首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

A poorly performing industrial water kefir production process consisting of a first fermentation process, a rest period at low temperature, and a second fermentation process was characterized to elucidate the causes of its low water kefir grain growth and instability. The frozen-stored water kefir grain inoculum was thawed and reactivated during three consecutive prefermentations before the water kefir production process was started. Freezing and thawing damaged the water kefir grains irreversibly, as their structure did not restore during the prefermentations nor the production process. The viable counts of the lactic acid bacteria and yeasts on the water kefir grains and in the liquors were as expected, whereas those of the acetic acid bacteria were high, due to the aerobic fermentation conditions. Nevertheless, the fermentations progressed slowly, which was caused by excessive substrate concentrations resulting in a high osmotic stress. Lactobacillus nagelii, Lactobacillus paracasei, Lactobacillus hilgardii, Leuconostoc mesenteroides, Bifidobacterium aquikefiri, Gluconobacter roseus/oxydans, Gluconobacter cerinus, Saccharomyces cerevisiae, and Zygotorulaspora florentina were the most prevalent microorganisms. Lb. hilgardii, the microorganism thought to be responsible for water kefir grain growth, was not found culture-dependently, which could explain the low water kefir grain growth of this industrial process.

  相似文献   

2.

Salinity is a major environmental stress that limits plant production and portraits a critical challenge to food security in the world. In this research, the impacts of plant growth–promoting bacteria (Pseudomonas RS-198 and Azospirillum brasilense RS-SP7) and foliar application of plant hormones (salicylic acid 1 mM and jasmonic acid 0.5 mM) on alleviating the harmful effects of salt stress in rapeseed plants (Brassica napus cv. okapi) were examined under greenhouse condition. Salt stress diminished rapeseed biomass, leaf area, water content, nitrogen, phosphorus, potassium, calcium, magnesium, and chlorophyll content, while it increased sodium content, endogenous salicylic and jasmonic acids, osmolyte production, H2O2 and O2•− generations, TBARS content, and antioxidant enzyme activities. Plant growth, nutrient content, leaf expansion, osmolyte production, and antioxidant enzyme activities were increased, but oxidative and osmotic stress indicators were decreased by bacteria inoculation + salicylic acid under salt stress. Antioxidant enzyme activities were amplified by jasmonic acid treatments under salt stress, although rapeseed growth was not generally affected by jasmonic acid. Bacterial + hormonal treatments were superior to individual treatments in reducing detrimental effects of salt stress. The best treatment in rectifying rapeseed growth under salt stress was combination of Pseudomonas and salicylic acid. This combination attenuated destructive salinity properties and subsequently amended rapeseed growth via enhancing endogenous salicylic acid content and some essential nutrients such as potassium, phosphorus, and magnesium.

  相似文献   

3.
In this study we tested whether rhizosphere microorganisms can increase drought tolerance to plants growing under water-limitation conditions. Three indigenous bacterial strains isolated from droughted soil and identified as Pseudomonas putida, Pseudomonas sp., and Bacillus megaterium were able to stimulate plant growth under dry conditions. When the bacteria were grown in axenic culture at increasing osmotic stress caused by polyethylene glycol (PEG) levels (from 0 to 60%) they showed osmotic tolerance and only Pseudomonas sp. decreased indol acetic acid (IAA) production concomitantly with an increase of osmotic stress (PEG) in the medium. P. putida and B. megaterium exhibited the highest osmotic tolerance and both strains also showed increased proline content, involved in osmotic cellular adaptation, as much as increased osmotic stress caused by NaCl supply. These bacteria seem to have developed mechanisms to cope with drought stress. The increase in IAA production by P. putida and B. megaterium at a PEG concentration of 60% is an indication of bacterial resistance to drought. Their inoculation increased shoot and root biomass and water content under drought conditions. Bacterial IAA production under stressed conditions may explain their effectiveness in promoting plant growth and shoot water content increasing plant drought tolerance. B. megaterium was the most efficient bacteria under drought (in successive harvests) either applied alone or associated with the autochthonous arbuscular mycorrhizal fungi Glomus coronatum, Glomus constrictum or Glomus claroideum. B. megaterium colonized the rhizosphere and endorhizosphere zone. We can say, therefore, that microbial activities of adapted strains represent a positive effect on plant development under drought conditions.  相似文献   

4.

Recently, phytoremediation assisted by soil bacteria has emerged as a potential tool to clean up the metal-contaminated/polluted environment. Three plant-growth-promoting bacteria (PGPBs): Rhizobium sullae, Pseudomonas fluorescens, and Pseudomonas sp. were found to tolerate cadmium (Cd) stress. Sulla coronaria inoculated with these PGPBs, and grown under different Cd concentrations (0, 100, and 200 µM), showed increases in dry biomass and proline content. Notable increases in different gas-exchange characteristics such as photosynthesis rate (A), transpiration rate (E), and water-use efficiency (WUE), as well as increases in nitrogen (N) and Cd accumulations were also recorded in inoculated plants compared to non-inoculated Cd stressed plants. The activities of antioxidant enzymes superoxide dismutase (SOD), guaiacol peroxidase (GPOX), catalase (CAT), and ascorbate peroxidase (APX) in S. coronaria roots increased under Cd stress after PGPB co-inoculation, suggesting that these PGPB species could be used for amelioration of stress tolerance in S. coronaria. The expression patterns of ScPCS, ScMT, ScF-box, ScGR, and ScGST in roots of S. coronaria indicated that these genes are differentially expressed under Cd treatments, suggesting their possible roles in Cd and heavy metal stress responses. The results indicate that co-inoculation with R. sullae and Pseudomonas sp. could alleviate Cd toxicity in S. coronaria. In the present study, the obtained data suggest that the application of PGPBs could be a promising strategy for enhancing the phytostabilization efficiency of Cd-contaminated soils.

  相似文献   

5.
Wang  Tietao  Gao  Fen  Kang  Yiwen  Zhao  Chao  Su  Tao  Li  Muhang  Si  Meiru  Shen  Xihui 《Biotechnology letters》2016,38(7):1221-1228
Objectives

To investigate mycothiol peroxidase (MPx) of Corynebacterium glutamicum that is a novel CysGPx family peroxidase using both the mycoredoxin and thioredoxin reducing systems as proton donors for peroxide detoxification and may be involved in the relief of acid stress.

Results

A Δmpx mutant exhibited significantly decreased resistance to acid stress and markedly increased accumulation of reactive oxygen species (ROS) and protein carbonylation levels in vivo. Over-expression of mpx increased the resistance of C. glutamicum to acid stress by reducing ROS accumulation. The stress-responsive extracytoplasmic function-sigma (ECF-σ) factor, SigH, mediated acid-induced expression of mpx in the wild-type under acid conditions, which in turn directly contributed to tolerance to acid stress.

Conclusion

MPx is essential for combating acid stress by reducing intracellular ROS levels induced by acid stress in C. glutamicum, which adds a new dimension to the general physiological functions of CysGPx.

  相似文献   

6.

The aim of this study was to assess the protective effect of the intracellular content obtained from potential probiotic bacteria against acrylamide-induced oxidative damage in human erythrocytes. First, the antioxidant properties of 12 potential probiotic strains was evaluated. Two commercial probiotic bacteria were included as reference strains, namely, Lactobacillus casei Shirota and Lactobacillus paracasei 431. Data showed that the intracellular content from four strains, i.e., Lactobacillus fermentum J10, Lactobacillus pentosus J24 and J26, and Lactobacillus pentosus J27, showed higher (P < 0.05) antioxidant capacity in most methods used. Thereafter, the intracellular content of such pre-selected strains was able to prevent the disturbance of the antioxidant system of human erythrocytes exposed to acrylamide, thereby reducing cell disruption and eryptosis development (P < 0.05). Additionally, the degree of oxidative stress in erythrocytes exposed to acrylamide was significantly (P < 0.05) reduced to levels similar to the basal conditions when the intracellular content of Lact. fermentum J10, Lact. pentosus J27, and Lact. paracasei 431 were employed. Hence, our findings suggest that the intracellular contents of specific Lactobacillus strains represent a potential source of metabolites with antioxidant properties that may help reduce the oxidative stress induced by acrylamide in human erythrocytes.

  相似文献   

7.
Purpose

Lactic acid bacteria (LAB) are traditionally employed in the food industry. LAB strains from goat milk may also present probiotic potential, and it is fundamental to study the safety and functionality aspects which are desirable for their use in food. The objective of this study was to verify the probiotic potential of lactic bacteria isolated from goat milk.

Methods

The presence of safety-related virulence factors (hemolytic activity, gelatinase production, coagulase, and sensitivity to antibiotics) as well as functionality (exopolysaccharide (EPS) production, proteolytic activity, autoaggregation, gas production, survival in the gastrointestinal tract, and antimicrobial activity against bacteria that impair oral health) were determined.

Result

The selected LAB strains are safe against the evaluated parameters and have characteristics of possible probiotic candidates. Especially L. plantarum (DF60Mi) and Lactococcus lactis (DF04Mi) have potential to be added to foods because they have better resistance to simulated gastrointestinal conditions. In addition, they are isolated with already proven antimicrobial activity against Listeria monocytogenes, an important food-borne pathogen. DF60Mi was able to produce EPS (exopolysaccharides). LS2 and DF4Mi strains, both Lactococcus lactis subsp. lactis, demonstrated antimicrobial activity against S. mutans ATCC 25175, a recurrent microorganism in oral pathologies, mainly caries.

Conclusion

This study provides subsidies for future exploration of the potentialities of these LAB strains for both the development of new functional foods and for application in oral health.

  相似文献   

8.
Background

The interaction between gut bacterial symbionts and Tephritidae became the focus of several studies that showed that bacteria contributed to the nutritional status and the reproductive potential of its fruit fly hosts. Anastrepha fraterculus is an economically important fruit pest in South America. This pest is currently controlled by insecticides, which prompt the development of environmentally friendly methods such as the sterile insect technique (SIT). For SIT to be effective, a deep understanding of the biology and sexual behavior of the target species is needed. Although many studies have contributed in this direction, little is known about the composition and role of A. fraterculus symbiotic bacteria. In this study we tested the hypothesis that gut bacteria contribute to nutritional status and reproductive success of A. fraterculus males.

Results

AB affected the bacterial community of the digestive tract of A. fraterculus, in particular bacteria belonging to the Enterobacteriaceae family, which was the dominant bacterial group in the control flies (i.e., non-treated with AB). AB negatively affected parameters directly related to the mating success of laboratory males and their nutritional status. AB also affected males’ survival under starvation conditions. The effect of AB on the behaviour and nutritional status of the males depended on two additional factors: the origin of the males and the presence of a proteinaceous source in the diet.

Conclusions

Our results suggest that A. fraterculus males gut contain symbiotic organisms that are able to exert a positive contribution on A. fraterculus males’ fitness, although the physiological mechanisms still need further studies.

  相似文献   

9.
10.
11.
ABSTRACT

Plasmacytoid dendritic cells (pDCs) are crucial in anti-viral immunity, acting as regulators in both adaptive and innate immunity. In this study, brief heat stress caused a decrease in splenic pDC activity in mice. Administration of Lactococcus lactis strain Plasma (LC-Plasma) significantly suppressed the decrease in pDC activity and IFN-α production.

Abbreviations: LC-Plasma: Lactococcus lactis strain Plasma; LAB: lactic acid bacteria; pDC: plasmacytoid dendritic cell; IFN: interferons; mDC: myeloid dendritic cells  相似文献   

12.
Zeng  Weimin  Li  Fang  Wu  Chenchen  Yu  Runlan  Wu  Xueling  Shen  Li  Liu  Yuandong  Qiu  Guanzhou  Li  Jiaokun 《Bioprocess and biosystems engineering》2020,43(1):153-167

Heavy metal resistant bacteria are of great interest because of their potential use in bioremediation. Understanding the survival and adaptive strategies of these bacteria under heavy metal stress is important for better utilization of these bacteria in remediation. The objective of this study was to investigate the role of bacterial extracellular polymeric substance (EPS) in detoxifying against different heavy metals in Bacillus sp. S3, a new hyper antimony-oxidizing bacterium previously isolated from contaminated mine soils. The results showed that Bacillus sp. S3 is a multi-metal resistant bacterial strain, especially to Sb(III), Cu(II) and Cr(VI). Toxic Cd(II), Cr(VI) and Cu(II) could stimulate the secretion of EPS in Bacillus sp. S3, significantly enhancing the adsorption and detoxification capacity of heavy metals. Both Fourier transform infrared spectroscopy (FTIR) and three-dimensional excitation–emission matrix (3D-EEM) analysis further confirmed that proteins were the main compounds of EPS for metal binding. In contrast, the EPS production was not induced under Sb(III) stress. Furthermore, the TEM–EDX micrograph showed that Bacillus sp. S3 strain preferentially transported the Sb(III) to the inside of the cell rather than adsorbed it on the extracellular surface, indicating intracellular detoxification rather than extracellular EPS precipitation played an important role in microbial resistance towards Sb(III). Together, our study suggests that the toxicity response of EPS to heavy metals is associated with difference in EPS properties, metal types and corresponding environmental conditions, which is likely to contribute to microbial-mediated remediation.

  相似文献   

13.
In many bacterial species, the translational GTPase TypA acts as a global stress- and virulence regulator and also mediates resistance to the antimicrobial peptide BPI. On the chromosome of M. tuberculosis, typA is located next to narGHJI, which plays a role in adaptation of the pathogen to various environmental conditions. Here, we show that Mycobacterium tuberculosis is sensitive to P2, a derivative of BPI. Using a typA mutant of M. tuberculosis, we found this phenotype to be independent of TypA. We further tested typA expression in M. tuberculosis under defined stress conditions, such as oxygen- and nutrient depletion, low pH, heat shock, antibiotic stress and the presence of P2, and found that typA expression remains unaffected by any of these conditions. Analysis of growth and whole-genome expression revealed similar growth kinetics and gene expression profiles of the wild type and the mutant under normal growth conditions as well as under stress conditions. Our results suggest that in contrast to the findings in other bacteria, TypA does not act as a global stress- and virulence regulator in M. tuberculosis.  相似文献   

14.

Hypersaline ecosystems offer unique habitats to microbial populations capable of withstanding extreme stress conditions and producing novel metabolites of commercial importance. Herein, we have characterized for the first time the production of bioactive pigments from newly isolated halophilic bacterial species. Halophilic bacteria were isolated from Khewra Salt Range of Pakistan. Three distinctly colored isolates were selected for pigment production. Selected colonies were identified as Aquisalibacillus elongatus MB592, Salinicoccus sesuvii MB597, and Halomonas aquamarina MB598 based on morphological, biochemical, and physiological evidences as well as 16S rRNA analysis. The optimum pigment production observed at mesophilic condition, nearly neutral pH, and moderate salinity was validated using response surface methodology. Different analytical techniques (UV spectroscopy, infrared spectroscopy, and HPLC) characterized these purified pigments as derivatives of bacterioruberin carotenoids. Antioxidant activity of pigments revealed up to 85% free-radical scavenging activity at the concentration of 30 µg ml−1. Pigments also showed significant antimicrobial activity against Bacillus subtilis, Bacillus pumilus, Enterococcus faecalis, Bacillus cereus, Klebsiella pneumoniae, Alcaligenes faecalis, Pseudomonas geniculata, Enterococcus faecium, Aspergillus fumigatus, Aspergillus flavus, Fusarium solani, and Mucor spp., suggesting potential biomedical applications.

  相似文献   

15.
Adaptation to high salinity and low or high temperature is essential for bacteria to survive. Accumulation of exogenous osmolytes is one of the ways that helps bacteria to survive under such extracellular stress. We have analysed the capability of various L-amino acids and their D-isomers to act as osmolytes and thus enableEscherichia coli cells to survive under various stress conditions.E. coli cells were grown in the presence or absence of L-and D-proline, alanine, serine and lysine under salt, heat and cold stresses. Of the various amino acids tested, L-proline, closely followed by L-serine turned out to be highly protective against environmental stresses. L-proline provided excellent protection (95%) against salt stress, followed by cold (60%) and heat (40%) stresses. D-amino acids on the other hand, proved to be highly inhibitory under stress conditions. Thus L-amino acids were found to be growth protectants under stress while their D-isomers were inhibitory during stress as well as normal conditions.  相似文献   

16.
Abstract

Most of the crops are extremely susceptible to environmental stresses, because they have been selected for a high yield performance under optimal growth conditions. Not tolerant plants (glycophytes) respond to changes in the environment with complex mechanisms, involving a network of genes, which are either up- or down-regulated. Some of the genes induced are common between glycophytes and typically tolerant plants, e.g. xerophytes and halophytes, supporting the contention that stress tolerance mechanisms are ubiquitous.

In this paper the changes in gene expression observed in potato cells upon abrupt imposition of water stress compared to the changes induced during a gradual acclimation to the same conditions are reported. Data on the involvement or not of the phytohormone abscisic acid in controlling such changes are also reported. The regulation of specific genes (osmotin, Em) during the stress have been studied in glycophyte plants, such as tomato and wheat.  相似文献   

17.
Iron is a critical nutrient for the growth and survival of most bacterial species. Accordingly, much attention has been paid to the mechanisms by which host organisms sequester iron from invading bacteria and how bacteria acquire iron from their environment. However, under oxidative stress conditions such as those encountered within phagocytic cells during the host immune response, iron is released from proteins and can act as a catalyst for Fenton chemistry to produce cytotoxic reactive oxygen species. The transitory efflux of free intracellular iron may be beneficial to bacteria under such conditions. The recent discovery of putative iron efflux transporters in Salmonella enterica serovar Typhimurium is discussed in the context of cellular iron homeostasis.  相似文献   

18.

Background  

Poly-β-hydroxybutyrate (PHB) mobilization in bacteria has been proposed as a mechanism that can benefit their host for survival under stress conditions. Here we reported for the first time that a stress-induced system enabled E. coli, a non-PHB producer, to mobilize PHB in vivo by mimicking natural PHB accumulation bacteria.  相似文献   

19.

This study evaluated the in vitro effect of 3.0, 6.0, and 9.0% of green banana pulp (GBP) incorporation in fermented milk on the survival of Lactobacillus paracasei subsp. paracasei LBC 81 subjected to acid stress conditions and in the presence of bile salts. Tolerance to acid stress in pH 2.0 and in the presence of 0.30% of bile salts was evaluated right after the incorporation of the fermented milk in each of these conditions, and also during 3 and 4 h of exposure, respectively. The addition of GBP (3.0%) gives a protective effect on L. paracasei LBC 81 when exposed to stress conditions evaluated, while of 9.0% there is a marked decrease of L. paracasei LBC 81. In the absence of GBP, a decrease of L. paracasei LBC 81 is observed, but lower in the presence of GBP (9.0%).

  相似文献   

20.
Abstract

In this study, 20 heterotrophic bacteria from a minimally processed vegetables (MPV) plant were tested for their susceptibilities to five antibiotics (tetracycline, erythromycin, ampicillin, levofloxacin and ciprofloxacin), their (co)aggregation abilities and their survival under gastric simulated conditions. Peracetic acid (PA) and sodium hypochlorite (SH), both at 50?ppm, were evaluated for their abilities to control biofilms of these bacteria. In general, the Gram-negative bacteria were found to be more resistant to the selected antibiotics. Two isolates, Rhanella aquatilis and Stenotrophomonas maltophilia, demonstrated multidrug resistance. Only Rhodococcus erythropolis presented aggregation potential, while no bacterium survived under the gastric conditions. The biofilm experiments showed PA as less efficient than SH in killing biofilms and neither of the disinfectants was able to fully eliminate the biofilms. Significant regrowth was observed for most of the biofilms. The results indicate that alternative and/or complementary disinfection strategies are required to guarantee food safety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号