首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Drosophila serum response factor (DSRF) is expressed in the precursors of the terminal tracheal cells and in the future intervein territories of the third instar wing imaginal disc. Dissection of the DSRF regulatory region reveals that a single enhancer element, which is under the control of the fibroblast growth factor (FGF)-receptor signalling pathway, is sufficient to induce DSRF expression in the terminal tracheal cells. In contrast, two separate enhancers direct expression in distinct intervein sectors of the wing imaginal disc. One element is active in the central intervein sector and is induced by the Hedgehog signalling pathway. The other element is under the control of Decapentaplegic and is active in two separate territories, which roughly correspond to the intervein sectors flanking the central sector. Hence, each of the three characterized enhancers constitutes a molecular link between a specific territory induced by a morphogen signal and the localized expression of a gene required for the final differentiation of this territory.  相似文献   

2.
3.
4.
RMRP is a non-coding RNA that is ubiquitously expressed in both humans and mice. RMRP mutations that lead to decreased RMRP levels are found in the pleiotropic syndrome Cartilage Hair Hypoplasia. To assess the effects of deleting RMRP, we engineered a targeting vector that contains loxP sequences flanking RMRP and created hemizygous mice harboring this engineered allele (RMRP conditional). We found that insertion of this cassette suppressed RMRP expression, and we failed to obtain viable mice homozygous for the RMRP conditional allele. Furthermore, we were unable to obtain viable homozygous RMRP null mice, indicating that RMRP is essential for early embryonic development.  相似文献   

5.
Merlin, the Drosophila homologue of the human tumor suppressor gene Neurofibromatosis 2 (NF2), is required for the regulation of cell proliferation and differentiation. To better understand the cellular functions of the NF2 gene product, Merlin, recent work has concentrated on identifying proteins with which it interacts either physically or functionally. In this article, we describe genetic screens designed to isolate second-site modifiers of Merlin phenotypes from which we have identified five multiallelic complementation groups that modify both loss-of-function and dominant-negative Merlin phenotypes. Three of these groups, Group IIa/scribbler (also known as brakeless), Group IIc/blistered, and Group IId/net, are known genes, while two appear to be novel. In addition, two genes, Group IIa/scribbler and Group IIc/blistered, alter Merlin subcellular localization in epithelial and neuronal tissues, suggesting that they regulate Merlin trafficking or function. Furthermore, we show that mutations in scribbler and blistered display second-site noncomplementation with one another. These results suggest that Merlin, blistered, and scribbler function together in a common pathway to regulate Drosophila wing epithelial development.  相似文献   

6.
Although the long isoform of cellular FLIP (c-FLIP(L)) has been implicated in TCR-mediated signaling, its role in T cell proliferation remains controversial. Some studies have demonstrated that overexpression of c-FLIP(L) promotes T cell proliferation and NF-kappaB activation, whereas others have reported that c-FLIP(L) overexpression has no effect or even inhibits T cell proliferation. To establish the role of c-FLIP(L) in T lymphocyte proliferation, we have generated a conditional knockout mouse strain specifically lacking c-FLIP(L) in T lymphocytes. c-FLIP(L)(-/-) mice exhibit severely impaired effector T cell development after Listeria monocytogenes infection in vivo and c-FLIP(L)-deficient T cells display defective TCR-mediated proliferation in vitro. However, c-FLIP(L)(-/-) T cells exhibit normal NF-kappaB activity upon TCR stimulation. These results demonstrate that c-FLIP(L) is essential for T lymphocyte proliferation through an NF-kappaB-independent pathway.  相似文献   

7.
《Cell reports》2023,42(6):112569
  1. Download : Download high-res image (117KB)
  2. Download : Download full-size image
  相似文献   

8.
9.
10.
11.
While functional roles of several long non-coding RNAs (lncRNAs) have been determined, the molecular mechanisms are not well understood. Here, we report the first experimentally derived secondary structure of a human lncRNA, the steroid receptor RNA activator (SRA), 0.87 kB in size. The SRA RNA is a non-coding RNA that coactivates several human sex hormone receptors and is strongly associated with breast cancer. Coding isoforms of SRA are also expressed to produce proteins, making the SRA gene a unique bifunctional system. Our experimental findings (SHAPE, in-line, DMS and RNase V1 probing) reveal that this lncRNA has a complex structural organization, consisting of four domains, with a variety of secondary structure elements. We examine the coevolution of the SRA gene at the RNA structure and protein structure levels using comparative sequence analysis across vertebrates. Rapid evolutionary stabilization of RNA structure, combined with frame-disrupting mutations in conserved regions, suggests that evolutionary pressure preserves the RNA structural core rather than its translational product. We perform similar experiments on alternatively spliced SRA isoforms to assess their structural features.  相似文献   

12.
Long non-coding RNA (lncRNA), highly up-regulated in liver cancer (HULC) plays an important role in tumorigenesis. Depletion of HULC resulted in a significant deregulation of several genes involved in liver cancer. Although up-regulation of HULC expression in hepatocellular carcinoma has been reported, the molecular mechanisms remain unknown. In this study, we used in vivo and in vitro approaches to characterize cancer-dependent alterations in the chromatin organization and find a CREB binding site (encompassing from −67 to −53 nt) in the core promoter. Besides, we also provided evidence that PKA pathway may involved in up-regulation of HULC. Furthermore, we demonstrated HULC may act as an endogenous ‘sponge’, which down-regulates a series of microRNAs (miRNAs) activities, including miR-372. Inhibition of miR-372 leads to reducing translational repression of its target gene, PRKACB, which in turn induces phosphorylation of CREB. Over-expression of miR-372 decreases the association of CREB with the proximal promoter, followed by the dissociation of P300, resulting in a change of the histone ‘code’, such as in deacetylation and methylation. The study elucidates that fine tuning of HULC expression is part of an auto-regulatory loop in which it’s inhibitory to expression and activity of miR-372 allows lncRNA up-regulated expression in liver cancer.  相似文献   

13.
Maenner S  Müller M  Becker PB 《Biochimie》2012,94(7):1490-1498
A large part of higher eukaryotic genomes is transcribed into RNAs lacking any significant open reading frame. This "non-coding part" has been shown to actively contribute to regulating gene expression, but the mechanisms are largely unknown. Particularly instructive examples are provided by the dosage compensation systems, which assure that the single X chromosome in male cells and the two X chromosomes in female cells give rise to similar amounts of gene product. Although this is achieved by very different strategies in mammals and fruit flies, long, non-coding RNAs (lncRNAs) are involved in both cases. Here we summarize recent progress towards unraveling the mechanisms, by which the Xist and roX RNAs mediate the selective association of regulators with individual target chromosomes, to initiate dosage compensation in mammals and fruit flies, respectively.  相似文献   

14.
The zinc finger antiviral protein (ZAP) is a broad inhibitor of virus replication. Its best-characterized function is to bind CpG dinucleotides present in viral RNAs and, through the recruitment of TRIM25, KHNYN and other cofactors, target them for degradation or prevent their translation. The long and short isoforms of ZAP (ZAP-L and ZAP-S) have different intracellular localization and it is unclear how this regulates their antiviral activity against viruses with different sites of replication. Using ZAP-sensitive and ZAP-insensitive human immunodeficiency virus type I (HIV-1), which transcribe the viral RNA in the nucleus and assemble virions at the plasma membrane, we show that the catalytically inactive poly-ADP-ribose polymerase (PARP) domain in ZAP-L is essential for CpG-specific viral restriction. Mutation of a crucial cysteine in the C-terminal CaaX box that mediates S-farnesylation and, to a lesser extent, the residues in place of the catalytic site triad within the PARP domain, disrupted the activity of ZAP-L. Addition of the CaaX box to ZAP-S partly restored antiviral activity, explaining why ZAP-S lacks antiviral activity for CpG-enriched HIV-1 despite conservation of the RNA-binding domain. Confocal microscopy confirmed the CaaX motif mediated localization of ZAP-L to vesicular structures and enhanced physical association with intracellular membranes. Importantly, the PARP domain and CaaX box together jointly modulate the interaction between ZAP-L and its cofactors TRIM25 and KHNYN, implying that its proper subcellular localisation is required to establish an antiviral complex. The essential contribution of the PARP domain and CaaX box to ZAP-L antiviral activity was further confirmed by inhibition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication, which replicates in double-membrane vesicles derived from the endoplasmic reticulum. Thus, compartmentalization of ZAP-L on intracellular membranes provides an essential effector function in ZAP-L-mediated antiviral activity against divergent viruses with different subcellular replication sites.  相似文献   

15.
Autophagy-related long non-coding RNAs (lncRNAs) disorders are related to the occurrence and development of breast cancer. The purpose of this study is to explore whether autophagy-related lncRNA can predict the prognosis of breast cancer patients. The autophagy-related lncRNAs prognostic signature was constructed by Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression. We identified five autophagy-related lncRNAs (MAPT-AS1, LINC01871, AL122010.1, AC090912.1, AC061992.1) associated with prognostic value, and they were used to construct an autophagy-related lncRNA prognostic signature (ALPS) model. ALPS model offered an independent prognostic value (HR = 1.664, 1.381-2.006), where this risk score of the model was significantly related to the TNM stage, ER, PR and HER2 status in breast cancer patients. Nomogram could be utilized to predict survival for patients with breast cancer. Principal component analysis and Sankey Diagram results indicated that the distribution of five lncRNAs from the ALPS model tends to be low-risk. Gene set enrichment analysis showed that the high-risk group was enriched in autophagy and cancer-related pathways, and the low-risk group was enriched in regulatory immune-related pathways. These results indicated that the ALPS model composed of five autophagy-related lncRNAs could predict the prognosis of breast cancer patients.  相似文献   

16.
17.
18.
19.
J J Toulmé  C Hélène 《Gene》1988,72(1-2):51-58
Synthetic oligodeoxyribonucleotides (oligos) are now widely used as artificial regulators for gene expression both in cell-free media and in cultured cells. We describe the biological consequence of the various chemical modifications that have been introduced into the molecules to improve their resistance against nuclease attack, their affinity for the target mRNA and their uptake by cells. We also describe the rising generation of antimessenger oligos. Covalently linked to reactive groups these molecules direct irreversible modifications of the complementary nucleic acids. We anticipate that these oligos will be targeted to double-stranded nucleic acids to interfere with gene expression at the DNA level.  相似文献   

20.
A human immunodeficiency virus type 1 (HIV-1)-based vector expressing an antisense RNA directed against HIV-1 is currently in clinical trials. This vector has shown a remarkable ability to inhibit HIV-1 replication, in spite of the fact that therapeutic use of unmodified antisense RNAs has generally been disappointing. To further analyze the basis for this, we examined the effects of different plasmid-based HIV-1 long-terminal-repeat-driven constructs expressing antisense RNA to the same target region in HIV-1 but containing different export elements. Two of these vectors were designed to express antisense RNA containing either a Rev response element (RRE) or a Mason-Pfizer monkey virus (MPMV) constitutive transport element (CTE). In the third vector, no specific transport element was provided. Efficient inhibition of HIV-1 virus production was obtained with the RRE-driven antisense RNA. This construct also efficiently inhibited p24 production from a pNL4-3 provirus that used the MPMV CTE for RNA export. In contrast, little inhibition was observed with the constructs lacking an RRE. Furthermore, when the RRE-driven antisense RNA was redirected to the Tap/Nxf1 pathway, utilized by the MPMV CTE, through the expression of a RevM10-Tap fusion protein, the efficiency of antisense inhibition was greatly reduced. These results indicate that efficient inhibition requires trafficking of the antisense RNA through the Rev/RRE pathway. Mechanistic studies indicated that the Rev/RRE-mediated inhibition did not involve either nuclear retention or degradation of target mRNA, since target RNA was found to export and associate normally with polyribosomes. However, protein levels were significantly reduced. Taken together, our results suggest a new mechanism for antisense inhibition of HIV mediated by Rev/RRE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号