首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seasonality is known to influence ant activity in many tropical rain forests in the world such as South America and Africa. We surveyed ant fauna in the leaf litter in the locality of Minko'o. The work aimed to evaluate the effect of seasonal variation on the diversity and composition of litter ants. Ants were sampled from November 2015 to June 2017, using four sampling methods: visual capture, bait, pitfall trap and extraction. Species richness, Shannon diversity index and analysis of similarities were used to characterise diversity of ant communities between seasons. We collected 306 ant species, shared out between 56 genera and 11 subfamilies. Subfamilies Myrmicinae, Ponerinae, Dolichoderinae, Formicinae, Dorylinae, Cerapachyinae and Pseudomyrmecinae occurred in all the seasons. Species richness was highest in major dry season with 243 species followed by minor rainy season with 188, major rainy season with 177 species and finally minor dry season that recorded the lowest with 155 species. Kruskal–Wallis test showed that ant species richness did not differ between seasons (p > 0.05). Species diversity index indicated that diversity was the highest during minor dry season (H′ = 4.24), followed by the major dry season (H′ = 4.23), minor rainy season (H′ = 4.21) and lowest during major rainy season (H′ = 4.06). Eight most frequents ants have been recorded: Axinidris sp.1, Camponotus flavomarginatus, Monomorium guineense, Myrmicaria opaciventris, Odontomachus troglodytes, Carebara perpusilla, Paltothyreus tarsatus and Pheidole megacephala. Assessment of the seasonal effect on diversity reveals that dry season is richer and more diverse than rainy season and the season significantly influence the diversity of litter ants.  相似文献   

2.
《Journal of Asia》2014,17(2):161-167
Two diversity patterns (hump-shaped and monotonic decrease) frequently occur along altitude or latitude gradients. We examined whether patterns of ant species richness along altitudes in South Korea can be described by these patterns and whether ranges of ant species follow Rapoport's altitudinal rule. Ants on 12 high mountains (> 1100 m) throughout South Korea (from 33° N to 38° N) were surveyed using pitfall traps at intervals of 200–300 m altitude. The temperatures at the sampling sites were determined from digital climate maps. Ant species richness decreased monotonically along the altitudinal gradient and increased along the temperature gradient. However, species richness of cold-adapted species (highland species) showed a hump-shaped pattern along altitude and temperature gradients. The altitude and temperature ranges of ant species followed Rapoport's rule. Sampling site temperature ranges were significantly correlated with coldness. Therefore, Rapoport's rule can be explained by high cold-tolerance of species inhabiting high altitudes or latitudes.  相似文献   

3.
Texture information from passive remote sensing images provides surrogates for habitat structure, which is relevant for modeling biodiversity across space and time and for developing effective ecological indicators. However, the applicability of this information might differ among taxa and diversity measures. We compared the ability of indicators developed from texture analysis of remotely sensed images to predict species richness and species turnover of six taxa (trees, pyraloid moths, geometrid moths, arctiinae moths, ants, and birds) in a megadiverse Andean mountain rainforest ecosystem. Partial least-squares regression models were fitted using 12 predictors that characterize the habitat and included three topographical metrics derived from a high-resolution digital elevation model and nine texture metrics derived from very high-resolution multi-spectral orthophotos. We calculated image textures derived from mean, correlation, and entropy statistics within a relatively broad moving window (102 m × 102 m) of the near infra-red band and two vegetation indices. The model performances of species richness were taxon dependent, with the lowest predictive power for arctiinae moths (4%) and the highest for ants (78%). Topographical metrics sufficiently modeled species richness of pyraloid moths and ants, while models for species richness of trees, geometrid moths, and birds benefited from texture metrics. When more complexity was added to the model such as additional texture statistics calculated from a smaller moving window (18 m × 18 m), the predictive power for trees and birds increased significantly from 12% to 22% and 13% to 27%, respectively. Gradients of species turnover, assessed by non-metric two-dimensional scaling (NMDS) of Bray-Curtis dissimilarities, allowed the construction of models with far higher predictability than species richness across all taxonomic groups, with predictability for the first response variable of species turnover ranging from 64% (birds) to 98% (trees) of the explained change in species composition, and predictability for the second response variable of species turnover ranging from 33% (trees) to 74% (pyraloid moths). The two NMDS axes effectively separated compositional change along the elevational gradient, explained by a combination of elevation and texture metrics, from more subtle, local changes in habitat structure surrogated by varying combinations of texture metrics. The application of indicators arising from texture analysis of remote sensing images differed among taxa and diversity measures. However, these habitat indicators improved predictions of species diversity measures of most taxa, and therefore, we highly recommend their use in biodiversity research.  相似文献   

4.
Afrotropical ant-following birds are vulnerable to forest loss and disturbance, but critical habitat thresholds regarding their abundance and species richness in human-dominated landscapes, including industrial oil palm plantations, have never been assessed. We measured forest cover through Landsat imagery and recorded species richness and relative abundance of 20 ant-following birds in 48 plots of 1-km2, covering three landscapes of Southwest Cameroon: Korup National Park, smallholder agroforestry areas (with farms embedded in forest), and an industrial oil palm plantation. We evaluated differences in encounter frequency and species richness among landscapes, and the presence of critical thresholds through enhanced adaptive regression through hinges. All species were detected in Korup National Park and the agroforestry landscape, which had similar forest cover (>85%). Only nine species were found in the oil palm plantation (forest cover = 10.3 ± 3.3%). At the 1-km2 scale, the number of species and bird encounters were comparable in agroforests and the protected area: mean species richness ranged from 12.2 ± 0.6 in the park and 12.2 ± 0.6 in the agroforestry matrix to 1.0 ± 0.4 in the industrial oil palm plantation; whereas encounters decreased from 34.4 ± 3.2 to 26.1 ± 2.9 and 1.3 ± 0.4, respectively. Bird encounters decreased linearly with decreasing forest cover, down to an extinction threshold identified at 24% forest cover. Species richness declined linearly by ca. one species per 7.4% forest cover lost. We identified an extinction threshold at 52% forest cover for the most sensitive species (Criniger chloronotus, Dicrurus atripennis, and Neocossyphus poensis). Our results show that substantial proportions of forests are required to sustain complete ant-following bird assemblages in Afrotropical landscapes and confirm the high sensitivity of this bird guild to deforestation after industrial oil palm development. Securing both forest biodiversity and food production in an Afrotropical production landscape may be best attained through a combination of protected areas and wildlife-friendly agroforestry.  相似文献   

5.
In agricultural landscapes in central Europe, species richness of the herbaceous plant community may be compromised by processes associated with forest fragmentation, habitat loss, and management practices. We examined variability in species richness and composition of the herbaceous layer in 229 plots located in 23 forest fragments (0.1 to 255 ha), in a representative upland agricultural landscape in central Bohemia, in relation to the most important site environmental factors, edge effects, and site history. The influence of environmental factors on the composition of vegetation in the herb layer was evaluated using generalized additive models, which enabled us to analyze highly non-linear and non-monotonic relationships. Total species richness and number of red-listed and ancient forest species were significantly influenced by type of forest vegetation, light quality, soil pH, slope aspect, and distance from the forest edge. Implications of the significant explanatory variables corresponded well to previous findings, with the exception of distance from the forest edge, for which we found a positive relationship with species richness for distances up to 200 m toward the forest interior. Plant species with low colonization ability occupied plots with increasing frequency from edge to forest interior, while fast-colonizing species showed the opposite trend. Apart from the edge effect, forest continuity should be considered for its important contribution to the richness of ancient forest and red-listed species, whereas the effect of forest fragment size appeared to be generally weak. These results do not negate the importance of large forest fragments for the maintenance of herb layer species richness, but specifically emphasize the essential contribution of the core habitats of these forests. In summary, we showed that the negative effects of habitat fragmentation on the richness of ancient forest and red-listed species and on herb layer species in total can be largely attributed to either the edge effect itself or to aggregate effects of forest edge and forest continuity.  相似文献   

6.
The aim of this research is to relate patterns of endemism and turnover along a local elevation gradient in northwest Argentina with continental biogeographical transitions. Specimen based records constituted the principal source of information to infer rodent distribution along the elevation gradient. I assessed elevational variation of richness, endemism and turnover by means of non-linear regression analysis. Then I identified five distributional patterns based on the overlap of species geographic range. Their frequency along elevation was used to validate biogeographical boundaries inferred by turnover rates. Eleven species out of 37 (30%) are endemic to the study area. Species richness and endemism were hump-shaped. The rate of endemism reached its maximum value at the upper limit of the forest (2500 m). By contrast, species turnover was U-shaped, with a small peak at 1500 m and a maximum at 3500 m. The species’ geographic range patterns were not randomly distributed along elevation but agglomerated at specific elevation. Species turnover and chorological analysis suggest two biogeographical boundaries, a weaker at 1500 m and a stronger at 3500 m. The 1500 m boundary marks the transition from assemblages dominated by Lowland-widespread fauna at lower elevation to Montane (Andean eastern slopes) species at middle elevation. This boundary is characterized by moderate species turnover and high species richness. The strong turnover rate at 3500 and the dominance of highland Andean and Andean-Patagonian species above this elevation suggest the occurrence of the transition between the Neotropical and Andean regions; which is characterised by an almost complete species replacement.  相似文献   

7.
8.
Forest degradation is leading to widespread negative impacts on biodiversity in South-east Asia. Tropical peat-swamp forests are one South-east Asian habitat in which insect communities, and the impacts of forest degradation on them, are poorly understood. To address this information deficit, we investigated the impacts of forest gaps on fruit-feeding butterflies in the Sabangau peat-swamp forest, Central Kalimantan, Indonesia. Fruit-baited traps were used to monitor butterflies for 3 months during the 2009 dry season. A network of 34 traps (ngap = 17, nshade = 17) was assembled in a grid covering a 35 ha area. A total of 445 capture events were recorded, comprising 384 individuals from 8 species and 2 additional species complexes classified to genera. On an inter-site scale, canopy traps captured higher species richness than understory traps; however, understory traps captured higher diversity within each site. Species richness was positively correlated with percent canopy cover and comparisons of diversity indices support these findings. Coupled with results demonstrating morphological differences in thorax volume and forewing length between species caught in closed-canopy traps vs. those in gaps, this indicates that forest degradation has a profound effect on butterfly communities in this habitat, with more generalist species being favored in disturbed conditions. Further studies are necessary to better understand the influences of macro-habitat quality and seasonal variations on butterfly diversity and community composition in South-east Asian peat-swamp forests.  相似文献   

9.
There is a wealth of smaller-scale studies on the effects of forest management on plant diversity. However, studies comparing plant species diversity in forests with different management types and intensity, extending over different regions and forest stages, and including detailed information on site conditions are missing. We studied vascular plants on 1500 20 m × 20 m forest plots in three regions of Germany (Schwäbische Alb, Hainich-Dün, Schorfheide-Chorin). In all regions, our study plots comprised different management types (unmanaged, selection cutting, deciduous and coniferous age-class forests, which resulted from clear cutting or shelterwood logging), various stand ages, site conditions, and levels of management-related disturbances. We analyzed how overall richness and richness of different plant functional groups (trees, shrubs, herbs, herbaceous species typically growing in forests and herbaceous light-demanding species) responded to the different management types. On average, plant species richness was 13% higher in age-class than in unmanaged forests, and did not differ between deciduous age-class and selection forests. In age-class forests of the Schwäbische Alb and Hainich-Dün, coniferous stands had higher species richness than deciduous stands. Among age-class forests, older stands with large quantities of standing biomass were slightly poorer in shrub and light-demanding herb species than younger stands. Among deciduous forests, the richness of herbaceous forest species was generally lower in unmanaged than in managed forests, and it was even 20% lower in unmanaged than in selection forests in Hainich-Dün. Overall, these findings show that disturbances by management generally increase plant species richness. This suggests that total plant species richness is not suited as an indicator for the conservation status of forests, but rather indicates disturbances.  相似文献   

10.
Biological characteristics of the parasitoid Orasema simplex Heraty (Hymenoptera: Eucharitidae), a potential candidate for the biological control of fire ants in the United States were investigated. Female survivorship, fertility and oviposition preferences were studied in the laboratory. Naturally parasitized colonies were examined to determine offspring sex ratio, development success and time, and to artificially parasitize healthy ant colonies. In addition, field studies were carried out to establish natural oviposition substrates and adult activity patterns. Orasema simplex female survivorship was 3.6 ± 1.5 days. Newly emerged females contained 613.5 ± 114.0 mature eggs. The adult development success in natural parasitized colonies was 22.2% with a female-biased sex ratio (4:1). The time required from planidia to adult was 29.5 ± 5.4 days. In the field, adults were mostly found around the ant nests at midday. A broad range of plant species was observed as oviposition substrates. The transfer of planidia to healthy ant colonies was achieved but the development success was very low. Orasema simplex appears to have a limited potential as a fire ant biocontrol agent because of cosmetic damage to a wide variety of plants used for oviposition. However, further studies are necessary to evaluate the real damage exerted by oviposition punctures.  相似文献   

11.
Abstract:Epiphytic lichens (and some non-lichenized fungi) on 34 coppices (204 stems) ofCorylus avellana were investigated in a 140 ha study area in south-western Norway. A total of 65 species were recorded on a total bark area of 63 m2. Corylus in broad-leaved deciduous forest supported more species of macrolichens, and fewer species of microlichens, than Corylus in pine forest. The macrolichen flora of the deciduous forest differed from that of the pine forest by having a rich flora of species belonging to the Lobarion alliance. OldCorylus coppices with tall stems (>8 m), large girth (>8 cm diameter at breast height) and a noticeable cover of macrolichens (>10% of bark area) supported the highest number of rare species, and overall, species of macrolichens. More than 50% cover of microlichens indicated richness and rarity of microlichens on Corylus.  相似文献   

12.
The effects of forest edge on ant species richness and community composition were examined within an urbanized area of northeast Ohio. The ground-dwelling ant fauna was inventoried in three deciduous forest fragments that have resulted from human disturbance. We surveyed ants via leaf-litter extraction along 150 m transects positioned perpendicular to the forest edge. We collected 4,670 individuals from 14 genera and 29 species. Samples closest to the forest edge contained more species and accumulated species at a higher rate than did samples located in the forest interior. Our rarefied and expected richness estimates revealed a decline of species richness from edge to forest interior. The higher ant richness at the forest edge was due mostly to the presence of species characteristic of the neighboring open habitats. Although most of the typical forest ant species were represented equally at the edge and at the forest interior, a few responded to the presence of edges with changes in their relative abundance and frequency of occurrence. Forest edges had a higher proportion of opportunistic species and a lower proportion of cryptic ants, whereas interior locations exhibited a more even distribution among ant functional groups. In addition, we documented a community composition shift between the edge and the forest interior. Consistent with previous findings, we suggest that the edge effects are most pronounced within 25 m of the forest edge, which may have implications for the overall conservation of forest-dwelling fauna.  相似文献   

13.
The aim of this study was to identify the main weed communities in Al-Jouf province in northern Saudi Arabia. Moreover, the composition and diversity of these communities were studied in relation to soil variables and crop type. Some 54 stands representing olive orchards, date palm orchards, wheat crop and watermelon crop were studied, using ten quadrats (1 × 1 m) per stand. A total of 71 species belonging to 22 families and 61 genera were observed. The classification of vegetation using the Two Way Indicator Species Analysis (TWINSPAN) resulted in the recognition of four vegetation groups representing wheat crop, orchards in winter season, orchards in summer season and watermelon crop. These results suggested the importance of both crop and season for the formation of weed community. Detrended Correspondence Analysis (DCA) showed that these groups are clearly distinguished by the first two DCA axes. The species richness was higher in both olive and date palm orchards than in wheat and watermelon crops. This pattern of species richness could be related to farm management practices and habitat micro-heterogeneity. Soil electrical conductivity, organic carbon and soil texture showed significant correlations with species richness and the cover values of some dominant species, suggesting the significant role of soil characteristics in weed community structure and diversity.  相似文献   

14.
Changing climates are predicted to alter the distribution of thermal niches. Small ectotherms such as ants may be particularly vulnerable to heat injury and death. We quantified the critical thermal maxima of 92 ant colonies representing 14 common temperate ant species. The mean CTmax for all measured ants was 47.8 °C (±0.27; range=40.2–51.2 °C), and within-colony variation was lower than among-colony variation. Critical thermal maxima differed among species and were negatively correlated with body size. Results of this study illustrate the importance of accounting for mass, among and within colony variation, and interspecific differences in diel activity patterns, which are often neglected in studies of ant thermal physiology.  相似文献   

15.
Small, cursorial ectotherms like ants often are immersed in the superheated air layers that develop millimeters above exposed, insolated surfaces (i.e., the thermal boundary layer). We quantified the thermal microenvironments around tree branches in the tropical rainforest canopy, and explored the effects of substrate color on the internal body temperature and species composition of arboreal ants. Branch temperatures during the day (09:00–16:00) were hottest (often > 50 °C) and most variable on the upper surface, while the lowest and least variable temperatures occurred on the underside. Temperatures on black substrates declined with increasing distance above the surface in both the field and the laboratory. By contrast, a micro-scale temperature inversion occurred above white substrates. Wind events (ca. 2 m s−1) eliminated these patterns. Internal temperatures of bodies of Cephalotes atratus workers experimentally heated in the laboratory were 6 °C warmer on white vs. black substrates, and 6 °C cooler than ambient in windy conditions. The composition of ant species foraging at baits differed between black-painted and unpainted tree branches, with a tendency for smaller ants to avoid the significantly hotter black surfaces. Collectively, these outcomes show that ants traversing canopy branches experience very heterogeneous thermal microenvironments that are partly influenced in predictable ways by branch surface coloration and breezy conditions.  相似文献   

16.
We studied for two years the seasonal changes in plant available nitrate and ammonium nitrogen (N), nitrification, N-mineralization, microbial biomass carbon (MBC), nitrogen (MBN) and phosphorus (MBP) in two forest and three cropland sites, derived from a tropical forest ecosystem of India. Results indicated that seasonal values of nitrate N, ammonium N and phosphate P ranged from 7.33–12.99, 5.1–10.22 and 4.0–7.8 μg g?1 in forest and 4.13–9.26, 9.35–14.46 and 2.8–5.8 μg g?1 in cropland ecosystems, respectively, with maximum values in summer and minimum in rainy seasons. Nitrification and N-mineralization values varied from 6–28 and 4–26 μg g?1 mo?1 in forest and 3–14 μg g?1 mo?1 and 4–17 μg g?1 mo?1 in cropland, with maximum values in rainy season and minimum in summer season.MBC, MBN MBP ranged from 393–753, 34–80 and 16–36 μg g?1 in forests and 186–414, 21–41 and 11–22 μg g?1 in croplands, being maximum in summer and minimum in rainy seasons. There was gradual increase in the values of inorganic N, nitrification, N-mineralization and MBC, MBN and MBP along the age of cropland. Analysis of variance indicated significant difference in the concentration of inorganic N, nitrification and N-mineralization and MBC, MBN and MBP due to sites and seasons.Cultivation caused decline in the mean annual organic C, N and P by 42%, 29% and 13%. The values of nitrate N were decreased by 23–38%, while ammonium N was increased by 39–74%. Nitrification and N-mineralization values were reduced by 39–63% and 40–60%, respectively. Microbial C, N and P were reduced by 44–54%, 41–50% and 28–44%, respectively. Nonetheless, the contribution of soil microbial biomass reflected in total N was enhanced from 4.76% in forest to 5.03% in cropland ecosystem. Enhancement of plant available ammonium-N and microbial contribution in total N are an indicator of natural conserving mechanism to check the nitrogen loss from the nutrient poor agro-ecosystem.  相似文献   

17.
Invasions by alien plants significantly affect native biodiversity and ecosystem functioning. We conducted a 5-year field experiment to investigate potential effects of the annual invasive plant Impatiens glandulifera on both the native above-ground vegetation and the soil seed bank in a deciduous forest in Switzerland. Eight years after the establishment of I. glandulifera, we set up plots in patches invaded by the alien plant, in plots from which the invasive plant had been manually removed and in plots which were not yet colonized by the invasive plant. We examined plant species richness, diversity and plant species composition in the above-ground vegetation and soil seed bank in all plots one year and five years after the initiation of the experiment. The 36 plots (3 plot types × 6 replicates × 2 sites) were equally distributed over two forest sites. Neither the native above-ground vegetation nor the soil seed bank was influenced by the presence of I. glandulifera one year after the start of the field experiment. After five years, however, plant species richness of both the above-ground vegetation and the soil seed bank was reduced by 25% and 30%, respectively, in plots invaded by the alien plant compared to plots from which I. glandulifera had been removed or uninvaded plots. Furthermore, plots invaded by the alien plant had a lower total seedling density (reduction by 60%) and an altered plant species composition in the soil seed bank compared to control plots. Our field experiment indicates that negative effects of the annual invasive plant on the native above-ground vegetation and soil seed bank of deciduous forests become visible with a delay of several years.  相似文献   

18.
Facilitation is an important ecological mechanism with potential applications to forest restoration. We hypothesized that different facilitation treatments, distance from the forest edge and time since initiation of the experiment would affect forest restoration on abandoned pastures. Seed and seedling abundance, species richness and composition were recorded monthly during two years under isolated trees, bird perches and in open pasture. Seed arrival and seedling establishment were measured at 10 m and 300 m from the forest edge. We sampled a total of 131,826 seeds from 115 species and 487 seedlings from 46 species. Isolated trees and bird perches increased re-establishment of forest species; however, species richness was higher under isolated trees. Overall, abundance and richness of seeds and seedlings differed between sampling years, but was unaffected by distance from the forest edge. On the other hand, species composition of seeds and seedlings differed among facilitation treatments, distance from the forest edge and between years. Seedling establishment success rate was larger in large-seeded species than medium- and small-seeded species. Our results suggest that isolated trees enhance forest re-establishment, while bird perches provide a complementary effort to restore tree abundance in abandoned pastures. However, the importance of seed arrival facilitation shifts toward establishment facilitation over time. Arriving species may vary depending on the distance from the forest edge and disperser attractors. Efforts to restore tropical forests on abandoned pastures should take into account a combination of both restoration strategies, effects of time and proximity to forest edge to maximize regeneration.  相似文献   

19.
《Acta Oecologica》2007,31(2):223-228
The effects of cattle grazing on the density of seedlings and saplings in a Tabor oak forest (Quercus ithaburensis subsp. ithaburensis) are investigated. The Tabor oak forest studied is located in a Nature Reserve in the Mediterranean region of Israel. Cattle graze at a stocking density of 0.71 head/ha for 6 months a year. The cattle grazing in the Nature Reserve is a beneficial management measure because it enhances plant species richness and reduces shrub encroachment.The impact of grazing on the densities of seedlings and young saplings was quantified in 46 large sampling plots (333 m2 each) distributed over two experimental sites; the first being used as a rangeland for decades while the second is a forest patch totally free from grazing. The density and the height of Tabor oak individuals in each sampling plot were recorded. Four height categories were distinguished with a special focus on young seedlings (<0.15 m), established seedlings and young saplings (0.15 m–1 m).The density of seedlings and young sapling in the grazed Tabor oak forest were, respectively, 61% to 67% lower than in the ungrazed treatment. Implications on the continuity of the entire Tabor oak forest ecosystem are discussed. Three management measures that enable to prevent a decrease in young oak densities are proposed – reduction of stocking rate, deferment of the commencement of grazing, and fencing young seedlings.  相似文献   

20.
Quartz fields are rare features that contribute significantly to vegetation diversity and endemism of South Africa's Succulent Karoo Biome. The Riethuis-Wallekraal quartz fields in the north-western Namaqualand area of South Africa contain 17 quartz field specialist species of which seven are endemic to this specific area. Hoof-action by livestock has formed paths of approximately 0.30 m on these quartz fields. It would be important to conservationists to understand whether direct (e.g. trampling) and indirect effects (e.g. burial of flora by sediment movement) associated with the livestock paths holds any threat to the dwarf succulent (< 0.05 m) and micro-chamaephytes (0.06–0.15 m) endemic to the quartz fields. We tested the hypotheses that the unique quartz field vegetation and biological soil crusts would be affected by loose soil particles transported downslope from the paths. The soil stability index, total vegetation cover, cover of specialized quartz field species and species diversity were lower on livestock paths but did not differ between upslope and downslope locations. Livestock paths also had lower cover and fewer quartz field specialist species. It is concluded that under conditions of intense and continuous grazing, livestock are likely to have an even stronger negative impact on the specialist quartz field flora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号