首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Community structure of benthic macroinvertebrates was studied in six first- through fourth-order streams in northeast France, to elucidate changes in richness, abundance, diversity and evenness of mesohabitat assemblages as a function of environmental conditions. Patch samples were subjected to multivariate analyses to determine: (i) relationships among seven indices describing community structure (structure parameters); (ii) relationships among seven environmental variables; (iii) the relationship between community structure and environmental characteristics of patches. Faunal data showed that indices measuring the distribution of individuals among taxa (evenness, dominance) and richness are prominent in describing the structure of macroinvertebrate communities of mesohabitats. The analysis of environmental data demonstrated a major differentiating ability of current velocity and strong inter-relations among in-stream hydraulic-dependent parameters in structuring the mesohabitat environment. The co-structure (= relationship) between community organization and environmental variables indicated that substrate may be a primary determinant of community structure. Current velocity and water depth emerged as secondary factors. Trends in community structure were closely related to the spatial variability of mesohabitats. Species richness increased with habitat heterogeneity. Total abundance increased with trophic potentialities of patches. Equitability and diversity seemed to increase with patch stability. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Functional regularity: a neglected aspect of functional diversity   总被引:1,自引:0,他引:1  
Mouillot D  Mason WH  Dumay O  Wilson JB 《Oecologia》2005,142(3):353-359
Functional diversity has been identified as a key to understanding ecosystem and community functioning. However, due to the lack of a sound definition its nature and measurement are still poorly understood. In the same way that species diversity can be split into species richness and species evenness, so functional diversity can be split into functional richness (i.e. the amount of functional trait/character/attribute space filled) and functional evenness (i.e. the evenness of abundance distribution in functional trait space). We propose a functional regularity index (FRO) as a measure of functional evenness for situations where species are represented only by a single functional trait value (e.g. mean, median or mode), and species abundances are known. This new index is based on the Bulla O index of species evenness. When dealing with functional types or categorical functional traits, the Bulla O or any other accepted species evenness index may be used directly to measure functional evenness. The advantage of FRO is that it supplies a measure of functional evenness for continuous trait data. The FRO index presented in this paper fulfils all the a priori criteria required. We demonstrate with two example datasets that a range of FRO values may be obtained for both plant and animal communities. Moreover, FRO was strongly related to ecosystem function as seen in photosynthetic biomass in plant communities, and was able to differentiate sampling stations in a lagoon based on the functional traits of fish. Thus, the FRO index is potentially a highly useful tool for measuring functional diversity in a variety of ecological situations.  相似文献   

3.
《农业工程》2014,34(2):85-91
Functional diversity, which is the value, variation and distribution of traits in a community assembly, is an important component of biodiversity. Functional diversity is generally viewed as a key to understand ecosystem and community functioning. There are three components of functional diversity, i.e. functional richness, evenness and divergence. Functional diversity and species diversity can be either positively or negatively correlated, or uncorrelated, depending on the environmental conditions and disturbance intensity. Ecosystem functioning includes ecosystem processes, ecosystem properties and ecosystem stability. The diversity hypothesis and the mass ratio hypothesis are the two major hypotheses of explaining the effect of functional diversity on ecosystem functioning, diversity hypothesis reflects that organisms and their functional traits in a assemblage effect on ecosystem functioning by the complementarity of using resources, and mass ratio hypothesis emphasises the identify of the dominant species in a assemblage. These two hypotheses do not contradict each other and instead they reflect the two different sides of functional diversity and functional composition. The effect of functional diversity on ecosystem functioning also depends on abiotic factors, perturbation, management actions, etc. Function diversity potentially influences ecosystem service and management by effecting on ecosystem functioning. Ecosystem management groups should include functional diversity in their scheme and not just species richness.  相似文献   

4.
Changes to primary producer diversity can cascade up to consumers and affect ecosystem processes. Although the effect of producer diversity on higher trophic groups have been studied, these studies often quantify taxonomy‐based measures of biodiversity, like species richness, which do not necessarily reflect the functioning of these communities. In this study, we assess how plant species richness affects the functional composition and diversity of higher trophic levels and discuss how this might affect ecosystem processes, such as herbivory, predation and decomposition. Based on six different consumer traits, we examined the functional composition of arthropod communities sampled in experimental plots that differed in plant species richness. The two components we focused on were functional variation in the consumer community structure (functional structure) and functional diversity, expressed as functional richness, evenness and divergence. We found a consistent positive effect of plant species richness on the functional richness of herbivores, carnivores, and omnivores, but not decomposers, and contrasting patterns for functional evenness and divergence. Increasing plant species richness shifted the omnivore community to more predatory and less mobile species, and the herbivore community to more specialized and smaller species. This was accompanied by a shift towards more species occurring in the vegetation than in the ground layer. Our study shows that plant species richness strongly affects the functional structure and diversity of aboveground arthropod communities. The observed shifts in body size (herbivores), specialization (herbivores), and feeding mode (omnivores) together with changes in the functional diversity may underlie previously observed increases in herbivory and predation in plant communities of higher diversity.  相似文献   

5.
Environmental filtering and spatial structuring are important ecological processes for the generation and maintenance of biodiversity. However, the relative importance of these ecological drivers for multiple facets of diversity is still poorly understood in highland streams. Here, we examined the responses of three facets of stream macroinvertebrate alpha diversity to local environmental, landscape‐climate and spatial factors in a near‐pristine highland riverine ecosystem. Taxonomic (species richness, Shannon diversity, and evenness), functional (functional richness, evenness, divergence, and Rao's Quadratic entropy), and a proxy of phylogenetic alpha diversity (taxonomic distinctness and variation in taxonomic distinctness) were calculated for macroinvertebrate assemblages in 55 stream sites. Then Pearson correlation coefficient was used to explore congruence of indices within and across the three diversity facets. Finally, multiple linear regression models and variation partitioning were employed to identify the relative importance of different ecological drivers of biodiversity. We found most correlations between the diversity indices within the same facet, and between functional richness and species richness were relatively strong. The two phylogenetic diversity indices were quite independent from taxonomic diversity but correlated with functional diversity indices to some extent. Taxonomic and functional diversity were more strongly determined by environmental variables, while phylogenetic diversity was better explained by spatial factors. In terms of environmental variables, habitat‐scale variables describing habitat complexity and water physical features played the primary role in determining the diversity patterns of all three facets, whereas landscape factors appeared less influential. Our findings indicated that both environmental and spatial factors are important ecological drivers for biodiversity patterns of macroinvertebrates in Tibetan streams, although their relative importance was contingent on different facets of diversity. Such findings verified the complementary roles of taxonomic, functional and phylogenetic diversity, and highlighted the importance of comprehensively considering multiple ecological drivers for different facets of diversity in biodiversity assessment.  相似文献   

6.
苏日古嘎  张金屯  王永霞 《生态学报》2013,33(11):3394-3403
物种多样性是群落结构和功能复杂性的一种度量,物种多样性的空间分布格局受许多环境因子的影响.运用多样性指数,多层感知器网络,分析了松山保护区森林群落物种多样性与群落类型、结构和生境之间的关系.结果表明:(1)大果榆+山杨混交林、油松+青杨混交林物种丰富度、多样性和均匀度均较高,而大果榆林、华北落叶松林的各项指数值均较低.Patrick指数和Shannon-Weiner指数在森林群落中均表现为草本层>灌木层>乔木层;Pielou指数在榆林中表现为草本层>乔木层>灌木层,而在其他森林群落中表现为灌木层>草本层>乔木层.(2)功能层物种多样性在海拔梯度上的变化趋势不同,在乔木层,丰富度、多样性和均匀度随海拔的升高逐渐降低;在灌木层,丰富度、多样性和均匀度均呈比较明显的单峰曲线变化趋势;在草本层,丰富度和多样性随海拔的升高都呈下降趋势,而在草本层,均匀度变化不大.(3)用多层感知器网络预测功能层多样性效果很好,结果发现坡向对乔木层和灌木层物种多样性的影响最大,而海拔高度对草本层物种多样性的影响最大.  相似文献   

7.
放牧干扰梯度下川西亚高山植物群落的组合机理   总被引:2,自引:1,他引:1       下载免费PDF全文
为了阐明放牧干扰对川西亚高山区域植物群落的组合过程以及群落结构的影响, 研究了放牧干扰梯度下的功能群均匀度和群落谱系结构的变化趋势。结果显示: 在干扰较轻的阔叶林与针叶林样地, 部分样方的功能群均匀度显著高于无效模型, 随着干扰梯度的增强, 功能群均匀度呈线性下降, 样方平均值从0.930降至0.840, 其高于无效模型的次数也逐渐降低, 干扰程度较大的草甸中出现部分样方的功能群均匀度显著低于无效模型。随着干扰程度的增强, 群落的谱系结构指数也呈逐渐上升趋势, 净关联指数平均值由-0.634逐渐增加至2.360, 邻近类群指数由-0.158上升至2.179。草甸与低矮灌丛受干扰较为严重, 其大部分样方的谱系结构指数显著高于随机群落, 表明干扰群落的谱系结构呈聚集分布。功能群均匀度与谱系结构的变化趋势一致, 表明生境筛滤效应与种间竞争作用的平衡决定着群落的组合过程。干扰降低了竞争作用, 促进了少数耐干扰功能群的优势地位, 造成功能群均匀度下降, 同时通过生境筛滤作用, 使群落的谱系结构呈现出聚集分布; 而未干扰的群落中由于竞争作用的效应, 功能群均匀度较高, 谱系结构也更加分散。研究区域植物群落的功能群均匀度与物种丰富度呈负相关, 表明物种间特别是相似物种间的竞争限制了群落的物种多样性。研究结果说明, 生态位分化和物种间的相互竞争在物种共存与群落组合中具有重要作用。  相似文献   

8.
Functional characteristics of species are of great importance for understanding their roles in ecosystems and can be used to detect long-term chances in the environment. We evaluated temporal changes (1983–1985 and 2017–2019) in taxonomic and functional indices of the fish fauna in shallow areas of a tropical bay heavily impacted by anthropogenic activities in recent decades. The hypothesis that functional indices change over time as a result of environmental degradation was tested. Our results showed a significant decrease in species richness and abundance over time, and in functional richness, while others functional diversity indices (divergency, evenness, and originality) remained stable. Thirteen functional groups were detected, some of which contained only one species, raising concerns about the loss of ecosystem functions due to ongoing changes. We also observed an increase in beta diversity over time, which may be the result of a decrease in local richness without leading to regional extinctions. Turnover was the most important process in structuring the fish fauna at the evaluated time scale. The relative stability of the functional structure and the higher levels of turnover seem to be related to the dominance of functional groups, within which species replace each other according to their responses to environmental filters that select for specific functional traits. Incorporating functional diversity indices and beta diversity variations in the fish community helped to enhance the existing information about this coastal system by offering improved estimates of biological diversity through diverse approaches. The predominance of turnover identified in the preset study suggests a dynamic and fluctuating species composition within the habitat. In this sense, habitat preservation should prioritize the protection of diverse habitats to accommodate a broad spectrum of species.  相似文献   

9.
Changes in producer diversity cause multiple changes in consumer communities through various mechanisms. However, past analyses investigating the relationship between plant diversity and arthropod consumers focused only on few aspects of arthropod diversity, e.g. species richness and abundance. Yet, shifts in understudied facets of arthropod diversity like relative abundances or species dominance may have strong effects on arthropod-mediated ecosystem functions. Here we analyze the relationship between plant species richness and arthropod diversity using four complementary diversity indices, namely: abundance, species richness, evenness (equitability of the abundance distribution) and dominance (relative abundance of the dominant species). Along an experimental gradient of plant species richness (1, 2, 4, 8, 16 and 60 plant species), we sampled herbivorous and carnivorous arthropods using pitfall traps and suction sampling during a whole vegetation period. We tested whether plant species richness affects consumer diversity directly (i), or indirectly through increased productivity (ii). Further, we tested the impact of plant community composition on arthropod diversity by testing for the effects of plant functional groups (iii). Abundance and species richness of both herbivores and carnivores increased with increasing plant species richness, but the underlying mechanisms differed between the two trophic groups. While higher species richness in herbivores was caused by an increase in resource diversity, carnivore richness was driven by plant productivity. Evenness of herbivore communities did not change along the gradient in plant species richness, whereas evenness of carnivores declined. The abundance of dominant herbivore species showed no response to changes in plant species richness, but the dominant carnivores were more abundant in species-rich plant communities. The functional composition of plant communities had small impacts on herbivore communities, whereas carnivore communities were affected by forbs of small stature, grasses and legumes. Contrasting patterns in the abundance of dominant species imply different levels of resource specialization for dominant herbivores (narrow food spectrum) and carnivores (broad food spectrum). That in turn could heavily affect ecosystem functions mediated by herbivorous and carnivorous arthropods, such as herbivory or biological pest control.  相似文献   

10.
Human land use causes major changes in species abundance and composition, yet native and exotic species can exhibit different responses to land use change. Native populations generally decline in human‐impacted habitats while exotic species often benefit. In this study, we assessed the effects of human land use on exotic and native reptile diversity, including functional diversity, which relates to the range of habitat use strategies in biotic communities. We surveyed 114 reptile communities from localities that varied in habitat structure and human impact level on two Caribbean islands, and calculated species richness, overall abundance, and evenness for every plot. Functional diversity indices were calculated using published trait data, which enabled us to detect signs of trait filtering associated with impacted habitats. Our results show that environmental variation among sampling plots was explained by two Principal Component Analysis (PCA) ordination axes related to habitat structure (i.e., forest or nonforest) and human impact level (i.e., addition of man‐made constructions such as roads and buildings). Several diversity indices were significantly correlated with the two PCA axes, but exotic and native species showed opposing responses. Native species reached the highest abundance in forests, while exotic species were absent in this habitat. Human impact was associated with an increase in exotic abundance and species richness, while native species showed no significant associations. Functional diversity was highest in nonforested environments on both islands, and further increased on St. Martin with the establishment of functionally unique exotic species in nonforested habitat. Habitat structure, rather than human impact, proved to be an important agent for environmental filtering of traits, causing divergent functional trait values across forested and nonforested environments. Our results illustrate the importance of considering various elements of land use when studying its impact on species diversity and the establishment and spread of exotic species.  相似文献   

11.
In experimental systems, it has been shown that biodiversity indices based on traits or phylogeny can outperform species richness as predictors of plant ecosystem function. However, it is unclear whether this pattern extends to the function of food webs in natural ecosystems. Here we tested whether zooplankton functional and phylogenetic diversity explains the functioning of 23 natural pond communities. We used two measures of ecosystem function: (1) zooplankton community biomass and (2) phytoplankton abundance (Chl a). We tested for diversity-ecosystem function relationships within and across trophic levels. We found a strong correlation between zooplankton diversity and ecosystem function, whereas local environmental conditions were less important. Further, the positive diversity-ecosystem function relationships were more pronounced for measures of functional and phylogenetic diversity than for species richness. Zooplankton and phytoplankton biomass were best predicted by different indices, suggesting that the two functions are dependent upon different aspects of diversity. Zooplankton community biomass was best predicted by zooplankton trait-based functional richness, while phytoplankton abundance was best predicted by zooplankton phylogenetic diversity. Our results suggest that the positive relationship between diversity and ecosystem function can extend across trophic levels in natural environments, and that greater insight into variation in ecosystem function can be gained by combining functional and phylogenetic diversity measures.  相似文献   

12.
植物群落功能多样性计算方法   总被引:4,自引:0,他引:4  
以性状为基础的功能多样性指数在预测生态系统功能中起到越来越重要的作用.本文对近年来陆续出现的植物群落功能多样性指数进行综述.依据物种多样性指数的组成,功能多样性指数分为功能丰富度、功能均匀度和功能离散度指数.介绍了这3类指数的计算方法,有助于更好、更准确地理解“生物多样性-环境-生态系统功能”的关系.  相似文献   

13.
Soininen J  Passy S  Hillebrand H 《Oecologia》2012,169(3):803-809
Biological diversity comprises both species richness, i.e., the number of species in a community, and evenness, measuring how similar species are in their abundances. The relationship between species richness and evenness (RRE) across communities remains, however, a controversial issue in ecology because no consistent pattern has been reported. We conducted a systematic meta-review of RRE in aquatic ecosystems along regional to continental gradients and across trophic groups, differing in body size by 13 orders of magnitude. Hypotheses that RRE responded to latitudinal and scale variability across trophic groups were tested by regression analyses. Significant correlations of species richness and evenness only existed in 71 out of 229 datasets. Among the RRE, 89 were negative and 140 were positive. RRE did not vary with latitude but showed a positive response to scale. In a meta-analysis with ecosystem type as a single explaining variable, RRE did not vary among ecosystem types, i.e. between marine and freshwater. Finally, autotrophs had more positive RRE than heterotrophs. The weak RRE in many aquatic datasets suggests that richness and evenness often reflect independent components of biodiversity, highlighting that richness alone may be an incomplete surrogate for biodiversity. Our results further elucidate that RRE is driven by organismal and environmental properties, both of which must be considered to gain a deeper understanding of large-scale patterns of biodiversity.  相似文献   

14.
15.
Local biodiversity has traditionally been estimated with taxonomic diversity metrics such as species richness. Recently, the concept of biodiversity has been extended beyond species identity by ecological traits determining the functional role of a species in a community. This interspecific functional diversity typically responds more strongly to local environmental variation compared with taxonomic diversity, while taxonomic diversity may mirror more strongly dispersal processes compared with functional metrics. Several trait‐based indices have been developed to measure functional diversity for various organisms and habitat types, but studies of their applicability on aquatic microbial communities have been underrepresented. We examined the drivers and covariance of taxonomic and functional diversity among diatom rock pool communities on the Baltic Sea coast. We quantified three taxonomic (species richness, Shannon''s diversity, and Pielou''s evenness) and three functional (functional richness, evenness, and divergence) diversity indices and determined abiotic factors best explaining variation in these indices by generalized linear mixed models. The six diversity indices were highly collinear except functional evenness, which merely correlated significantly with taxonomic evenness. All diversity indices were always explained by water conductivity and temperature–sampling month interaction. Taxonomic diversity was further consistently explained by pool distance to the sea, and functional richness and divergence by pool location. The explained variance in regression models did not markedly differ between taxonomic and functional metrics. Our findings do not clearly support the superiority of neither set of diversity indices in explaining coastal microbial diversity, but rather highlight the general overlap among the indices. However, as individual metrics may be driven by different factors, the greatest advantage in assessing biodiversity is nevertheless probably achieved with a simultaneous application of the taxonomic and functional diversity metrics.  相似文献   

16.
Urbanisation is affecting ecological communities worldwide. Despite the disproportionate impact on farmland over other habitats, the effect on farmland bird communities has been poorly studied. Considering the still-alarming conservation status of farmland birds, investigations into the effects of pressures such as urbanisation on those communities could be of great interest for their conservation. We studied the urbanisation effects on functional diversity using existing indices designed for the purpose of standardisation. This study uses a functional character measuring species habitat specialisation for indices calculation. A bird survey was conducted on 92 plots of 1 × 1 km chosen after stratification on the proportion of urban area and farmland habitat (either 0, 25, 50, 75%), with the focus on farmland habitat. Two aspects of urbanisation were studied: the intensity and the age of the urbanisation. Functional richness was found to decrease with urbanisation, while functional evenness and divergence increased in a nonlinear way. No significant difference was observed in functional richness and evenness with urbanisation age, however extreme ages of urbanisation (young and old) showed higher niche differentiation concerning specialisation. This implies less important resource competition for species and a more vulnerable state for the ecosystem. Using functional diversity indices based on specialisation allows a better insight in the consequences of urbanisation on diversity/ecosystem–community functioning, which is of crucial importance in the face of global changes.  相似文献   

17.
Measures of functional diversity are expected to predict community responses to land use and environmental change because, in contrast to taxonomic diversity, it is based on species traits rather than their identity. Here, we investigated the impact of landscape homogenisation on plants, butterflies and birds in terms of the proportion of arable field cover in southern Finland at local (0.25 km2) and regional (> 10 000 km2) scales using four functional diversity indices: functional richness, functional evenness, functional divergence and functional dispersion. No uniform response in functional diversity across taxa or scales was found. However, in all cases where we found a relationship between increasing arable field cover and any index of functional diversity, this relationship was negative. Butterfly functional richness decreased with increasing arable field cover, as did butterfly and bird functional evenness. For butterfly functional evenness, this was only evident in the most homogeneous regions. Butterfly and bird functional dispersion decreased in homogeneous regions regardless of the proportion of arable field cover locally. No effect of landscape heterogeneity on plant functional diversity was found at any spatial scale, but plant species richness decreased locally with increasing arable field cover. Overall, species richness responded more consistently to landscape homogenisation than did the functional diversity indices, with both positive and negative effects across species groups. Functional diversity indices are in theory valuable instruments for assessing effects of land use scenarios on ecosystem functioning. However, the applicability of empirical data requires deeper understanding of which traits reliably capture species’ vulnerability to environmental factors and of the ecological interpretation of the functional diversity indices. Our study provides novel insights into how the functional diversity of communities changes in response to agriculturally derived landscape homogenisation; however, the low explanatory power of the functional diversity indices hampers the ability to reliably anticipate impacts on ecosystem functioning.  相似文献   

18.
选择合适的物种多样性测度指标与多样性指数是进行群落多样性研究的基础工作。依据塔里木河上游荒漠河岸林样地调查资料,分别采用重要值、盖度和多度为测度指标比较了反映群落物种丰富度、多样性、均匀度和优势度12种多样性指数与异质生境群落多样性特征,并对多样性指数进行了相关分析与评价。结果表明,荒漠河岸林异质生境群落物种组成种类差异明显,轮南镇胡杨群落物种丰富度与多样性指数最高,水工三连灰胡杨群落多样性最低,土壤水盐的空间异质性是引起荒漠植被空间分布与群落多样性差异的主导因子。表征荒漠群落多样性以重要值和盖度为测度指标优于多度指标,其中以重要值为测度指标来反映群落多样性更为合理。相关与主成分分析表明,均匀度与多样性指数间的相关性高于丰富度与多样性指数,且多样性指数受均匀度、优势度指数受丰富度影响较大,反映出荒漠河岸林群落多样性主要决定于物种分布的均匀程度。12种多样性指数中Margalef丰富度指数(Ma)、Shannon-Weiner多样性指数(H)与Simpson多样性指数(D)能客观真实地反映异质生境荒漠植物群落多样性。同时,针对高度生境异质性的荒漠植物群落,还应综合考虑群落物种组成与生境特征,选择合适的多样性指数组合可更客观地反映荒漠河岸林群落多样性变化。  相似文献   

19.
Due to habitat fragmentation, the loss of species diversity has been extensively studied. On the contrary, the effects of habitat fragmentation on functional diversity is still poorly understood. In the Thousand Island Lake, we conducted studies of insect functional diversity on a set of 29 isolated islands. We used 10 functional diversity indices from three aspects (functional richness, functional evenness and functional divergence) to respectively describe functional diversity of insects on sample islands. We found the following results: (i) The functional indices selected could reflect the functional diversity of sample islands and it is further proved that in general, three components of functional diversity were independent of each other; (ii) Sample islands could be divided into two categories, island JSD and the remaining islands; (iii) Functional richness increased with island area and shape index, but had no significant correlation with isolation. Likewise, both functional evenness and functional divergence had no significant correlation with island attributes. The conclusion to emphasize from our research is that: (i) habitat fragmentation reduced the biological functional diversity to some extent, further demonstrating the importance of habitat continuity in biodiversity protection; and (ii) for functional diversity protection of insects in a fragmented landscape, an island which has high approximate shape index values of at least hundred hectare magnitude order has a critical promoting effect.  相似文献   

20.
The effects of species loss on ecosystems depend on the community’s functional diversity (FD). However, how FD responds to environmental changes is poorly understood. This applies particularly to higher trophic levels, which regulate many ecosystem processes and are strongly affected by human-induced environmental changes. We analyzed how functional richness (FRic), evenness (FEve), and divergence (FDiv) of important generalist predators—epigeic spiders—are affected by changes in woody plant species richness, plant phylogenetic diversity, and stand age in highly diverse subtropical forests in China. FEve and FDiv of spiders increased with plant richness and stand age. FRic remained on a constant level despite decreasing spider species richness with increasing plant species richness. Plant phylogenetic diversity had no consistent effect on spider FD. The results contrast with the negative effect of diversity on spider species richness and suggest that functional redundancy among spiders decreased with increasing plant richness through non-random species loss. Moreover, increasing functional dissimilarity within spider assemblages with increasing plant richness indicates that the abundance distribution of predators in functional trait space affects ecological functions independent of predator species richness or the available trait space. While plant diversity is generally hypothesized to positively affect predators, our results only support this hypothesis for FD—and here particularly for trait distributions within the overall functional trait space—and not for patterns in species richness. Understanding the way predator assemblages affect ecosystem functions in such highly diverse, natural ecosystems thus requires explicit consideration of FD and its relationship with species richness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号