首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Decision-analytic models provide forecasts of how systems of interest will respond to management. These models can be parameterized using empirical data, but sometimes require information elicited from experts. When evaluating the effects of disease in species translocation programs, expert judgment is likely to play a role because complete empirical information will rarely be available. We illustrate development of a decision-analytic model built to inform decision-making regarding translocations and other management actions for the boreal toad (Anaxyrus boreas boreas), a species with declines linked to chytridiomycosis caused by Batrachochytrium dendrobatidis (Bd). Using the model, we explored the management implications of major uncertainties in this system, including whether there is a genetic basis for resistance to pathogenic infection by Bd, how translocation can best be implemented, and the effectiveness of efforts to reduce the spread of Bd. Our modeling exercise suggested that while selection for resistance to pathogenic infection by Bd could increase numbers of sites occupied by toads, and translocations could increase the rate of toad recovery, efforts to reduce the spread of Bd may have little effect. We emphasize the need to continue developing and parameterizing models necessary to assess management actions for combating chytridiomycosis-associated declines.  相似文献   

2.
Raffel TR  Michel PJ  Sites EW  Rohr JR 《EcoHealth》2010,7(4):526-536
The pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) is considered responsible for the population declines and extinctions of hundreds of amphibian species worldwide. The panzootic was likely triggered by human-assisted spread, but once the pathogen becomes established in a given region, its distribution is probably determined by local drivers. To assess the relative importance of potential drivers of infection in red-spotted newts (Notophthalmus viridescens), we measured Bd levels in 16 populations throughout central Pennsylvania. Infected individuals were detected in all but four populations, indicating that Bd is widespread in this region. We quantified local factors hypothesized to influence Bd, and found that infection levels were best predicted by the proportion of the pond substrate consisting of leaf litter or vegetation, along with a significant effect of water temperature. Bd infection in amphibians is temperature-dependent, and one possible explanation of the apparent substrate effect is that tree cover and vegetation provide shade, reducing the availability of shallow, warm-water patches in which newts might reduce or clear Bd infections. Alternatively, leaf litter and emergent vegetation might increase Bd infection more directly, perhaps by providing substrates for environmental growth of the fungus. We also observed a curvilinear relationship between Bd load and snout-vent length (a proxy for age), hinting that newts might develop acquired resistance to Bd infection. Though correlational, these results add to a growing body of evidence suggesting that environmental temperature is an important driver of Bd infection dynamics.  相似文献   

3.
Chytridiomycosis, caused by the pathogenic fungus Batrachochytrium dendrobatidis (Bd), is one of the largest threats to wildlife and is putatively linked to the extirpation of numerous amphibians. Despite over a decade of research on Bd, conflicting results from a number of studies make it difficult to forecast where future epizootics will occur and how to manage this pathogen effectively. Here, we emphasize how resolving these conflicts will advance Bd management and amphibian conservation efforts. We synthesize current knowledge on whether Bd is novel or endemic, whether amphibians exhibit acquired resistance to Bd, the importance of host resistance versus tolerance to Bd, and how biotic (e.g. species richness) and abiotic factors (e.g. climate change) affect Bd abundance. Advances in our knowledge of amphibian–chytrid interactions might inform the management of fungal pathogens in general, which are becoming more common and problematic globally.  相似文献   

4.
Understanding factors that influence host–pathogen interactions is key to predicting outbreaks in natural systems experiencing environmental change. Many amphibian population declines have been attributed to an amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd). While this fungus is widespread, not all Bd‐positive populations have been associated with declines, which could be attributed to differences in pathogen virulence or host susceptibility. In a laboratory experiment, we examined the effects of Bd isolate origin, two from areas with Bd‐associated amphibian population declines (El Copé, Panama, and California, USA) and two from areas without Bd‐related population declines (Ohio and Maine, USA), on the terrestrial growth and survival of American toad (Anaxyrus americanus) metamorphs reared in larval environments with low or high intraspecific density. We predicted that (1) Bd isolates from areas experiencing declines would have greater negative effects than Bd isolates from areas without declines, and (2) across all isolates, growth and survival of smaller toads from high‐density larval conditions would be reduced by Bd exposure compared to larger toads from low‐density larval conditions. Our results showed that terrestrial survival was reduced for smaller toads exposed to Bd with variation in the response to different isolates, suggesting that smaller size increased susceptibility to Bd. Toads exposed to Bd gained less mass, which varied by isolate. Bd isolates from areas with population declines, however, did not have more negative effects than isolates from areas without recorded declines. Most strikingly, our study supports that host condition, measured by size, can be indicative of the negative effects of Bd exposure. Further, Bd isolates’ impact may vary in ways not predictable from place of origin or occurrence of disease‐related population declines. This research suggests that amphibian populations outside of areas experiencing Bd‐associated declines could be impacted by this pathogen and that the size of individuals could influence the magnitude of Bd's impact.  相似文献   

5.
6.
Amphibian declines worldwide have been linked to the fungal disease chytridiomycosis. Its causative agent (Batrachochytrium dendrobatidis, hereafter Bd), however, also infects many nondeclining species. Experimental infections have shown species-specific and temperature-dependent frog responses to Bd infection. Although Bd infection may be eliminated by housing amphibians at temperatures above those tolerated by the fungus, the question of whether frogs can eliminate infection under more favorable conditions remains unanswered. Repeated diagnostics using real-time polymerase chain reaction (rt–PCR) assays of postmetamorphic individuals at 28, 38, 45, 53, and 62 days after exposure demonstrated that Hypsiboas crepitans is able to clear infection within a few weeks at 23°C. Thus, we demonstrate a temperature-independent and likely immunological mechanism for the clearance of Bd in a resistant amphibian species. Future studies are needed to determine the generality of this mechanism among amphibians and to describe the immune factors affecting different outcomes of Bd exposure including resistance to infection, tolerance of infection, and clearance of infection.  相似文献   

7.
The fungal pathogen Batrachochytrium dendrobatidis (Bd) infects amphibians on every continent where they occur and is linked to the decline of over 200 amphibian species worldwide. At present, only three published Bd surveys exist for mainland Asia, and Bd has been detected in South Korea alone. In this article, we report the first survey for Bd in Peninsular Malaysia. We swabbed 127 individuals from the six amphibian families that occur on Peninsular Malaysia, including two orders, 27 genera, and 47 species. We detected Bd on 10 out of 127 individuals from four of five states and five of 11 localities, placing the 95% confidence interval for overall prevalence at 4–14%. We detected no variation in Bd prevalence among regions, elevations, or taxonomic groups. The infection intensity ranged from 1 to 157,000 genome equivalents. The presence of Bd infections in native species without clinical signs of disease suggests that Bd may be endemic to the region. Alternately, Bd may have been introduced from non-native amphibians because of the substantial amphibian food trade in Peninsular Malaysia. Under both scenarios, management efforts should be implemented to limit the spread of non-native Bd and protect the tremendous amphibian diversity in Peninsular Malaysia.  相似文献   

8.
Widespread population declines in terrestrial Plethodon salamanders occurred by the 1980s throughout the Appalachian Mountains, the center of global salamander diversity, with no evident recovery. We tested the hypothesis that the historic introduction and spread of the pathogenic fungus Batrachochytrium dendrobatidis (Bd) into the eastern US was followed by Plethodon population declines. We expected to detect elevated prevalence of Bd prior to population declines as observed for Central American plethodontids. We tested 1,498 Plethodon salamanders of 12 species (892 museum specimens, 606 wild individuals) for the presence of Bd, and tested 94 of those for Batrachochytrium salamandrivorans (Bs) and for ranavirus. Field samples were collected in 2011 from 48 field sites across a 767 km transect. Historic samples from museum specimens were collected at five sites with the greatest number and longest duration of collection (1957–987), four of which were sampled in the field in 2011. None of the museum specimens were positive for Bd, but four P. cinereus from field surveys were positive. The overall Bd prevalence from 1957–2011 for 12 Plethodon species sampled across a 757 km transect was 0.2% (95% CI 0.1–0.7%). All 94 samples were negative for Bs and ranavirus. We conclude that known amphibian pathogens are unlikely causes for declines in these Plethodon populations. Furthermore, these exceptionally low levels of Bd, in a region known to harbor Bd, may indicate that Plethodon specific traits limit Bd infection.  相似文献   

9.
Symbiotic bacterial communities are crucial to combating infections and contribute to host health. The amphibian skin microbiome plays an important role in protecting their hosts against pathogens such as Batrachochytrium dendrobatidis (Bd), one of the causative agents of chytridiomycosis, which is responsible for dramatic amphibian population declines worldwide. Although symbiotic skin bacteria are known to inhibit Bd growth, an understanding of the relationship between Bd genetic variability, environmental conditions, and skin bacterial communities is limited. Therefore, we examined the associations between Bd infection load, Bd genetic diversity and skin bacterial communities in five populations of Hyliola regilla (hypochondriaca) from environmentally contrasting sites in Baja California, Mexico. We observed differences in Bd genetics and infection load among sites and environments. Genetic analysis of Bd isolates revealed patterns of spatial structure corresponding to the five sites sampled. Amphibian skin bacterial diversity and community structure differed among environments and sites. Bacterial community composition was correlated with Bd genetic differences and infection load, with specific bacterial taxa enriched on infected and un-infected frogs. Our results indicate that skin-associated bacteria and Bd strains likely interact on the host skin, with consequences for microbial community structure and Bd infection intensity.  相似文献   

10.
The global emergence of the amphibian chytrid pathogen Batrachochytrium dendrobatidis (Bd) is one of the most compelling, and troubling, examples of a panzootic. Only discovered in 1998, Bd is now recognized as a proximate driver of global declines in amphibian diversity and is now widely acknowledged as a key threatening process for this ancient class of vertebrates. Moreover, Bd has become a member of a small group of highly virulent multihost pathogens that are known to have had effects on entire vertebrate communities and the ecosystem‐level effects of Bd‐driven amphibian declines are starting to emerge as a consequence of regional decreases in amphibian diversity. Despite the speed at which this species of aquatic chytrid has become a focus of research efforts, major questions still exist about where Bd originated, how it spreads, where it occurs and what are Bd’s effects on populations and species inhabiting different regions and biomes. In this issue, Goka et al. (2009 ) make an important contribution by publishing the first nationwide surveillance for Bd in Asia. Although previous data had suggested that amphibians in Asia are largely uninfected by Bd, these surveys were limited in their extent and few firm conclusions could be drawn about the true extent of infection. Goka et al. herein describe a systematic surveillance of Japan for both native and exotic species in the wild, as well as amphibians housed in captivity, using a Bd‐specific nested PCR reaction on a sample of over 2600 amphibians. Their results show that Bd is widely prevalent in native species across Japan in at least three of the islands that make up the archipelago, proving for the first time that Asia harbours Bd.  相似文献   

11.
Chytridiomycosis is a globally emerging disease of amphibians and the leading cause of population declines and extirpations at species-diverse montane sites in Central America. We continued long-term monitoring efforts for the presence of the fungal pathogen Batrachochytrium dendrobatidis (Bd) and for amphibian populations at two sites in western Panama, and we began monitoring at three new sites to the east. Population declines associated with chytridiomycosis emergence were detected at Altos de Campana National Park. We also detected Bd in three species east of the Panama Canal at Soberanía National Park, and prevalence data suggests that Bd may be enzootic in the lowlands of the park. However, no infected frogs were found further east at Tortí (prevalence <7.5% with 95% confidence). Our results suggest that Panama’s diverse and not fully described amphibian communities east of the canal are at risk. Precise predictions of future disease emergence events are not possible until factors underlying disease emergence, such as dispersal, are understood. However, if the fungal pathogen spreads in a pattern consistent with previous disease events in Panama, then detection of Bd at Tortí and other areas east of the Panama Canal is imminent. Therefore, development of new management strategies and increased precautions for tourism, recreation, and biology are urgently needed.  相似文献   

12.
The rapid worldwide emergence of the amphibian pathogen Batrachochytrium dendrobatidis (Bd) is having a profound negative impact on biodiversity. However, global research efforts are fragmented and an overarching synthesis of global infection data is lacking. Here, we provide results from a community tool for the compilation of worldwide Bd presence and report on the analyses of data collated over a four-year period. Using this online database, we analysed: 1) spatial and taxonomic patterns of infection, including amphibian families that appear over- and under-infected; 2) relationships between Bd occurrence and declining amphibian species, including associations among Bd occurrence, species richness, and enigmatic population declines; and 3) patterns of environmental correlates with Bd, including climate metrics for all species combined and three families (Hylidae, Bufonidae, Ranidae) separately, at both a global scale and regional (U.S.A.) scale. These associations provide new insights for downscaled hypothesis testing. The pathogen has been detected in 52 of 82 countries in which sampling was reported, and it has been detected in 516 of 1240 (42%) amphibian species. We show that detected Bd infections are related to amphibian biodiversity and locations experiencing rapid enigmatic declines, supporting the hypothesis that greater complexity of amphibian communities increases the likelihood of emergence of infection and transmission of Bd. Using a global model including all sampled species, the odds of Bd detection decreased with increasing temperature range at a site. Further consideration of temperature range, rather than maximum or minimum temperatures, may provide new insights into Bd-host ecology. Whereas caution is necessary when interpreting such a broad global dataset, the use of our pathogen database is helping to inform studies of the epidemiology of Bd, as well as enabling regional, national, and international prioritization of conservation efforts. We provide recommendations for adaptive management to enhance the database utility and relevance.  相似文献   

13.
Aim Amphibian chytridiomycosis, an emerging infectious disease caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), is associated with global amphibian population declines and species extinctions. Current evidence indicates that the pathogen has recently spread globally from an enzootic focus, with Xenopus spp. (family Pipidae) in South Africa having been identified as a likely source. The aim of this study was to investigate further the likelihood of African Xenopus spp. as the original source of Bd. Location We examined 665 museum specimens of 20 species of African and South American pipid frogs collected between 1844 and 1994 and held in the collection of the Natural History Museum, London. Methods Skin brushings taken from adult amphibians and brushings from the mouthparts, lips and developing hind limbs of larval pipid frogs were examined for the presence of Bd using real‐time PCR. Results We found six cases of Bd infection in three Xenopus spp. (from Africa), but none of the South American pipids was positive, although only 45 South American frogs were available for examination. The earliest case of Bd infection was in a specimen of Xenopus fraseri collected from Cameroon in 1933. A consistently low prevalence of infection over time indicates that a historical equilibrium existed between Xenopus spp. and Bd infection in Africa. Main conclusions Our results suggest that Bd infection was present in Xenopus spp. across sub‐Saharan Africa by the 1930s, providing additional support for the ‘out of Africa’ hypothesis. If this hypothesis is correct, it strengthens the argument for stringent control of human‐assisted movements of amphibians and other wildlife world‐wide to minimize the likelihood of pathogen introduction and disease emergence that can threaten species globally. Our findings help inform species selection for conservation in the face of the current Bd pandemic and also guide future research directions for selecting Bd isolates for sequencing and virulence testing.  相似文献   

14.
Aim Panzootic chytridiomycosis caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd) is the proximate cause of rapid amphibian declines across diverse biomes. While the origin of Bd remains unclear, increasingly the global trade in amphibians is associated with the spread of the infection. Global samples of Bd genotypes from previously unsampled regions are essential to test this hypothesis. In this paper, we present a study of the prevalence and phylogeny of Bd in both invasive and native amphibian species in markets and in the wild in ten provinces of China. Location China. Method We used a nested PCR assay to amplify the ribosomal internal transcribed spacer region of Bd followed by sequencing. Result Our results showed 246 of 2734 amphibians testing positive for Bd, with 157 positive samples in the wild (7.6%) and 89 in markets (13.5%). 30 haplotypes of Bd were identified, including 20 first detections. Introduced Lithobates catesbeianus had the highest prevalence of infection and the largest number of Bd haplotypes in both the wild and markets. Phylogenetic analysis based on 73 haplotypes (57 from Asia and 16 from other continents) showed that a unique, well‐supported, basal haplotype is present in Asia. Phylogeographical analyses revealed that some geographical structure exists amongst a subset of global haplotypes. Main conclusions Strains of the basal haplotype infected Babina pleuraden, an amphibian that is endemic to China, and Andrias japonicus, endemic to Japan, showing that Southeast Asia harbours a novel endemic lineage of amphibian‐associated Bd. Our data suggest that Bd in Asia pre‐dates the expansion of a globalized lineage of Bd, a finding that is indicative of a broader association of amphibians and chytrids than has previously been recognized. More genetic data from Bd isolates are needed to reveal the phylogenetic relationship of Bd in China compared to that found elsewhere.  相似文献   

15.
Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), is the emerging infectious disease implicated in recent population declines and extinctions of amphibian species worldwide. Bd strains from regions of disease‐associated amphibian decline to date have all belonged to a single, hypervirulent clonal genotype (Bd‐GPL). However, earlier studies in the Atlantic Forest of southeastern Brazil detected a novel, putatively enzootic lineage (Bd‐Brazil), and indicated hybridization between Bd‐GPL and Bd‐Brazil. Here, we characterize the spatial distribution and population history of these sympatric lineages in the Brazilian Atlantic Forest. To investigate the genetic structure of Bd in this region, we collected and genotyped Bd strains along a 2400‐km transect of the Atlantic Forest. Bd‐Brazil genotypes were restricted to a narrow geographic range in the southern Atlantic Forest, while Bd‐GPL strains were widespread and largely geographically unstructured. Bd population genetics in this region support the hypothesis that the recently discovered Brazilian lineage is enzootic in the Atlantic Forest of Brazil and that Bd‐GPL is a more recently expanded invasive. We collected additional hybrid isolates that demonstrate the recurrence of hybridization between panzootic and enzootic lineages, thereby confirming the existence of a hybrid zone in the Serra da Graciosa mountain range of Paraná State. Our field observations suggest that Bd‐GPL may be more infective towards native Brazilian amphibians, and potentially more effective at dispersing across a fragmented landscape. We also provide further evidence of pathogen translocations mediated by the Brazilian ranaculture industry with implications for regulations and policies on global amphibian trade.  相似文献   

16.
The fungal disease chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd), is one of the main causes of amphibian population declines and extinctions all over the world. In the Neotropics, this fungal disease has caused catastrophic declines in the highlands as it has spread throughout Central America down to Panamá. In this study, we determined the prevalence and intensity of Bd infection in three species of frogs in one highland and four lowland tropical forests, including two lowland regions in eastern Panamá in which the pathogen had not been detected previously. Bd was present in all the sites sampled with a prevalence ranging from 15–34%, similar to other Neotropical lowland sites. The intensity of Bd infection on individual frogs was low, ranging from average values of 0.11–24 zoospore equivalents per site. Our work indicates that Bd is present in anuran communities in lowland Panamá, including the Darién province, and that the intensity of the infection may vary among species from different habitats and with different life histories. The population-level consequences of Bd infection in amphibian communities from the lowlands remain to be determined. Detailed studies of amphibian species from the lowlands will be essential to determine the reason why these species are persisting despite the presence of the pathogen.  相似文献   

17.
The fungal pathogen Batrachochytrium dendrobatidis (Bd) infects the skin of amphibians and has caused severe declines and extinctions of amphibians globally. In this study, we investigate the interaction between Bd and the bacterial skin microbiome of the endangered Sierra Nevada yellow‐legged frog, Rana sierrae, using both culture‐dependent and culture‐independent methods. Samples were collected from two populations of R. sierrae that likely underwent Bd epizootics in the past, but that continue to persist with Bd in an enzootic disease state, and we address the hypothesis that such “persistent” populations are aided by mutualistic skin microbes. Our 16S rRNA metabarcoding data reveal that the skin microbiome of highly infected juvenile frogs is characterized by significantly reduced species richness and evenness, and by strikingly lower variation between individuals, compared to juveniles and adults with lower infection levels. Over 90% of DNA sequences from the skin microbiome of highly infected frogs were derived from bacteria in a single order, Burkholderiales, compared to just 54% in frogs with lower infection levels. In a culture‐dependent Bd inhibition assay, the bacterial metabolites we evaluated all inhibited the growth of Bd. Together, these results illustrate the disruptive effects of Bd infection on host skin microbial community structure and dynamics, and suggest possible avenues for the development of anti‐Bd probiotic treatments.  相似文献   

18.
Amphibian declines are occurring on a global scale, and infectious disease has been implicated as a factor in some species. Batrachochytrium dendrobatidis (Bd) has been associated with amphibian declines and/or extinctions in many locations, however, few of the studies have actually performed detailed pathological investigations to link the emergence of the disease with mortality rates large enough to cause the declines. Many studies are based solely on the presence of infection, not disease, because of the reliance on molecular tests for Bd. The emphasis of the importance of Bd combined with easy molecular tests has resulted in poor investigations into amphibian mortality and declines in many areas. The line between infection and disease has been blurred, and a step back to basic pathological and biological investigations is needed as other disease risks to amphibians, such as ranaviruses, are likely being missed. In this article, starting points for proper investigative techniques for amphibian mortalities and declines are identified and areas that need to be improved, especially communication between biologist and veterinarians involved in amphibian disease research, are suggested. It is hoped that this will start a much needed discussion in the area and lead to some consensus building about methodologies used in amphibian disease research.  相似文献   

19.
The pathogenic fungus Batrachochytrium dendrobatidis (Bd) has been associated with global amphibian declines, but it is often difficult to discern the relative importance of Bd as a causal agent in declines that have already occurred. Retrospective analyses of museum specimens have allowed researchers to associate the timing of Bd arrival with the timing of past amphibian declines. Cascades frogs (Rana cascadae) have experienced dramatic declines in northern California, but it is not clear whether the onset of these declines corresponds to the arrival of Bd. We used quantitative real-time PCR assays of samples collected from museum specimens to determine historical Bd prevalence in the northern California range of Cascades frogs. We detected Bd in 13 of 364 (3.5%) Cascades frog specimens collected between 1907 and 2003, with the first positive result from 1978. A Bayesian analysis suggested that Bd arrived in the region between 1973 and 1978, which corresponds well with the first observations of declines in the 1980s.  相似文献   

20.
The chytrid fungus, Batrachochytrium dendrobatidis (Bd) has been linked to extinction and decline of numerous amphibians. We studied the population-level effects of Bd in two post-decline anuran species, Eleutherodactylus coqui and E. portoricensis, at El Yunque National Forest, Puerto Rico. Data on amphibian abundance was updated to report long-term population trends. Mark–recapture data was used to monitor Bd-infection status and estimate survival probabilities of infected versus uninfected adults. Prevalence of Bd (number of infected/total sampled) and individual infection level (number of zoospores) were compared among age classes at Palo Colorado Forest (661 m) and Elfin Forest (850 m). Results revealed that both species continued to decrease in Palo Colorado Forest, while in the Elfin Forest, E. portoricensis recuperated from drastic declines. Age class, season, and locality significantly predicted zoospore load. Age was also significantly associated with high zoospores loads among Bd-positive frogs, and the prevalence of Bd was higher in juveniles than adults in all populations studied. We suggest that early age represents a critical life stage in the survival of direct-developing frogs infected by this fungus. Survival probability was always higher for uninfected frogs, but recapture rates of infected versus uninfected adults were significantly different only in Palo Colorado, alerting that the negative effect of Bd infection under enzootic conditions is greater at mid-elevations. This work contributes to our understanding of how direct-developing amphibians persist with Bd, pointing to critical life stages and synergistic interactions that may induce fluctuations and/or declines in the wild.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号