首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is widely held that any given virus uses only one type of nucleic acid for genetic information storage. However, this consensus has been challenged slightly by several recent studies showing that many RNA species are present within a range of DNA viruses that include Kaposi''s sarcoma-associated herpesvirus (KSHV). RNAs extracted from purified DNA virus particles exhibit great diversity in terms of length, abundance, temporal expression, cellular localization, and coding capacity during viral infection. In addition to known RNA species, the current study showed that small regulatory RNAs were present in KSHV virions. A large number of viral and cellular microRNAs (miRNAs), as well as unusual small RNAs (usRNAs), were detected in KSHV virions by using deep sequencing. Both viral and host miRNAs detected in small RNAs extracted from KSHV virions were further shown to colocalize with KSHV virions directly by in situ hybridization (ISH)-electron microscopy (EM) (ISH-EM). Some of these miRNAs were differentially present in the host cells and KSHV virions, suggesting that they are not randomly present in KSHV virions. The virional miRNAs could be transported into host cells, and they are biologically functional during de novo viral infection. Our study revealed miRNAs and usRNAs as a novel group of components in KSHV virions.  相似文献   

2.
3.
The apoptosis stimulating p53 proteins, ASPP1 and ASPP2, are the first two common activators of the p53 protein family that selectively enable the latter to regulate specific apoptotic target genes, which facilitates yes yet unknown mechanisms for discrimination between cell cycle arrest and apoptosis. To better understand the interplay between ASPP- and p53-family of proteins we investigated the molecular interactions between them using biochemical methods and structure-based homology modelling. The data demonstrate that: (i) the binding of ASPP1 and ASPP2 to p53, p63 and p73 is direct; (ii) the C-termini of ASPP1 and ASPP2 interact with the DNA-binding domains of p53 protein family with dissociation constants, Kd, in the lower micro-molar range; (iii) the stoichiometry of binding is 1:1; (iv) the DNA-binding domains of p53 family members are sufficient for these protein–protein interactions; (v) EMSA titrations revealed that while tri-complex formation between ASPPs, p53 family of proteins and PUMA/Bax is mutually exclusive, ASPP2 (but not ASPP1) formed a complex with PUMA (but not Bax) and displaced p53 and p73. The structure-based homology modelling revealed subtle differences between ASPP2 and ASPP1 and together with the experimental data provide novel mechanistic insights.  相似文献   

4.
Ribosome biogenesis requires >100 nonribosomal proteins, which are associated with different preribosomal particles. The substrates, the interacting partners, and the timing of action of most of these proteins are largely unknown. To elucidate the functional environment of the putative ATP-dependent RNA helicase Dbp6p from Saccharomyces cerevisiae, which is required for 60S ribosomal subunit assembly, we have previously performed a synthetic lethal screen and thereby revealed a genetic interaction network between Dbp6p, Rpl3p, Nop8p, and the novel Rsa3p. In this report, we extended the characterization of this functional network by performing a synthetic lethal screen with the rsa3 null allele. This screen identified the so far uncharacterized Npa1p (YKL014C). Polysome profile analysis indicates that there is a deficit of 60S ribosomal subunits and an accumulation of halfmer polysomes in the slowly growing npa1-1 mutant. Northern blotting and primer extension analysis shows that the npa1-1 mutation negatively affects processing of all 27S pre-rRNAs and the normal accumulation of both mature 25S and 5.8S rRNAs. In addition, 27SA(2) pre-rRNA is prematurely cleaved at site C(2). Moreover, GFP-tagged Npa1p localizes predominantly to the nucleolus and sediments with large complexes in sucrose gradients, which most likely correspond to pre-60S ribosomal particles. We conclude that Npa1p is required for ribosome biogenesis and operates in the same functional environment of Rsa3p and Dbp6p during early maturation of 60S ribosomal subunits.  相似文献   

5.
Kaposi's sarcoma-associated herpesvirus (KSHV) is etiologically associated with the angioproliferative Kaposi's sarcoma (KS). KSHV infection and the expression of latency-associated nuclear antigen (LANA-1) upregulates the angiogenic multifunctional 123-amino-acid, 14-kDa protein angiogenin (ANG), which is detected in KS lesions and in KSHV-associated primary effusion lymphoma (PEL) cells. ANG knockdown or the inhibition of ANG's nuclear translocation resulted in decreased LANA-1 gene expression and reduced KSHV-infected endothelial and PEL cell survival (Sadagopan et al., J. Virol. 83:3342-3364, 2009). Further studies here demonstrate that LANA-1 and ANG colocalize and coimmunoprecipitate in de novo infected endothelial cells and in latently infected PEL (BCBL-1 and BC-3) cells. LANA-1 and ANG interaction occurred in the absence of the KSHV genome and other viral proteins. In gel filtration chromatography analyses of BC-3 cell lysates, ANG coeluted with LANA-1, p53, and Mdm2 in high-molecular-weight fractions, and LANA-1, p53, and Mdm2 also coimmunoprecipitated with ANG. LANA-1, ANG, and p53 colocalized in KSHV-infected cells, and colocalization between ANG and p53 was also observed in LANA-1-negative cells. The deletion constructs of ANG suggested that the C-terminal region of amino acids 104 to 123 is involved in LANA-1 and p53 interactions. Silencing ANG or inhibiting its nuclear translocation resulted in decreased nuclear LANA-1 and ANG levels, decreased interactions between ANG-LANA-1, ANG-p53, and LANA-1-p53, the induction of p53, p21, and Bax proteins, the increased cytoplasmic localization of p53, the downregulation of Bcl-2, the increased cleavage of caspase-3, and the apoptosis of cells. No such effects were observed in KSHV-negative BJAB cells. The phosphorylation of p53 at serine 15, which is essential for p53 stabilization and for p53's apoptotic and cell cycle regulation functions, was increased in BCBL-1 cells transduced with short hairpin RNA targeting ANG. Together, these studies suggest that the antiapoptosis observed in KSHV-infected cells and the suppression of p53 functions are mediated in part by ANG, and KSHV has probably evolved to utilize angiogenin's multiple functions for the maintenance of its latency and cell survival. Thus, targeting ANG to induce the apoptosis of cells latently infected with KSHV is an attractive therapeutic strategy against KSHV infection and associated malignancies.  相似文献   

6.
Inactivation of gene products by dominant negative mutants is a valuable tool to assign functions to yet uncharacterized proteins, to map protein-protein interactions or to dissect physiological pathways. Detailed functional and structural knowledge about the target protein would allow the construction of inhibitory mutants by targeted mutagenesis. Yet, such data are limited for the majority of viral proteins, so that the target gene needs to be subjected to random mutagenesis to identify suitable mutants. However, for cytomegaloviruses this requires a two-step screening approach, which is time-consuming and labor-intensive. Here, we report the establishment of a high-throughput suitable screening system for the identification of inhibitory alleles of essential genes of the murine cytomegalovirus (MCMV). In this screen, the site-specific recombination of a specifically modified MCMV genome was transferred from the bacterial background to permissive host cells, thereby combining the genetic engineering and the rescue test in one step. Using a reference set of characterized pM53 mutants it was shown that the novel system is applicable to identify non-complementing as well as inhibitory mutants in a high-throughput suitable setup. The new cis-complementation assay was also applied to a basic genetic characterization of pM99, which was identified as essential for MCMV growth. We believe that the here described novel genetic screening approach can be adapted for the genetic characterization of essential genes of any large DNA viruses.  相似文献   

7.
The tumor suppressor p53 regulates diverse biological processes primarily via activation of downstream target genes. Even though many p53 target genes have been described, the precise mechanisms of p53 biological actions are uncertain. In previous work we identified by microarray analysis a candidate p53 target gene, FLJ11259/DRAM. In this report we have identified three uncharacterized human proteins with sequence homology to FLJ11259, suggesting that FLJ11259 is a member of a novel family of proteins with six transmembrane domains. Several lines of investigation confirm FLJ11259 is a direct p53 target gene. p53 siRNA prevented cisplatin-mediated up-regulation of FLJ11259 in NT2/D1 cells. Likewise in HCT116 p53+/+ cells and MCF10A cells, FLJ11259 is induced by cisplatin treatment but to a much lesser extent in isogenic p53-suppressed cells. A functional p53 response element was identified 22.3 kb upstream of the first coding exon of FLJ11259 and is shown to be active in reporter assays. In addition, chromatin immunoprecipitation assays indicate that p53 binds directly to this element in vivo and that binding is enhanced following cisplatin treatment. Confocal microscopy showed that an FLJ-GFP fusion protein localizes mainly in a punctate pattern in the cytoplasm. Overexpression studies in Cos-7, Saos2, and NT2/D1 cells suggest that FLJ11259 is associated with increased clonal survival. In summary, we have identified FLJ11259/DRAM as a p53-inducible member of a novel family of transmembrane proteins. FLJ11259/DRAM may be an important modulator of p53 responses in diverse tumor types.  相似文献   

8.
The Zika virus (ZIKV) and dengue virus (DENV) flaviviruses exhibit similar replicative processes but have distinct clinical outcomes. A systematic understanding of virus–host protein–pro-tein interaction networks can reveal cellular pathways critical to viral replication and disease patho-genesis. Here we employed three independent systems biology approaches toward this goal. First, protein array analysis of direct interactions between individual ZIKV/DENV viral proteins and 20,240 human proteins revealed multiple conserved cellular pathways and protein complexes, including proteasome complexes. Second, an RNAi screen of 10,415 druggable genes identified the host proteins required for ZIKV infection and uncovered that proteasome proteins were crucial in this process. Third, high-throughput screening of 6016 bioactive compounds for ZIKV inhibition yielded 134 effective compounds, including six proteasome inhibitors that suppress both ZIKV and DENV replication. Integrative analyses of these orthogonal datasets pinpoint proteasomes as crit-ical host machinery for ZIKV/DENV replication. Our study provides multi-omics datasets for fur-ther studies of flavivirus–host interactions, disease pathogenesis, and new drug targets.  相似文献   

9.
10.
11.
p53 tumor suppressor has been identified as a protein interacting with the large T antigen produced by simian vacuolating virus 40 (SV40). Subsequent research on p53 inhibition by SV40 and other tumor viruses has not only helped to gain a better understanding of viral biology, but also shaped our knowledge of human tumorigenesis. Recent studies have found, however, that inhibition of p53 is not strictly in the realm of viruses. Some bacterial pathogens also actively inhibit p53 protein and induce its degradation, resulting in alteration of cellular stress responses. This phenomenon was initially characterized in gastric epithelial cells infected with Helicobacter pylori, a bacterial pathogen that commonly infects the human stomach and is strongly linked to gastric cancer. Besides H. pylori, a number of other bacterial species were recently discovered to inhibit p53. These findings provide novel insights into host–bacteria interactions and tumorigenesis associated with bacterial infections.  相似文献   

12.
13.
The re‐emergence and the recent spread of the Zika virus (ZIKV) has raised significant global concerns due to lack of information in patient diagnosis and management. Thus, in addition to gaining more basic information about ZIKV biology, appropriate interventions and management strategies are being sought to control ZIKV‐associated diseases and its spread. This study's objective is to identify host cell proteins that are significantly dysregulated during ZIKV infection. SOMAScan, a novel aptamer‐based assay, is used to simultaneously screen >1300 host proteins to detect ZIKV‐induced host protein dysregulation at multiple time points during infection. A total of 125 Vero cell host proteins, including cytokines such as CXCL11 and CCL5, interferon stimulated gene 15, and translation initiation factors EIF5A and EIF4G2, are significantly dysregulated after ZIKV infection. Bioinformatic analyses of 77 host proteins, that are significantly dysregulated ≥1.25‐fold, identify several activated biological processes, including the JAK/STAT, Tec kinase, and complement cascade pathways.  相似文献   

14.
15.
Madrid AS  Ganem D 《Journal of virology》2012,86(16):8693-8704
Kaposi's sarcoma-associated herpesvirus (KSHV) establishes long-term latent infection in humans and can cause cancers in endothelial and B cells. A functioning immune system is vital for restricting viral proliferation and preventing KSHV-dependent neoplasms. While natural killer (NK) lymphocytes are known to target virus-infected cells for destruction, their importance in the anti-KSHV immune response is not currently understood. Activating receptors on NK cells recognize ligands on target cells, including the uncharacterized ligand(s) for NKp44, termed NKp44L. Here we demonstrate that several NK ligands are affected when KSHV-infected cells are induced to enter the lytic program. We performed a screen of most of the known KSHV genes and found that the product of the ORF54 gene could downregulate NKp44L. The ORF54-encoded protein is a dUTPase; however, dUTPase activity is neither necessary nor sufficient for the downregulation of NKp44L. In addition, we find that ORF54 can also target proteins of the cytokine receptor family and the mechanism of downregulation involves perturbation of membrane protein trafficking. The ORF54-related proteins of other human herpesviruses do not possess this activity, suggesting that the KSHV homolog has evolved a novel immunoregulatory function and that the NKp44-NKp44L signaling pathway contributes to antiviral immunity.  相似文献   

16.
BackgroundZika virus (ZIKV) has extended its known geographic distribution to the New World and is now responsible for severe clinical complications in a subset of patients. While substantial genetic and vector susceptibility data exist for ZIKV, less is known for the closest related flavivirus, Spondweni virus (SPONV). Both ZIKV and SPONV have been known to circulate in Africa since the mid-1900s, but neither has been genetically characterized by gene and compared in parallel. Furthermore, the susceptibility of peridomestic mosquito species incriminated or suspected in the transmission of ZIKV to SPONV was unknown.Conclusions/SignificanceSPONV and ZIKV nucleotide and amino acid divergence coupled with differences in geographic distribution, ecology and vector species support previous reports that these viruses are separate species. Furthermore, the low degree of SPONV infection or dissemination in Ae. albopictus, Ae. aegypti and Cx. quinquefasciatus following exposure to two geographically and genetically distinct virus strains suggest a low potential for these species to serve as vectors.  相似文献   

17.
18.
Yeast two-hybrid (Y2H) methods are powerful tools for detecting protein–protein interactions. The traditional Y2H method has been widely applied to screen novel protein interactions since it was established two decades ago. The high false-positive rate of the traditional method drove the development of modified Y2H systems. Here, we describe a novel Y2H system using zinc-finger nucleases (ZFNs). ZFNs contain two functional domains, a zinc-finger DNA-binding domain (ZFP) and a non-specific nuclease domain (FokI). In this system, the bait is expressed as a fusion protein with a specific ZFP, and the prey is fused to the FokI. A reporter vector is designed such that the ZFN target site disrupts the Gal4 open reading frame. By transforming the three plasmids into a yeast strain (AH109), the interaction between the bait and prey proteins reconstitutes ZFN function and generates the double-strand break (DSB) on its target site. The DNA DSB repair restores Gal4 function, which activates the expression of the four reporter genes. We used p53-SV40LT interacting proteins to prove the concept. In addition, 80% positive rate was observed in a cDNA screening test against WDSV orfA protein. Our results strongly suggested that this Y2H system could increase screening reliability and reproducibility, and provide a novel approach for interactomics research.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号