of which may be antibiotic-resistant, have a tremendous impact on human and animal health. These infections have a major economic impact on the poultry, swine, and dairy industries.70,151,168,681,694,781,797 The pervasive nature of E. coli, and its capacity to induce disease have driven global research efforts to understand, prevent, and treat these devastating diseases. Animal models for the study of E. coli infections have been useful for pathogenesis elucidation and development of intervention strategies; these include zebrafish, rats, mice, Syrian hamsters, guinea pigs, rabbits, pigs, and nonhuman primates.27,72,101,232,238,347,476,489,493,566,693,713,744,754 Experiments involving human volunteers have also been important for the study of infectious doses associated with E. coli-induced disease and of the role of virulence determinants in disease causation.129,176,365,400,497,702,703 E. coli strains (or their lipopolysaccharide) have also been used for experimental induction of sepsis in animals; the strains used for these studies, considered EPEC, are not typically involved in systemic disease.140,205,216,274,575,782This article provides an overview of selected topics related to E. coli, a common aerobic/facultative anaerobic gastrointestinal organism of humans and animals.14,277,432,477,716 In addition, we briefly review: history, definition, pathogenesis, prototype (archetype or reference) strains, and features of the epidemiology and control of specific pathotypes. Furthermore, we describe cases attributed to different E. coli pathotypes in a range of animal hosts. The review of scientific and historical events regarding the discovery and characterization of the different E. coli pathotypes will increase clinical awareness of E. coli, which is too often regarded merely as a commensal organism, as a possible primary or co- etiologic agent during clinical investigations. As Will and Ariel Durant write in The Lessons of History: “The present is the past rolled up for action, and the past is the present unrolled for understanding”.  相似文献   

2.
Treating and monitoring type 2 diabetes mellitus (T2DM) in NHP can be challenging. Multiple insulin and hypoglycemic therapies and management tools exist, but few studies demonstrate their benefits in a NHP clinical setting. The insulins glargine and degludec are long-acting insulins; their duration of action in humans exceeds 24 and 42 h, respectively. In the first of this study''s 2 components, we evaluated whether insulin degludec could be dosed daily at equivalent units to glargine to achieve comparable blood glucose (BG) reduction in diabetic rhesus macaques (Macaca mulatta) with continuous glucose monitoring (CGM) devices. The second component assessed the accuracy of CGM devices in rhesus macaques by comparing time-stamped CGM interstitial glucose values, glucometer BG readings, and BG levels measured by using an automated clinical chemistry analyzer from samples that were collected at the beginning and end of each CGM device placement. The CGM devices collected a total of 21,637 glucose data points from 6 diabetic rhesus macaques that received glargine followed by degludec every 24 h for 1 wk each. Ultimately, glucose values averaged 29 mg/dL higher with degludec than with glargine. Glucose values were comparable between the CGM device, glucometer, and chemistry analyzer, thus validating that CGM devices as reliable for measuring BG levels in rhesus macaques. Although glargine was superior to degludec when given at the same dose (units/day), both are safe and effective treatment options. Glucose values from CGM, glucometers, and chemistry analyzers provided results that were analogous to BG values in rhesus macaques. Our report further highlights critical clinical aspects of using glargine as compared with degludec in NHP and the benefits of using CGM devices in macaques.

Diabetes is a group of metabolic diseases that cause hyperglycemia secondary to deficient insulin response, secretion, or both.4 Diabetes is categorized by the American Diabetes Association into 4 types: 1) type 1 diabetes mellitus, in which the pancreas is unable to produce insulin for glucose absorption; 2) type 2 diabetes mellitus (T2DM), when the body does not use insulin correctly; 3) gestational diabetes, in which the body is insulin-intolerant during pregnancy (or is first discovered then); and 4) other specific forms of diabetes in which the patient is particularly predisposed to becoming diabetic due to various comorbidities or to inadvertent induction caused by some medications.4 In 2018, 34.2 million (10.5%) Americans of all ages were diagnosed with diabetes.22,23,30 Approximately 90% to 95% of Americans with diabetes have T2DM,24 making T2DM the most common form of diabetes diagnosed in humans.T2DM is a multifactorial disease primarily determined by genetics, behavioral and environmental factors (for example, age, diet, sedentary lifestyle, obesity).4,46,50,74 As a consequence of these factors, the pancreas increases insulin secretion to maintain normal glucose tolerance.74 Over time, the high insulin demand causes pancreatic β-cell destruction, resulting in reduced production of insulin.39,50,74 As β-cell destruction increases, hyperglycemia and T2DM develop. Insulin resistance and hyperglycemia are tolerated for a period of time19,82,83 before clinical signs associated with T2DM develop (e.g., polydipsia, polyuria, polyphagia with concurrent weight loss).4 Once clinical signs develop, T2DM is most commonly diagnosed as a fasting blood glucose level (FBG) of 126 mg/dL or greater,2,4 2-h plasma glucose value of 200 mg/d or greater during a 75-g oral glucose tolerance test,2,4 and/or glycosylated hemoglobin (HbA1c) of 6.5% or greater.2,4 Depending on the FBG, oral glucose tolerance test, and HbA1c results, various treatment options are recommended by the American Diabetes Association. Most importantly, lifestyle changes, including diet and exercise, are recommended as the first line of treatment, along with oral antihyperglycemic drugs such as metformin.5,25,46 Treatment efficacy is evaluated with self-monitoring blood glucose or continuous glucose monitoring (CGM) devices.3 Human patients using CGM devices have achieved considerable reductions in HbA1c compared with patients not using them.3 As CGM devices have become more readily available, user friendly, and affordable, they have become an essential tool in managing T2DM.Similar to humans, most NHP affected by diabetes are diagnosed with T2DM.80,83 NHP are predisposed to similar genetic, behavioral and environmental factors (e.g., age, diet, sedentary lifestyle, obesity);6,18,19,37,44,52,82,83 have similar pathophysiology;38,81-83 are diagnosed via FBG,39,83 HbA1c,21,31,49,56 fructosamine,20,83,87 and weight loss;49,80,83,86 and are treated with exercise and diet modifications as a first line of treatment.11,19,39,53,79 Although the human and NHP conditions are similar, the treatment and management of T2DM is somewhat different, especially when NHP have restricted physical activity due to housing constraints.Previous studies indicate that daily dosing with insulin glargine achieves appropriate glycemic control in NHP.48 Therefore, we implemented glargine, along with some diet modification, to improve glycemic control in our diabetic colony. Other noninsulin therapies, such as metformin, had been used, but compliance was low (for example, due to large pill size, unpleasant taste, etc.). However, achieving glycemic control using diet modification, insulin glargine treatment, monthly scheduled FBG, quarterly HbA1c, and regular weight monitoring was challenging in a large colony. Monthly FBG and fructosamine testing were performed due to affordability and practicality for NHP in a research setting. Given that fructosamine levels correlate with BG concentrations for the preceding 2 to 3 wk and HbA1c percentages relate to BG concentration over 1.5 to 3 mo,49,87 HbA1C was selected over fructosamine for T2DM management in our colony. Determining which T2DM treatment and diagnostics are most effective can be difficult in large colonies of NHP. Therefore, improved treatment and management strategies would help to manage T2DM in NHP more efficiently.Insulin glargine is a long-acting insulin, with a half-life of 12 h and duration of action of 12 to 24 h in humans40,55 and 12 h in dogs.34,43,60 Once injected subcutaneously, insulin glargine forms a microprecipitate in the neutral pH environment, which delays and prolongs absorption in subcutaneous tissues.12 Insulin degludec is a newer form of long-acting insulin, with a half-life of 25 h41,63,62,77 and duration of action that exceeds 42 h in humans.40,41,68,77 Insulin degludec forms a soluble and stable dihexamer in the pharmaceutical formulation, which includes phenol and zinc.63,78 The phenol diffuses away, leading to the formation of a soluble depot in the form of long multihexamer chains in which zinc slowly diffuses from the end of the multihexamers, causing a gradual, continuous, and extended-release of monomers from the depot of the injection site.63,78 Pharmacodynamic studies in humans, demonstrate that the “glucose-lowering effect” of insulin degluc40 is evenly distributed over 24 h, allowing a more stable steady-state and improved wellbeing.78 This approach could potentially reduce the number of hypoglycemic events and provide a less rigid daily injection schedule,58 thus potentially making insulin degludec—compared with insulin glargine—a safer, alternative diabetes therapy.In addition to medical intervention, glycemic control is achieved through regular management and monitoring of BG. Self-monitoring blood glucose checks in humans3,5 and glucose curves in animals10 are some of the management tools used to determine or evaluate therapy for T2DM patients. Telemetry systems like CGM devices are used to monitor interstitial glucose and have been used extensively in humans3,17,33 and animals16,27,36,42,47,84,85 to monitor BG in real-time. Using CGM devices 1) reduces or eliminates the number of blood draws needed to collect FBG,61 2) accurately assesses insulin therapy via a real-time glucose curve,72,84,85 3) allows patients and clinicians to titrate treatment61,73 as indicated, and 4) obtains continuous glucose data with reduced manipulation and subsequent decreased stress.72,84,85 Therefore, CGM devices can be a safe and informative tool in monitoring spontaneous T2DM in NHP.Between 2015 and 2030, the prevalence of diabetes is predicted to increase by 54% to more than 54 million Americans affected by diabetes (i.e., diabetes mellitus types 1 and 2).70 NHP are an essential model for human T2DM because of their similar pathophysiology, diagnostics, treatment, and management. As more people develop diabetes, novel therapies will continue to be developed. Studying new treatments and management tools in NHP can further human and NHP T2DM research to prevent the progression of T2DM and hopefully diminish projections for the number of future diabetes cases. Human medical literature, American Diabetes Association, and drug manufacturers all recommend giving equal doses (i.e., number of units/day) of long-acting insulins when changing from one long-acting insulin to degludec.26,63,67 Therefore, we hypothesized that insulin degludec would provide effective glycemic control for rhesus macaques with T2DM when dosed at equivalent doses (that is, the same number of units/day) as insulin glargine. In addition, we hypothesized that CGM devices would provide accurate BG readings as compared with chemistry analyzer and glucometer BG readings, making it a more efficient and effective tool for measurement of BG levels in rhesus macaques with T2DM.  相似文献   

3.
4.
5.
Ischemic myocardial disease is a major cause of death among humans worldwide; it results in scarring and pallor of the myocardium and triggers an inflammatory response that contributes to impaired left ventricular function. This response includes and is evidenced by the production of several inflammatory cytokines including TNFα, IL1β, IL4, IFNγ, IL10 and IL6. In the current study, myocardial infarcts were induced in 6 mo old male castrated sheep by ligation of the left circumflex obtuse marginal arteries (OM 1 and 2). MRI was used to measure parameters of left ventricular function that include EDV, ESV, EF, SVI, dp/dt max and dp/dt min at baseline and at 4 wk and 3 mo after infarct induction. We also measured serum concentrations of an array of cytokines. Postmortem histologic findings corroborate the existence of left ventricular myocardial injury and deterioration. Our data show a correlation between serum cytokine concentrations and the development of myocardial damage and left ventricular functional compromise.

Heart failure is a globally significant problem in both humans and lower animals.3,18 The medical literature is replete with predisposing causes of heart disease,13 yet the prevalence of heart failure remained high.4,5,16 Regardless of the cause of myocardial damage and subsequent left ventricular compromise, the literature indicated that the proinflammatory response that occurs after myocardial infarction is an important contributor to the deterioration of the myocardium1,9,12,14,17,18,20,21 Sheep and pigs are excellent translational models of human cardiology because their hearts bear many physiologic and anatomic similarities to the human heart.4,8,15 The primary use of these models in cardiology is primarily to study myocardial infarction5,13,16 and to a lesser extent, physiologic processes that develop after myocardial insult.Our study measured some of the major proinflammatory cytokines that contribute to myocardial damage. Most of these cytokines, including: TNFα, IL6, and IFNγ, are important correlates of myocardial ischemia that contribute to a decline in left ventricular myocardial function.1,9,14 In our study, we detected left ventricular compromise as early as 4 wk after the infarction, while the proinflammatory response was recorded at 48 h after the infarct and peaked at 4 wk. Cardiac functional parameters began to decline early in the study consistent with the proinflammatory response. The cardiac functional parameters continued to decline until 3 mo, which was the termination of the study. These findings may support antiinflammatory intervention as an important adjunct of any therapeutic regimen.  相似文献   

6.
PSI is an essential component of the photosynthetic apparatus of oxygenic photosynthesis. While most of its subunits are conserved, recent data have shown that the arrangement of the light-harvesting complexes I (LHCIs) differs substantially in different organisms. Here we studied the PSI-LHCI supercomplex of Botryococccus braunii, a colonial green alga with potential for lipid and sugar production, using functional analysis and single-particle electron microscopy of the isolated PSI-LHCI supercomplexes complemented by time-resolved fluorescence spectroscopy in vivo. We established that the largest purified PSI-LHCI supercomplex contains 10 LHCIs (∼240 chlorophylls). However, electron microscopy showed heterogeneity in the particles and a total of 13 unique binding sites for the LHCIs around the PSI core. Time-resolved fluorescence spectroscopy indicated that the PSI antenna size in vivo is even larger than that of the purified complex. Based on the comparison of the known PSI structures, we propose that PSI in B. braunii can bind LHCIs at all known positions surrounding the core. This organization maximizes the antenna size while maintaining fast excitation energy transfer, and thus high trapping efficiency, within the complex.

The multisubunit-pigment-protein complex PSI is an essential component of the electron transport chain in oxygenic photosynthetic organisms. It utilizes solar energy in the form of visible light to transfer electrons from plastocyanin to ferredoxin.PSI consists of a core complex composed of 12 to 14 proteins, which contains the reaction center (RC) and ∼100 chlorophylls (Chls), and a peripheral antenna system, which enlarges the absorption cross section of the core and differs in different organisms (Mazor et al., 2017; Iwai et al., 2018; Pi et al., 2018; Suga et al., 2019; for reviews, see Croce and van Amerongen, 2020; Suga and Shen, 2020). For the antenna system, cyanobacteria use water-soluble phycobilisomes; green algae, mosses, and plants use membrane-embedded light-harvesting complexes (LHCs); and red algae contain both phycobilisomes and LHCs (Busch and Hippler, 2011). In the core complex, PsaA and PsaB, the subunits that bind the RC Chls, are highly conserved, while the small subunits PsaK, PsaL, PsaM, PsaN, and PsaF have undergone substantial changes in their amino acid sequences during the evolution from cyanobacteria to vascular plants (Grotjohann and Fromme, 2013). The appearance of the core subunits PsaH and PsaG and the change of the PSI supramolecular organization from trimer/tetramer to monomer are associated with the evolution of LHCs in green algae and land plants (Busch and Hippler, 2011; Watanabe et al., 2014).A characteristic of the PSI complexes conserved through evolution is the presence of “red” forms, i.e. Chls that are lower in energy than the RC (Croce and van Amerongen, 2013). These forms extend the spectral range of PSI beyond that of PSII and contribute significantly to light harvesting in a dense canopy or algae mat, which is enriched in far-red light (Rivadossi et al., 1999). The red forms slow down the energy migration to the RC by introducing uphill transfer steps, but they have little effect on the PSI quantum efficiency, which remains ∼1 (Gobets et al., 2001; Jennings et al., 2003; Engelmann et al., 2006; Wientjes et al., 2011). In addition to their role in light-harvesting, the red forms were suggested to be important for photoprotection (Carbonera et al., 2005).Two types of LHCs can act as PSI antennae in green algae, mosses, and plants: (1) PSI-specific (e.g. LHCI; Croce et al., 2002; Mozzo et al., 2010), Lhcb9 in Physcomitrella patens (Iwai et al., 2018), and Tidi in Dunaliela salina (Varsano et al., 2006); and (2) promiscuous antennae (i.e. complexes that can serve both PSI and PSII; Kyle et al., 1983; Wientjes et al., 2013a; Drop et al., 2014; Pietrzykowska et al., 2014).PSI-specific antenna proteins vary in type and number between algae, mosses, and plants. For example, the genomes of several green algae contain a larger number of lhca genes than those of vascular plants (Neilson and Durnford, 2010). The PSI-LHCI complex of plants includes only four Lhcas (Lhca1–Lhc4), which are present in all conditions analyzed so far (Ballottari et al., 2007; Wientjes et al., 2009; Mazor et al., 2017), while in algae and mosses, 8 to 10 Lhcas bind to the PSI core (Drop et al., 2011; Iwai et al., 2018; Pinnola et al., 2018; Kubota-Kawai et al., 2019; Suga et al., 2019). Moreover, some PSI-specific antennae are either only expressed, or differently expressed, under certain environmental conditions (Moseley et al., 2002; Varsano et al., 2006; Swingley et al., 2010; Iwai and Yokono, 2017), contributing to the variability of the PSI antenna size in algae and mosses.The colonial green alga Botryococcus braunii (Trebouxiophyceae) is found worldwide throughout different climate zones and has been targeted for the production of hydrocarbons and sugars (Metzger and Largeau, 2005; Eroglu et al., 2011; Tasić et al., 2016). Here, we have purified and characterized PSI from an industrially relevant strain isolated from a mountain lake in Portugal (Gouveia et al., 2017). This B. braunii strain forms colonies, and since the light intensity inside the colony is low, it is expected that PSI in this strain has a large antenna size (van den Berg et al., 2019). We provide evidence that B. braunii PSI differs from that of closely related organisms through the particular organization of its antenna. The structural and functional characterization of B. braunii PSI highlights a large flexibility of PSI and its antennae throughout the green lineage.  相似文献   

7.
Systemic buprenorphine and topical antiseptics such as chlorhexidine are frequently used in research animals to aid in pain control and to reduce infection, respectively. These therapeutics are controversial, especially when used in wound healing studies, due to conflicting data suggesting that they delay wound healing. Low-level laser therapy (LLLT) has been used to aid in wound healing without exerting the systemic effects of therapies such as buprenorphine. We conducted 2 studies to investigate the effects of these common treatment modalities on the rate of wound healing in mice. The first study used models of punch biopsy and dermal abrasion to assess whether buprenorphine HCl or 0.12% chlorhexidine delayed wound healing. The second study investigated the effects of sustained-released buprenorphine, 0.05% chlorhexidine, and LLLT on excisional wound healing. The rate of wound healing was assessed by obtaining photographs on days 0, 2, 4, 7, and 9 for the punch biopsy model in study 1, days 0, 1, 2, 4, 6, 8, 11, and 13 for the dermal abrasion model in study 1, and days 0, 3, 6, and 10 for the mice in study 2. Image J software was used to analyze the photographed wounds to determine the wound area. When comparing the wound area on the above days to the original wound area, no significant differences in healing were observed for any of the treatment groups at any time period for either study. Given the results of these studies, we believe that systemic buprenorphine, topical chlorhexidine, and LLLT can be used without impairing or delaying wound healing in mice.

A recent retrospective analysis using a medical insurance dataset estimated that approximately 8.2 million people experienced wounds ranging from acute to chronic conditions within the particular year analyzed, and estimated that the cost of acute and chronic wound treatments ranged from $28.1 to $96.8 billion dollars.52 The projected rise in the number of people experiencing wounds and the cost of wound care products52 have made wound healing a growing area of interest in both clinical medicine and research. Wound healing is a complex process that involves many overlapping, intricate physiologic processes. Each step can have associated deviations that may lead to enhanced, altered, impaired, or delayed healing. Animal research has been used to develop a better understanding of the basic, physiologic mechanisms of wound healing. Mice are the most commonly used animal in biomedical research, and they are used to model a host of conditions, including wound healing. Despite known anatomic and physiologic differences between murine and human skin,17,53 this species is commonly used due to their small size, ease of handling, and relatively low cost. In addition, the overlapping phases of the wound healing process are similar in mice and humans, making mice a valuable model.65Pain is inherent to the development of wound models. Pain receptors in the skin are sensitized during the actual wounding process and during the inflammatory response that occurs immediately after wounding.19 Pain can also occur during the cleansing and treatment of wounds.19 Just as managing wound pain is critical in human patients, The Guide for the Care and Use of Laboratory Animals (the Guide)30 and other federal guidelines and regulations governing the care and use of laboratory animals strongly encourages the use of analgesics for animals that experience pain and/or distress.30 Pain, which can also cause stress, may evoke a persistent catabolic state and may ultimately delay wound healing.19,28,31,43 Therefore, adequate pain control is necessary to avoid negatively affecting or altering the wound healing process.As in human medicine, opioids are commonly used to provide analgesia to research rodents. Buprenorphine, a mixed agonist-antagonist opioid,26,54 is a common analgesic that acts as a very weak partial agonist of the mu opioid receptor and an antagonist of the κ opioid receptor.26 Buprenorphine is frequently used in animals as both a pre- and post-operative analgesic. It works by binding to the opioid receptors in the skin and other tissues. This ligand-receptor binding regulates the physiologic responses of nociception and inflammation,7 which are key factors in the process of healing and regeneration. Buprenorphine is often used instead of full mu-opioid receptor agonist drugs, such as morphine or hydromorphone, because it has fewer systemic side effects.28 Despite their common use as analgesics, reports are mixed in terms of whether opioids, as a class, delay or impair wound healing.11,28,35,40In addition to controlling pain, minimizing wound contamination and preventing infection is critical to wound healing. The use of antiseptics is often favored over the use of antibiotics as the former presents less chance for developing antibiotic resistance.6 As an antiseptic, chlorhexidine is commonly used to irrigate, cleanse, and treat cutaneous wounds. Chlorhexidine has high antimicrobial activity against gram-positive and gram-negative bacteria and some fungi and viruses.4 Although considered to be relatively safe, reports are conflicting with regard to whether chlorhexidine delays or impairs wound healing.4,9,50,57Laser techniques have been used medically for many years, and their powerful, but precise capabilities have rendered them a unique surgical and therapeutic modality. In brief, when the electrons of atoms move to higher energy levels, these electrons absorb energy. This excited energy state is unstable and temporary. The natural return of electrons to their more stable ground state releases energy in the form of photons or light. Light Amplification by Stimulated Emission of Radiation (LASERS) are characterized by the photon stimulation of an already excited electron. This stimulation causes the emitted light to be amplified, as demonstrated by the intense, bright light that is emitted from lasers.63 The concept of low-level laser therapy (LLLT) has garnered interest as a therapeutic modality in both human and veterinary medicine. Specifically characterized as laser therapy using a low power output and a low power range, LLLT is distinguished from other forms of laser therapies by certain parameters such as wavelength, pulse rate and duration, total irradiation time, and dose.44 Although the mechanism of action for LLLT is not completely understood,46,64 the absorption of red and near infrared light energy may reduce detrimental, inflammatory substances13,15,24,56 while simultaneously stimulating restorative processes.15,24,46,64 The reduced photothermal impact of LLLT44 is reported to produce beneficial physiologic and biologic effects including analgesia, reduction in inflammation, and acceleration of healing.48 The initial report of LLLT as a therapeutic modality found accelerated wound healing and fur regrowth in mice exposed to LLLT.13,44,46,64 LLLT has since been used as a sole or adjunct therapy for a variety of conditions including tooth root resorption,55 traumatic brain injuries,58 and tendon, muscle, and bone injuries.2,3,25,38Studies conducted to assess the effects of LLLT on healing often use parameters of normal wound healing to analyze how LLLT influences those parameters in comparison to healthy, undamaged tissue and damaged tissue not receiving laser therapy. Despite the numerous studies designed to investigate the effects of LLLT on wound healing, conflicting reports exist regarding its efficacy.15,17,46,22,23,24,29,34,38,39,55,56,60,64 A recent study in dogs reported accelerated healing and improved cosmetic appearance of a hemilaminectomy surgical site after LLLT,60 while other canine studies reported no significant differences in the healing of surgically induced skin wounds between dogs that did and did not receive LLLT.22,34 Similarly, in an attempt to study the effects of LLLT in pigs, an animal with skin very similar to that of humans, no significant differences were reported in the healing of surgically created skin wounds between swine that did and did not receive LLLT.29 Studies using diabetic rats with excisional cutaneous wounds reported accelerated wound healing,17,46 and beneficial results were reported in a similar study using diabetic mice.56,64 While fewer studies have been conducted on the use of LLLT in rodents without concomitant comorbidities, LLLT has been reported to accelerate wound healing in healthy rodents.15,24 Conversely, some studies found that LLLT does not accelerate or significantly improve wound healing in rodents.24,39We performed 2 separate studies to investigate the effects of a commonly used opioid, a topical antiseptic solution, and LLLT on excisional wound healing in mice. At the time the initial study (study 1) was conducted, some of our investigators were reluctant to use the recommended analgesic, buprenorphine, due to concern about interference with their study outcomes. Therefore, we conducted study 1 to determine if a single dose of peri-operative buprenorphine would delay healing of a full-thickness excisional wound or a partial-thickness felt wheel dermal abrasion. We also examined the effects of topical chlorhexidine solution on wound healing. The chlorhexidine concentrations used in study 1 were prepared using our standard operating procedure at that time. Study 2 was conducted after study 1, with the design expanded to evaluate a sustained release buprenorphine formulation and LLLT. Study 2 used a full-thickness excisional biopsy to determine the effect of LLLT on excisional wound healing. Commonly used doses of systemic Buprenorphine Sustained Release (SR) and topical chlorhexidine were also included to evaluate their effect on excisional wound healing. The concentration of chlorhexidine in the revised, approved standard operating procedure had been decreased due to literature suggesting that higher concentrations may inhibit healing.4,49,61 For both studies, we hypothesized that the use of buprenorphine and chlorhexidine would have no effect on the rate of wound healing, and that LLLT would accelerate wound healing in a full-thickness excision as compared with a control.  相似文献   

8.
The gray mouse lemur (Microcebus murinus, GML) is a nocturnal, arboreal, prosimian primate that is native to Madagascar. Captive breeding colonies of GMLs have been established primarily for noninvasive studies on questions related to circadian rhythms and metabolism. GMLs are increasingly considered to be a strong translational model for neurocognitive aging due to overlapping histopathologic features shared with aged humans. However, little information is available describing the clinical presentations, naturally occurring diseases, and histopathology of aged GMLs. In our colony, a 9 y-old, male, GML was euthanized after sudden onset of weakness, lethargy, and tibial fracture. Evaluation of this animal revealed widespread fibrous osteodystrophy (FOD) of the mandible, maxilla, cranium, appendicular, and vertebral bones. FOD and systemic metastatic mineralization were attributed to underlying chronic renal disease. Findings in this GML prompted periodic colony-wide serum biochemical screenings for azotemia and electrolyte abnormalities. Subsequently, 3 additional GMLs (2 females and 1 male) were euthanized due to varying clinical and serum biochemical presentations. Common to all 4 animals were FOD, chronic renal disease, uterine adenocarcinoma (females only), cataracts, and osteoarthritis. This case study highlights the concurrent clinical and histopathologic abnormalities that are relevant to use of GMLs in the expanding field of aging research.

Within the past 5 y, recognition of the translational utility of the gray mouse lemur (Microcebus murinus, GML) has greatly expanded, in part due to the sequencing of its genome.27 GMLs have been proposed as an animal model in the context of aging research,14,35 most notably within the fields of Alzheimer disease and dementia33,39 and circadian rhythms.15,20 GMLs are nocturnal, arboreal, prosimian primates (family Cheirogaleidae) that are endemic to Madagascar. They are among the smallest primates, with a body weight of 49 to 80 g in the wild37 (60 to 110 g in captivity) and have a life expectancy of approximately 8 to 10 y in captivity.14 A small number of captive breeding colonies have been established throughout Europe and the United States, many of which have arisen from a closed captive breeding colony at the Muséum National d''Histoire Naturelle (MNHN) in Brunoy, France.Despite an ever-growing interest in the GML as a model organism, clinical and pathologic case reports focusing on naturally occurring disease are rare for this species.1,4,10,16,17,20,28,31,34,38 Reports of spontaneous disease often focus on neoplasia28,31,34 or on ocular abnormalities, which are accessible without invasive interventions.1,4,12 Apart from age-related neurodegenerative disease and cognitive impairment,5,23,25,26,32,36 little is known about the natural disease predilection and histologic aging phenotypes of GMLs.In June 2017, a 9 y-old male GML was euthanized after the sudden onset of weakness, lethargy, and tibial fracture. Necropsy and histopathology revealed chronic renal disease, widespread fibrous osteodystrophy (FOD), and systemic metastatic mineralization. These findings prompted colony-wide serum biochemical screenings for potential underlying renal disease and subsequent metabolic bone disease within the population.Herein, we report the clinical, gross, and histologic multisystemic pathology of 4 aged GMLs. This is the first documentation of FOD secondary to chronic renal disease in GMLs in a captive research colony. In addition, we corroborate previous reports31,34 of uterine adenocarcinoma in aged female GMLs. Together, these findings aid in providing appropriate clinical care to GMLs as their use in the field of aging research continues to expand.  相似文献   

9.
10.
During cytokinetic abscission, the endosomal sorting complex required for transport (ESCRT) proteins are recruited to the midbody and direct the severing of the intercellular bridge. In this issue, Christ et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201507009) demonstrate that two separate but redundant pathways exist to recruit ESCRT-III proteins to the midbody.Over the past 140 years, eukaryotic cell division has been extensively studied and is now understood to be an elaborate, tightly regulated set of events that culminates in the formation of two distinct daughter cells. The M phase of animal cells is characterized by a profound structural reorganization, regulated by a cohort of mitotic kinases and performed by mitosis-specific cytoskeletal structures, including the spindle apparatus and the cytokinetic midbody (Scholey et al., 2003). The completion of cytokinesis, called abscission, involves the severing of the intercellular bridge on both sides of the midbody. In 2007, two landmark studies demonstrated that several ESCRT proteins localize to the midbody and are required for the completion of cytokinesis (Carlton and Martin-Serrano, 2007; Morita et al., 2007). Aside from abscission, the ESCRTs participate in the formation of multivesicular endosomes (MVEs), function in plasma membrane repair, and participate in numerous other cellular processes (Katzmann et al., 2002; Morita and Sundquist, 2004; Hurley, 2015).The canonical model for ESCRT function at MVEs involves the hierarchical recruitment of ESCRT proteins in four unique complexes: ESCRT-0 through ESCRT-III. The ESCRTs cluster cargos and deform membrane, and current models suggest that ESCRT-III subunits polymerize to form filaments that spiral down into the neck of a nascent intralumenal vesicle (Schuh and Audhya, 2014). With the assistance of the VPS4 AAA ATPase, ESCRT filaments are remodeled to facilitate vesicle fission (Shen et al., 2014). Though MVE maturation utilizes all four ESCRT complexes, cytokinetic abscission has been previously thought to require only ESCRT-I, ESCRT-III, and the ESCRT-associated ALG2-interacting factor ALIX (Morita et al., 2010). ALIX interacts with both the ESCRT-I protein TSG101 and all three ESCRT-III CHMP4 isoforms and has been postulated to act as an ESCRT-II bypass for linking ESCRT-I and ESCRT-III in abscission (Schuh and Audhya, 2014). However, the precise mechanism underlying the recruitment of the ESCRT-III complex to the midbody during cytokinesis has remained ambiguous.In this issue, Christ et al. address how the ESCRT-III component CHMP4B (Vps32 in other metazoan systems) is recruited to the midbody and demonstrate the necessity of the ESCRT-II complex in this process. They observed that recruitment of CHMP4B to the midbody was abrogated when they codepleted ALIX and the ESCRT-I component TSG101 in cultured HeLa cells, but that CHMP4B did accumulate when only one of these components was depleted. These data indicate that CHMP4B can be recruited to the midbody via TSG101 or ALIX, but that the two proteins are unlikely to perform this function as a complex, suggesting that CHMP4B recruitment to the midbody involves two independent pathways.After immunofluorescence staining of fixed cells, Christ et al. (2016) found that the endogenous ESCRT-III protein CHMP6 and the ESCRT-II protein EAP20 (VPS20 and VPS25 in other systems, respectively) localize to the midbody, consistent with a previous overexpression study (Thoresen et al., 2014). They additionally performed several depletion experiments to establish that ESCRT-II recruits CHMP6 without affecting TSG101 localization, demonstrating that CHMP6 acts downstream of ESCRT-I and ESCRT-II. This shows that ESCRT-I recruits ESCRT-III to the cytokinetic midbody the same way it does at the MVE.Christ et al. (2016) also show that CHMP4B can still be recruited normally when the ESCRT-II component EAP30 (VPS22 in other systems) is depleted, but not when EAP30 is codepleted with ALIX, strongly suggesting that ALIX-dependent accumulation of CHMP4B does not involve CHMP6 and, more generally, that there are two pathways that can each recruit CHMP4B to the midbody: an ESCRT-I–ESCRT-II–CHMP6 pathway and an ALIX-dependent pathway. It will be important for future work to consider the partial redundancy between these two pathways when assaying the dispensability of early acting ESCRT complexes in cellular processes.In addition, Christ et al. (2016) observed that ALIX depletion led to furrow regression and binucleation in dividing cells with chromatin spanning the intercellular bridge, the same phenotype observed in cells expressing a CHMP4C construct lacking the ALIX interaction domain. Further, they showed that CHMP4C localization to the midbody is abrogated after ALIX depletion but is unaffected by TSG101 knockdowns, strongly implicating ALIX in CHMP4C recruitment independently of ESCRT-I.Our overall understanding of the regulation of abscission still remains elementary (Fig. 1). In addition to the roles of the ESCRT machinery, the chromosomal passenger complex (CPC) regulates the timing of cytokinesis and abscission via interactions with the Polo-like kinase PLK1, the mitotic kinesin-like protein MKLP1, and CEP55, a key component of the midbody that associates directly with both ESCRT-I and ALIX (Schuh and Audhya, 2014). One current model is that the CPC promotes the formation of a ternary complex consisting of CHMP4C, ANCHR, and VPS4 and prevents premature action by VPS4 in response to chromatin trapped in the midbody (Thoresen et al., 2014). It has also been suggested that CHMP4C phosphorylation by the enzymatic core of the CPC, the Aurora B kinase, directs CHMP4C localization to the midbody and its retention of VPS4 (Carlton et al., 2012). With the new findings by Christ et al. (2016), the relationship between Aurora B–mediated phosphorylation of CHMP4C and its ability to bind ALIX must now be further explored. Additionally, because ALIX appears to be the primary factor that recruits CHMP4C to the midbody, it may represent a novel therapeutic target for activation or bypass of the NoCut abscission checkpoint.Open in a separate windowFigure 1.Model for the recruitment of CHMP4B and CHMP4C to the midbody and their roles in regulating the timing of abscission. PLK-1 phosphorylation of CEP55 inhibits its binding to MKLP1. At the end of anaphase, PLK1 is degraded and MKLP1 recruits CEP55 to the midbody. CEP55 recruits TSG101 and ALIX to the midbody, and Christ et al. (2016) demonstrate that there are two pathways that lead to the subsequent recruitment of CHMP4B: one through ESCRT-I–ESCRT-II–CHMP6 and the second directly through ALIX. ALIX also recruits CHMP4C, which, upon phosphorylation by the CPC, is hypothesized to form a ternary complex with ANCHR and VPS4. Formation of this complex prevents VPS4 from facilitating the completion of abscission until all chromatin is cleared from the intercellular bridge.In contrast to the necessity of ALIX during cytokinetic abscission, its role during MVE formation and ubiquitin-dependent cargo degradation remains debatable. Depletion studies suggest that ALIX is dispensable for the lysosomal sorting of several cargoes (Bowers et al., 2006). However, ALIX is capable of targeting to late endosomal membranes through its interaction with lysobisphosphatidic acid, and some data suggest that ALIX can promote ESCRT-III filament assembly at MVEs (Matsuo et al., 2004; Pires et al., 2009; Bissig and Gruenberg, 2014). In the future, it will be essential to elucidate the mechanisms by which ALIX and CHMP6 direct the nucleation of CHMP4B/ESCRT-III spiral filaments and to determine whether the membrane landscapes of the MVE and the cytokinetic bridge differ in a manner that promotes one pathway over the other. As cryoelectron microscopy–based approaches in cells and reconstituted systems advance, the answer to these questions may become more accessible.  相似文献   

11.
12.
Despite the use of Syrian hamsters (Mesocricetus auratus) in research, little is known about the evaluation of pain in this species. This study investigated whether the frequency of certain behaviors, a grimace scale, the treat-take-test proxy indicator, body weight, water consumption, and coat appearance could be monitored as signs of postoperative pain in hamsters in a research setting. Animals underwent no manipulation, anesthesia only or laparotomy under anesthesia. An ethogram was constructed and used to determine the frequencies of pain, active and passive behaviors by in-person and remote videorecording observation methods. The Syrian Hamster Grimace Scale (SHGS) was developed for evaluation of facial expressions before and after the surgery. The treat-take-test assessed whether surgery would affect the animals’ motivation to take a high-value food item from a handler. The hypothesis was that behavior frequency, grimace scale, treat-take-test score, body weight, water consumption, and coat appearance would change from baseline in the surgery group but not in the no-intervention and anesthesia-only groups. At several time points, pain and passive behaviors were higher than during baseline in the surgery group but not the anesthesia-only and no-intervention groups. The SHGS score increased from baseline scores in 3 of the 9 animals studied after surgery. The frequency of pain behaviors and SHGS scores were highly specific but poorly sensitive tools to identify animals with pain. Behaviors in the pain category were exhibited by chiefly, but not solely, animals that underwent the laparotomy. Also, many animals that underwent laparotomy did not show behaviors in the pain category. Treat-take-test scores, body weight, water consumption, and coat appearance did not change from baseline in any of the 3 groups. Overall, the methods we tested for identifying Syrian hamsters experiencing postoperative pain were not effective. More research is needed regarding clinically relevant strategies to assess pain in Syrian hamsters.

Pain experienced by laboratory animals can affect both animal welfare and research results. Little is known about the evaluation of pain in Syrian hamsters (Mesocricetus auratus) in the laboratory setting. However, various research models using Syrian hamsters involve surgery and are presumed to cause pain.16,47,49 In 2018 alone, the USDA reported that 35,695 hamsters were used for research studies involving painful procedures.48 Previously published behaviors exhibited by hamsters in response to pain include hunched posture with head down, reluctance to move, increased depression or aggression, extended sleep periods, and weight loss.7,8,10,16,21 How these behaviors are affected by factors such as the type of painful stimulus, anesthetic protocol, handling procedures, and environmental conditions is unclear. The practicality of observing these signs in the research environment is uncertain and likely complicated by the nocturnal nature of Syrian hamsters and an assumed propensity of this species to mask pain, much like other prey species.8,14,16A significant need exists for published data investigating whether behavioral observations or other clinical indicators can help recognize, quantify, or monitor pain in hamsters in a research setting. Detailed behavioral observations and well-controlled studies are needed to develop a system to assess postoperative pain in laboratory animals.8,33 Moreover, little information is available on the efficacy of analgesic agents in hamsters.1 The few studies of analgesics in hamsters rely on the mitigation of evoked pain responses (such as using a hot plate), which has limited relevance to clinical situations such as postoperative pain.8,32,36,51 To date, no published literature has evaluated the efficacy or safety of analgesics to treat postoperative pain in hamsters. Validated real-time and practical methods for evaluating pain in Syrian hamsters would support the evaluation of analgesic efficacy in this species.Various assessments have been developed to identify signs of pain in other species. Behavioral ethograms have been used to evaluate pain and analgesic efficacy in mice, rats, rabbits, and guinea pigs in the research environment.5,6,20,23,25,34,35,39-41,53 Another tool used to evaluate pain in animals is the grimace scale, which has been developed for mice, rats, rabbits, ferrets, cats, sheep, pigs, horses, and even harbor seals.3,4,9,11,13,15,19,22,26,30,37,45,50 The use of a proxy indicator, such as burrowing and time-to-integrate-to-nest in mice and time-to-consume in guinea pigs, can be used as an additional tool for the evaluation of pain.5,17,18,35,38Because none of the previously mentioned assessment techniques were specific to hamsters, we here explored using these approaches to detect pain in Syrian hamsters that underwent laparotomy in a laboratory setting. We developed a species-specific ethogram and the Syrian Hamster Grimace Scale (SHGS). We also devised a novel proxy indicator of pain for use in Syrian hamsters, the treat-take-test (TTT), which is based on hamsters’ natural behavior to hoard food.16,46,49,52 Although water intake, body weight, and coat appearance are non-specific indicators of pain, we also measured these parameters.5,19,23,33 Furthermore, we analyzed the effects of the presence of an observer and time of day. We hypothesized that behavior frequency, grimace scale, treat-take-test score, body weight, water consumption, and coat appearance would change from baseline in the surgery group but not in the no-intervention and anesthesia-only groups.  相似文献   

13.
14.
Alpha-1 acid glycoprotein (AGP) is a significant drug binding acute phase protein that is present in rats. AGP levels are known to increase during tissue injury, cancer and infection. Accordingly, when determining effective drug ranges and toxicity limits, consideration of drug binding to AGP is essential. However, AGP levels have not been well established during subclinical infections. The goal of this study was to establish a subclinical infection model in rats using AGP as a biomarker. This information could enhance health surveillance, aid in outlier identification, and provide more informed characterization of drug candidates. An initial study (n = 57) was conducted to evaluate AGP in response to various concentrations of Staphylococcus aureus (S. aureus) in Sprague–Dawley rats with or without implants of catheter material. A model validation study (n = 16) was then conducted using propranolol. Rats received vehicle control or S. aureus and when indicated, received oral propranolol (10 mg/kg). Health assessment and blood collection for measurement of plasma AGP or propranolol were performed over time (days). A dose response study showed that plasma AGP was elevated on day 2 in rats inoculated with S. aureus at 106, 107 or, 108 CFU regardless of implant status. Furthermore, AGP levels remained elevated on day 4 in rats inoculated with 107 or 108 CFUs of S. aureus. In contrast, significant increases in AGP were not detected in rats treated with vehicle or 103 CFU S. aureus. In the validation study, robust elevations in plasma AGP were detected on days 2 and 4 in S. aureus infected rats with or without propranolol. The AUC levels for propranolol on days 2 and 4 were 493 ± 44 h × ng/mL and 334 ± 54 h × ng/mL, respectively), whereas in noninfected rats that received only propranolol, levels were 38 ± 11 h × ng/mL and 76 ± 16.h × ng/mL, respectively. The high correlation between plasma propranolol and AGP demonstrated a direct impact of AGP on drug pharmacokinetics and pharmacodynamics. The results indicate that AGP is a reliable biomarker in this model of subclinical infection and should be considered for accurate data interpretation.

Protein binding is an important component of pharmacokinetic/pharmacodynamic (PK/PD) research. In vitro measurement of protein drug binding is an essential component of the research and development of novel drugs. However, in vitro studies often poorly mirror the in vivo condition.9,42 Pharmacokinetic studies early in drug development provide a means to assess the time course of drug effects in the body and drug distribution and availability.42 From a PK/PD modeling perspective, protein binding is an important factor in the kinetics and dynamics of drug availability in vivo.21,35,36,40 These complex relationships are used to project efficacious doses in humans and take into consideration differences in plasma protein binding between preclinical species and humans.8,44A variety of acute phase proteins (APP) exist across all species and increase in response to inflammatory, infectious and traumatic events.5,9,12,13,19,21,22,29,45,53 APPs are potential biomarkers for detection and monitoring of various disease states including cancer.2,18,24,34,39,40,47,50,52 Because of this, enhanced understanding of drug binding characteristics to APPs early in the development phase will promote the design of more efficacious therapeutics. Alpha-1 acid glycoprotein (AGP), a ubiquitous major APP that is present in rats,9,46 has significant drug binding properties and binds to many basic and neutral compounds. Normal AGP levels in plasma of naïve rats range from 0.1 to 0.32 mg/mL.44 The importance of AGP as related to drug discovery and development will be bolstered by greater understanding of the sources of AGP stimulation in established animal models. For example, AGP modulates the immune response in a rodent shock model in which it is thought to maintain normal capillary permeability to ensure perfusion of vital organs.30,33 In addition, elevated AGP levels are present in animal models of infection and inflammation.11,20,27,32,41,48In surgically modified animals, AGP levels may be elevated after surgical manipulation, which unavoidably induces local transient inflammatory responses.8,25,51 In addition, infections may develop postoperatively leading to increased AGP levels. Chronic catheterization has been linked to increased incidence of infection.3,8,37 Surgically modified animals should not be placed on study if aseptic technique was not adhered to during surgical preparation and instrumentation.6,37 Contamination may occur within or at the external portion of a catheter, usually resulting in more obvious signs of infection. Routine PK studies in rats involve implantation of vascular catheters through which drugs are administered and blood samples are taken over time. Catheterized animals are typically perceived as being healthy and thus are enrolled in and remain on study unless they develop obvious clinical signs of infection or illness. However, an occult infection may be present even with a patent catheter. As such, understanding the direct effect of subclinical infection in modulating AGP levels and drug binding is critical, as AGP levels may affect drug levels in study animals with persistent subclinical infection. In this event, the PK data generated may be altered due to selective binding to AGP, thus confounding data interpretation.A possible application of AGP is its potential utility as a biomarker for evaluating health status animals in drug development. The use of AGP as a select biomarker for monitoring and identifying sick animals and/or predicting the potential impact of subclinical infection on drug PK/PD is highly desirable. A screening tool such as this could help to optimize animal selection by reliably identifying healthy animals. Improved intra-study health monitoring would promote confidence in PK/PD data and its predictive value.The focus of this research was to develop a sensitive, reliable and reproducible model of subclinical infection in the rat using the ubiquitous skin contaminant, S. aureus. We selected AGP as a biomarker that would promote health status screening and enhance PK/PD characterization of AGP binding drugs (that is basic and neutral) in the presence or absence of subclinical infection. The model was validated by evaluating the impact of increased AGP levels on propranolol, a drug known to have high binding affinity to AGP.4,7,10,26,28,31,49 Ultimately, establishing this model will provide heightened visibility of the protein binding characteristics of drugs and yield more informed data interpretation.  相似文献   

15.
Over the last decade, interest in the role of the microbiome in health and disease has increased. The use of germ-free animals and depletion of the microbial flora using antimicrobials are 2 methods commonly used to study the microbiome in laboratory mice. Germ-free mice are born, raised, and studied in isolators in the absence of any known microbes; however, the equipment, supplies, and training required for the use of these mice can be costly and time-consuming. The use of antibiotics to decrease the microbial flora does not require special equipment, can be used for any mouse strain, and is relatively inexpensive; however, mice treated in this manner still retain microbes and they do not live in a germ-free environment. One commonly used antibiotic cocktail regimen uses ampicillin, neomycin, metronidazole, and vancomycin in the drinking water for 2 to 4 wk. We found that the palatability of this mixture is low, resulting in weight loss and leading to removal of mice from the study. The addition of sucralose to the medicated water and making wet food (mash) with the medicated water improved intake; however, the low palatability still resulted in a high number of mice requiring removal. The current study evaluated a new combination of antibiotics designed to reduce the gut microbiota while maintaining body weights. C57BL/6NCrl mice were placed on one of the following drinking water regimens: ampicillin/neomycin/metronidazole/vancomycin water (n = 16), enrofloxacin/ampicillin water (n = 12), or standard reverse osmosis deionized water (RODI) (n = 11). During an 8 day regimen, mice were weighed and water consumption was measured. Feces were collected before and after 8 d of treatment. Quantitative real-time PCR (real-time qPCR) for 16S bacterial ribosome was performed on each sample, and values were compared among groups. The combination of enrofloxacin and ampicillin improved water intake, together with a greater reduction in gut flora.

Interest in the intestinal microbiome and its role in human health has increased dramatically over the last decade. The microbiota has been implicated in metabolic, infectious, and inflammatory disease, and its role has been investigated not only in the gut,2,8,18,38 but also in vasculature,5,6,19,39 kidney,13 liver,28 lung,9,34,37 and brain.12,15 Animal models have been important in furthering our understanding of the microbiota. Two approaches to studying microbiota in mice are the use of germ-free mice22,35,42 and depletion of the flora with oral administration of antibiotics.12,17,18 Both approaches have advantages and disadvantages. Germ-free mice are bred in isolators and are free of microorganisms from birth, allowing studies in mice with no microbes present; mice can then be used to generate gnotobiotic mice in which only known microbes are present. However, to remain germ-free, mice must be maintained in isolators under aseptic housing conditions, which is both costly and labor intensive. In addition, alterations of microbiota in early life may cause sustained effects on body composition10 and lasting negative consequences on the host immune system.31 A more economic approach has been to deplete mouse gut microflora using a combination of broad-spectrum antibiotics given either by oral gavage or in the drinking water. The primary limitation with antibiotic treatment of mice is that not all microbes are eliminated; which can potentially make reproducibility in certain types of studies such as those involving microbial transplantation29 very difficult. However, antibiotic-induced gut dysbiosis can be used on conventionally raised mice without the limitations imposed by maintaining a sterile living environment. Direct handling of the mice is possible, allowing behavioral and imaging assessments, which are not be feasible for mice housed in isolators. Several broad-spectrum antibiotic treatment regimens in the drinking water have been used for gut microbe depletion.7,16,20,25-27,41 One of the more commonly used combinations is comprised of 4 antibiotics (ampicillin, neomycin, metronidazole, and vancomycin) added to the drinking water for periods ranging from 1 to 4 wk.5,9,13,19,23,30,32,34 This cocktail is effective at depleting gut microbes; however, a previous study in our laboratory found it to be highly unpalatable. Dehydration and weight loss can occur in mice receiving antibiotics in the drinking water, and the magnitude of the effect can be significant, depending on the mouse strain.21,30,33 The weight loss can result in a substantial number of mice being removed from studies due to animal welfare concerns as reported in a previous study in which 5 of 5 mice given ampicillin, neomycin, metronidazole, and vancomycin reached eighty percent of baseline body weight and were subsequently removed.33 A reduction in water consumption is also likely to interfere with effective antibiotic treatment and may prolong the time necessary to achieve adequate microbial depletion. Palatability enhancers such as glucose,5,13 sucrose,41 and flavored water23 are sometimes combined with the antibiotics in drinking water. The aim of the current study was to determine whether 8 days of treatment with an alternative mixture comprised of 2 antibiotics (enrofloxacin and ampicillin) was sufficient to deplete the gut flora as compared with the widely used combination of ampicillin, neomycin, metronidazole, and vancomycin. We hypothesized that the combination of 2 antibiotics would be at least equivalent to the combination of 4 antibiotics in reducing the gut flora while causing less weight loss.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号