首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Class switch recombination (CSR) and somatic hypermutation (SHM) of immunoglobulin (Ig) genes are initiated by the activation-induced cytosine deaminase AID. The resulting uracils in Ig genes were believed to be removed by the uracil glycosylase (UNG) and the resulting abasic sites treated in an error-prone fashion, creating breaks in the Ig switch regions and mutations in the variable regions. A recent report suggests that UNG does not act as a glycosylase in CSR and SHM but rather has unknown activity subsequent to DNA breaks that were created by other mechanisms.  相似文献   

2.
In mammals, activation-induced deaminase (AID) initiates somatic hypermutation (SHM) and class switch recombination (CSR) of Ig genes. SHM and CSR activities require separate regions within AID. A chromosome region maintenance 1 (CRM1)-dependent nuclear export signal (NES) at the AID C terminus is necessary for CSR, and has been suggested to associate with CSR-specific cofactors. CSR appeared late in AID evolution, during the emergence of land vertebrates from bony fish, which only display SHM. Here, we show that AID from African clawed frog (Xenopus laevis), but not pufferfish (Takifugu rubripes), can induce CSR in AID-deficient mouse B cells, although both are catalytically active in bacteria and mammalian cell systems, albeit at decreased level. Like mammalian AID, Takifugu AID is actively exported from the cell nucleus by CRM1, and the Takifugu NES can substitute for the equivalent region in human AID, indicating that all the CSR-essential NES motif functions evolutionarily predated CSR activity. We also show that fusion of the Takifugu AID catalytic domain to the entire human noncatalytic domain restores activity in mammalian cells, suggesting that AID features mapping within the noncatalytic domain, but outside the NES, influence its function.  相似文献   

3.
Demonstration of ectopic germinal center-like structures (GC-LSs) in chronically inflamed tissues in patients with autoimmune disorders is a relatively common finding. However, to what extent ectopic lymphoid structures behave as true GC and are able to support class switch recombination (CSR) and somatic hypermutation (SHM) of the Ig genes is still debated. In addition, no information is available on whether CSR and SHM can take place in the absence of GCs at extrafollicular sites in an ectopic lymphoid tissue. In this study, we show that in salivary glands (SGs) of Sj?gren's syndrome (SS) activation-induced cytidine deaminase (AID), the enzyme responsible for CSR and SHM is invariably expressed within follicular dendritic cell (FDC) networks but is not detectable in SGs in the absence of ectopic GC-LSs, suggesting that FDC networks play an essential role in sustaining the Ag-driven B cell proliferation within SS-SGs. We also show that the recently described population of interfollicular large B cells selectively expresses AID outside ectopic GC in the T cell-rich areas of periductal aggregates. Finally, we report that AID retains its exclusive association with numerous, residual GCs in parotid SS-MALT lymphomas, whereas neoplastic marginal zone-like B cells are consistently AID negative. These results strongly support the notion that ectopic lymphoid structures in SS-SGs express the molecular machinery to support local autoantibody production and B cell expansion and may play a crucial role toward lymphomagenesis.  相似文献   

4.
After immunization or infection, activation-induced cytidine deaminase (AID) initiates diversification of immunoglobulin (Ig) genes in B cells, introducing mutations within the antigen-binding V regions (somatic hypermutation, SHM) and double-strand DNA breaks (DSBs) into switch (S) regions, leading to antibody class switch recombination (CSR). We asked if, during B cell activation, AID also induces DNA breaks at genes other than IgH genes. Using a nonbiased genome-wide approach, we have identified hundreds of reproducible, AID-dependent DSBs in mouse splenic B cells shortly after induction of CSR in culture. Most interestingly, AID induces DSBs at sites syntenic with sites of translocations, deletions, and amplifications found in human B cell lymphomas, including within the oncogene B cell lymphoma11a (bcl11a)/evi9. Unlike AID-induced DSBs in Ig genes, genome-wide AID-dependent DSBs are not restricted to transcribed regions and frequently occur within repeated sequence elements, including CA repeats, non-CA tandem repeats, and SINEs.  相似文献   

5.
Uracil is present in small amounts in DNA due to spontaneous deamination of cytosine and incorporation of dUMP during replication. While deamination generates mutagenic U:G mismatches, incorporated dUMP results in U:A pairs that are not directly mutagenic, but may be cytotoxic. In most cells, mutations resulting from uracil in DNA are prevented by error-free base excision repair. However, in B-cells uracil in DNA is also a physiological intermediate in acquired immunity. Here, activation-induced cytosine deaminase (AID) introduces template uracils that give GC to AT transition mutations in the Ig locus after replication. When uracil-DNA glycosylase (UNG2) removes uracil, error-prone translesion synthesis over the abasic site causes other mutations in the Ig locus. Together, these processes are central to somatic hypermutation (SHM) that increases immunoglobulin diversity. AID and UNG2 are also essential for generation of strand breaks that initiate class switch recombination (CSR). Patients lacking UNG2 display a hyper-IgM syndrome with recurrent infections, increased IgM, strongly decreased IgG, IgA and IgE and skewed SHM. UNG2 is also involved in innate immune response against retroviral infections. Ung(-/-) mice have a similar phenotype and develop B-cell lymphomas late in life. However, there is no evidence indicating that UNG deficiency causes lymphomas in humans.  相似文献   

6.
During somatic hypermutation (SHM) of antibody variable (V) region genes, activation-induced cytidine deaminase (AID) converts dC to dU, and dUs can either be excised by uracil DNA glycosylase (UNG), by mismatch repair, or replicated over. If UNG excises the dU, the abasic site could be cleaved by AP-endonuclease (APE), introducing the single-strand DNA breaks (SSBs) required for generating mutations at A:T bp, which are known to depend upon mismatch repair and DNA Pol η. DNA Pol β or λ could instead repair the lesion correctly. To assess the involvement of Pols β and λ in SHM of antibody genes, we analyzed mutations in the VDJh4 3′ flanking region in Peyer's patch germinal center (GC) B cells from polβ?/?polλ?/?, polλ?/?, and polβ?/? mice. We find that deficiency of either or both polymerases results in a modest but significant decrease in V region SHM, with Pol β having a greater effect, but there is no effect on mutation specificity, suggesting they have no direct role in SHM. Instead, the effect on SHM appears to be due to a role for these enzymes in GC B cell proliferation or viability. The results suggest that the BER pathway is not important during V region SHM for generating mutations at A:T bp. Furthermore, this implies that most of the SSBs required for Pol η to enter and create A:T mutations are likely generated during replication instead. These results contrast with the inhibitory effect of Pol β on mutations at the Ig Sμ locus, Sμ DSBs and class switch recombination (CSR) reported previously. We show here that B cells deficient in Pol λ or both Pol β and λ proliferate normally in culture and undergo slightly elevated CSR, as shown previously for Pol β-deficient B cells.  相似文献   

7.
Activation-induced deaminase (AID) is required for class switch recombination (CSR) and somatic hypermutation (SHM), which are responsible for secondary diversification of antibodies in germinal centers. AID initiates these processes by deamination of cytosines on the immunoglobulin (Ig) locus, a potentially mutagenic activity. AID expression is restricted to germinal-center B cells, but the mechanisms that regulate its target specificity are not completely understood. Here, we review the most recent findings on the regulation of AID targeting and discuss how AID activity on non-Ig genes is relevant to the generation of chromosome translocations and to lymphomagenesis.  相似文献   

8.
Activation-induced cytidine deaminase (AID) is essential for class switch recombination (CSR) and somatic hypermutation (SHM) of Ig genes. The C terminus of AID is required for CSR but not for SHM, but the reason for this is not entirely clear. By retroviral transduction of mutant AID proteins into aid -/- mouse splenic B cells, we show that 4 amino acids within the C terminus of mouse AID, when individually mutated to specific amino acids (R190K, A192K, L196S, F198S), reduce CSR about as much or more than deletion of the entire C terminal 10 amino acids. Similar to ΔAID, the substitutions reduce binding of UNG to Ig Sμ regions and some reduce binding of Msh2, both of which are important for introducing S region DNA breaks. Junctions between the IgH donor switch (S)μ and acceptor Sα regions from cells expressing ΔAID or the L196S mutant show increased microhomology compared to junctions in cells expressing wild-type AID, consistent with problems during CSR and the use of alternative end-joining, rather than non-homologous end-joining (NHEJ). Unlike deletion of the AID C terminus, 3 of the substitution mutants reduce DNA double-strand breaks (DSBs) detected within the Sμ region in splenic B cells undergoing CSR. Cells expressing these 3 substitution mutants also have greatly reduced mutations within unrearranged Sμ regions, and they decrease with time after activation. These results might be explained by increased error-free repair, but as the C terminus has been shown to be important for recruitment of NHEJ proteins, this appears unlikely. We hypothesize that Sμ DNA breaks in cells expressing these C terminus substitution mutants are poorly repaired, resulting in destruction of Sμ segments that are deaminated by these mutants. This could explain why these mutants cannot undergo CSR.  相似文献   

9.
Activation-induced cytidine deaminase (AID) is induced in B cells during an immune response and is essential for both class-switch recombination (CSR) and somatic hypermutation of Ab genes. The C-terminal 10 aa of AID are required for CSR but not for somatic hypermutation, although their role in CSR is unknown. Using retroviral transduction into mouse splenic B cells, we show that the C terminus is not required for switch (S) region double-strand breaks (DSBs) and therefore functions downstream of DSBs. Using chromatin immunoprecipitation, we show that AID binds cooperatively with UNG and the mismatch repair proteins Msh2-Msh6 to Ig Sμ and Sγ3 regions, and this depends on the C terminus and the deaminase activity of AID. We also show that mismatch repair does not contribute to the efficiency of CSR in the absence of the AID C terminus. Although it has been demonstrated that both UNG and Msh2-Msh6 are important for introduction of S region DSBs, our data suggest that the ability of AID to recruit these proteins is important for DSB resolution, perhaps by directing the S region DSBs toward accurate and efficient CSR via nonhomologous end joining.  相似文献   

10.
11.
12.
DNA-uracil and human pathology   总被引:1,自引:0,他引:1  
Uracil is usually an inappropriate base in DNA, but it is also a normal intermediate during somatic hypermutation (SHM) and class switch recombination (CSR) in adaptive immunity. In addition, uracil is introduced into retroviral DNA by the host as part of a defence mechanism. The sources of uracil in DNA are spontaneous or enzymatic deamination of cytosine (U:G mispairs) and incorporation of dUTP (U:A pairs). Uracil in DNA is removed by a uracil-DNA glycosylase. The major ones are nuclear UNG2 and mitochondrial UNG1 encoded by the UNG-gene, and SMUG1 that also removes oxidized pyrimidines, e.g. 5-hydroxymethyluracil. The other ones are TDG that removes U and T from mismatches, and MBD4 that removes U from CpG contexts. UNG2 is found in replication foci during the S-phase and has a distinct role in repair of U:A pairs, but it is also important in U:G repair, a function shared with SMUG1. SHM is initiated by activation-induced cytosine deaminase (AID), followed by removal of U by UNG2. Humans lacking UNG2 suffer from recurrent infections and lymphoid hyperplasia, and have skewed SHM and defective CSR, resulting in elevated IgM and strongly reduced IgG, IgA and IgE. UNG-defective mice also develop B-cell lymphoma late in life. In the defence against retrovirus, e.g. HIV-1, high concentrations of dUTP in the target cells promotes misincorporation of dUMP-, and host cell APOBEC proteins may promote deamination of cytosine in the viral DNA. This facilitates degradation of viral DNA by UNG2 and AP-endonuclease. However, viral proteins Vif and Vpr counteract this defense by mechanisms that are now being revealed. In conclusion, uracil in DNA is both a mutagenic burden and a tool to modify DNA for diversity or degradation.  相似文献   

13.
14.
B cells start their life with low affinity antibodies generated by V(D)J recombination. However, upon detecting a pathogen, the variable (V) region of an immunoglobulin (Ig) gene is mutated approximately 100,000-fold more than the rest of the genome through somatic hypermutation (SHM), resulting in high affinity antibodies. In addition, class switch recombination (CSR) produces antibodies with different effector functions depending on the kind of immune response that is needed for a particular pathogen. Both CSR and SHM are initiated by activation-induced cytidine deaminase (AID), which deaminates cytosine residues in DNA to produce uracils. These uracils are processed by error-prone forms of repair pathways, eventually leading to mutations and recombination. Our current understanding of the molecular details of SHM and CSR come from a combination of studies in mice, primary cells, cell lines, and cell-free experiments. Mouse models remain the gold standard with genetic knockouts showing critical roles for many repair factors (e.g. Ung, Msh2, Msh6, Exo1, and polymerase η). However, not all genes are amenable for knockout studies. For example, knockouts of several double-strand break repair proteins are embryonically lethal or impair B-cell development. Moreover, sometimes the specific function of a protein in SHM or CSR may be masked by more global defects caused by the knockout. In addition, since experiments in mice can be lengthy, altering expression of individual genes in cell lines has become an increasingly popular first step to identifying and characterizing candidate genes. Ramos - a Burkitt lymphoma cell line that constitutively undergoes SHM - has been a popular cell-line model to study SHM. One advantage of Ramos cells is that they have a built-in convenient semi-quantitative measure of SHM. Wild type cells express IgM and, as they pick up mutations, some of the mutations knock out IgM expression. Therefore, assaying IgM loss by fluorescence-activated cell scanning (FACS) provides a quick read-out for the level of SHM. A more quantitative measurement of SHM can be obtained by directly sequencing the antibody genes. Since Ramos cells are difficult to transfect, we produce stable derivatives that have increased or lowered expression of an individual gene by infecting cells with retroviral or lentiviral constructs that contain either an overexpression cassette or a short hairpin RNA (shRNA), respectively. Here, we describe how we infect Ramos cells and then use these cells to investigate the role of specific genes on SHM (Figure 1).  相似文献   

15.
Class-switch recombination (CSR), somatic hypermutation (SHM), and antibody gene conversion are distinct DNA modification reactions, but all are initiated by activation-induced cytidine deaminase (AID), an enzyme that deaminates cytidine residues in single-stranded DNA. Here we describe a mutant form of AID that catalyzes SHM and gene conversion but not CSR. When expressed in E. coli, AID(delta189-198) is more active in catalyzing cytidine deamination than wild-type AID. AID(delta189-198) also promotes high levels of gene conversion and SHM when expressed in eukaryotic cells, but fails to induce CSR. These results underscore an essential role for the C-terminal domain of AID in CSR that is independent of its cytidine deaminase activity and that is not required for either gene conversion or SHM.  相似文献   

16.
Longerich S  Meira L  Shah D  Samson LD  Storb U 《DNA Repair》2007,6(12):1764-1773
Somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin (Ig) genes require the cytosine deaminase AID, which deaminates cytosine to uracil in Ig gene DNA. Paradoxically, proteins involved normally in error-free base excision repair and mismatch repair, seem to be co-opted to facilitate SHM and CSR, by recruiting error-prone translesion polymerases to DNA sequences containing deoxy-uracils created by AID. Major evidence supports at least one mechanism whereby the uracil glycosylase Ung removes AID-generated uracils creating abasic sites which may be used either as uninformative templates for DNA synthesis, or processed to nicks and gaps that prime error-prone DNA synthesis. We investigated the possibility that deamination at adenines also initiates SHM. Adenosine deamination would generate hypoxanthine (Hx), a substrate for the alkyladenine DNA glycosylase (Aag). Aag would generate abasic sites which then are subject to error-prone repair as above for AID-deaminated cytosine processed by Ung. If the action of an adenosine deaminase followed by Aag were responsible for significant numbers of mutations at A, we would find a preponderance of A:T>G:C transition mutations during SHM in an Aag deleted background. However, this was not observed and we found that the frequencies of SHM and CSR were not significantly altered in Aag-/- mice. Paradoxically, we found that Aag is expressed in B lymphocytes undergoing SHM and CSR and that its activity is upregulated in activated B cells. Moreover, we did find a statistically significant, albeit low increase of T:A>C:G transition mutations in Aag-/- animals, suggesting that Aag may be involved in creating the SHM A>T bias seen in wild type mice.  相似文献   

17.
18.
Genomic uracil resulting from spontaneously deaminated cytosine generates mutagenic U:G mismatches that are usually corrected by error-free base excision repair (BER). However, in B-cells, activation-induced cytosine deaminase (AID) generates U:G mismatches in hot-spot sequences at Ig loci. These are subject to mutagenic processing during somatic hypermutation (SHM) and class switch recombination (CSR). Uracil N-glycosylases UNG2 and SMUG1 (single strand-selective monofunctional uracil-DNA glycosylase 1) initiate error-free BER in most DNA contexts, but UNG2 is also involved in mutagenic processing of AID-induced uracil during the antibody diversification process, the regulation of which is not understood. AID is strictly single strand-specific. Here we show that in the presence of Mg2+ and monovalent salts, human and mouse SMUG1 are essentially double strand-specific, whereas UNG2 efficiently removes uracil from both single and double stranded DNA under all tested conditions. Furthermore, SMUG1 and UNG2 display widely different sequence preferences. Interestingly, uracil in a hot-spot sequence for AID is 200-fold more efficiently removed from single stranded DNA by UNG2 than by SMUG1. This may explain why SMUG1, which is not excluded from Ig loci, is unable to replace UNG2 in antibody diversification. We suggest a model for mutagenic processing in which replication protein A (RPA) recruits UNG2 to sites of deamination and keeps DNA in a single stranded conformation, thus avoiding error-free BER of the deaminated cytosine.  相似文献   

19.
20.
Activation-induced cytidine deaminase (AID) and uracil DNA glycosylase (UNG) are required for class switch recombination (CSR). AID is involved in the DNA cleavage step of CSR, but the precise role of UNG is not yet understood. Mutations and deletions are footprints of abortive DNA cleavage in the immunoglobulin switch region in splenic B cells stimulated to undergo CSR. However, a UNG deficiency did not reduce the number of such footprints, indicating UNG is dispensable for the DNA cleavage step. Mutagenesis experiments revealed that the role of UNG in CSR depends on its WXXF motif. This motif is also essential for the interaction of UNG with the HIV viral peptide Vpr, which recruits UNG to the HIV particle. Furthermore, exogenous Vpr had a dominant-negative effect on CSR. These results suggest that UNG is recruited to the CSR machinery through its WXXF motif by a Vpr-like host factor and plays a novel non-canonical role in a CSR step that follows DNA cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号