首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
High-altitude hypoxia (reduced inspired oxygen tension due to decreased barometric pressure) exerts severe physiological stress on the human body. Two high-altitude regions where humans have lived for millennia are the Andean Altiplano and the Tibetan Plateau. Populations living in these regions exhibit unique circulatory, respiratory, and hematological adaptations to life at high altitude. Although these responses have been well characterized physiologically, their underlying genetic basis remains unknown. We performed a genome scan to identify genes showing evidence of adaptation to hypoxia. We looked across each chromosome to identify genomic regions with previously unknown function with respect to altitude phenotypes. In addition, groups of genes functioning in oxygen metabolism and sensing were examined to test the hypothesis that particular pathways have been involved in genetic adaptation to altitude. Applying four population genetic statistics commonly used for detecting signatures of natural selection, we identified selection-nominated candidate genes and gene regions in these two populations (Andeans and Tibetans) separately. The Tibetan and Andean patterns of genetic adaptation are largely distinct from one another, with both populations showing evidence of positive natural selection in different genes or gene regions. Interestingly, one gene previously known to be important in cellular oxygen sensing, EGLN1 (also known as PHD2), shows evidence of positive selection in both Tibetans and Andeans. However, the pattern of variation for this gene differs between the two populations. Our results indicate that several key HIF-regulatory and targeted genes are responsible for adaptation to high altitude in Andeans and Tibetans, and several different chromosomal regions are implicated in the putative response to selection. These data suggest a genetic role in high-altitude adaption and provide a basis for future genotype/phenotype association studies necessary to confirm the role of selection-nominated candidate genes and gene regions in adaptation to altitude.  相似文献   

3.
Skeletal muscle is the major site for glucose disposal, the impairment of which closely associates with the glucose intolerance in diabetic patients. Diabetes-related ankyrin repeat protein (DARP/Ankrd23) is a member of muscle ankyrin repeat proteins, whose expression is enhanced in the skeletal muscle under diabetic conditions; however, its role in energy metabolism remains poorly understood. Here we report a novel role of DARP in the regulation of glucose homeostasis through modulating AMP-activated protein kinase (AMPK) activity. DARP is highly preferentially expressed in skeletal muscle, and its expression was substantially upregulated during myotube differentiation of C2C12 myoblasts. Interestingly, DARP-/- mice demonstrated better glucose tolerance despite similar body weight, while their insulin sensitivity did not differ from that in wildtype mice. We found that phosphorylation of AMPK, which mediates insulin-independent glucose uptake, in skeletal muscle was significantly enhanced in DARP-/- mice compared to that in wildtype mice. Gene silencing of DARP in C2C12 myotubes enhanced AMPK phosphorylation, whereas overexpression of DARP in C2C12 myoblasts reduced it. Moreover, DARP-silencing increased glucose uptake and oxidation in myotubes, which was abrogated by the treatment with AICAR, an AMPK activator. Of note, improved glucose tolerance in DARP-/- mice was abolished when mice were treated with AICAR. Mechanistically, gene silencing of DARP enhanced protein expression of LKB1 that is a major upstream kinase for AMPK in myotubes in vitro and the skeletal muscle in vivo. Together with the altered expression under diabetic conditions, our data strongly suggest that DARP plays an important role in the regulation of glucose homeostasis under physiological and pathological conditions, and thus DARP is a new therapeutic target for the treatment of diabetes mellitus.  相似文献   

4.
5.

Background

Diet-induced obesity is a rising health concern which can lead to the development of glucose intolerance and muscle insulin resistance and, ultimately, type II diabetes mellitus. This research investigates the associations between glucose intolerance or muscle insulin resistance and tissue specific changes during the progression of diet-induced obesity.

Methodology

C57BL/6J mice were fed a normal or high-fat diet (HFD; 60% kcal fat) for 3 or 8 weeks. Disease progression was monitored by measurements of body/tissue mass changes, glucose and insulin tolerance tests, and ex vivo glucose uptake in intact muscles. Lipid metabolism was analyzed using metabolic chambers and ex vivo palmitate assays in intact muscles. Skeletal muscle, liver and adipose tissues were analyzed for changes in inflammatory gene expression. Plasma was analyzed for insulin levels and inflammatory proteins. Histological techniques were used on muscle and liver cryosections to assess metabolic and morphological changes.

Principal Findings/Conclusions

A rapid shift in whole body metabolism towards lipids was observed with HFD. Following 3 weeks of HFD, elevated total lipid oxidation and an oxidative fiber type shift had occurred in the skeletal muscle, which we propose was responsible for delaying intramyocellular lipid accumulation and maintaining muscle’s insulin sensitivity. Glucose intolerance was present after three weeks of HFD and was associated with an enlarged adipose tissue depot, adipose tissue inflammation and excess hepatic lipids, but not hepatic inflammation. Furthermore, HFD did not significantly increase systemic or muscle inflammation after 3 or 8 weeks of HFD suggesting that early diet-induced obesity does not cause inflammation throughout the whole body. Overall these findings indicate skeletal muscle did not contribute to the development of HFD-induced impairments in whole-body glucose tolerance following 3 weeks of HFD.  相似文献   

6.
7.
8.
Long chain acyl-CoA synthetase (ACSL) is an enzyme that activates fatty acids before they are further metabolized. ACSL6 is the one of main ACSL isoforms exclusively expressed in skeletal muscle, but the consequences of the suppression of this gene in systemic glucose homeostasis has yet to be reported. Hence, we investigated the roles of ACSL6 gene in glucose tolerance and TAG distribution in physiological conditions. Eight-week-old male C57BL/6J mice were administered with control or Acsl6 siRNAs and then fed with either AIN-93 control diet or high fat diet. At seven days after the first siRNA injection, oral glucose tolerance tests and TAG quantification were performed. In vivo administration of Acsl6 siRNA decreased Acsl6 expression only in skeletal muscle under AIN-93 or a high fat diet. However Acsl6 siRNA injection to animals increased TAG accumulation in the liver without the change of Acsl6 expression. Atelocollagen mediated Acsl6 suppression enhanced whole-body glucose tolerance coinciding with decreased TAG accumulation in skeletal muscle of mice fed an AIN-93 diet. However, the improved glucose tolerance by Acsl6 reduction was ablated by high fat diet. Moreover reduced Acsl6 did not alter the phosphorylation of insulin signaling proteins in skeletal muscle. These results suggest that Acsl6 reduction in skeletal muscle enhances glucose homeostasis and dissociates the insulin responses from TAG accumulation in skeletal muscle.  相似文献   

9.
Each abdominal fat depot, such as mesenteric or epididymal, differently contributes to the development of insulin resistance. The aim of this study was to identify the genetic regions that contribute to fat accumulation in epididymal/mesenteric fat and to examine whether or not the genetic regions that affect glucose metabolism and body fat distribution are coincident. We previously mapped a major quantitative trait locus (QTL) (T2dm2sa) for impaired glucose tolerance on chromosome 2 and revealed that SM.A-T2dm2sa congenic mice showed not only glucose tolerance but also fat accumulation. In the present study, to identify the loci/genes that control the accumulation of abdominal fat, we perfomed QTL analyses of epididymal/mesenteric fat weight by using (A/J×SM.A-T2dm2sa)F2 mice in which the effect of T2dm2sa was excluded. As a result, two highly significant QTLs for mesenteric fat, as well as three significant QTLs for epididymal/mesenteric fat, were mapped on the different chromosomal regions. This suggests that the fat accumulations in individual fat depots are controlled by distinct genomic regions. Our comparison of these QTLs for abdominal fat distribution with those for glucose metabolism revealed that the major genetic factors affecting body fat distribution do not coincide with genetic factors affecting glucose metabolism in (A/J×SM.A-T2dm2sa)F2.  相似文献   

10.
Several current functional neuroimaging methods are sensitive to cerebral metabolism and cerebral blood flow (CBF) rather than the underlying neural activity itself. Empirically, the connections between metabolism, flow and neural activity are complex and somewhat counterintuitive: CBF and glycolysis increase more than seems to be needed to provide oxygen and pyruvate for oxidative metabolism, and the oxygen extraction fraction is relatively low in the brain and decreases when oxygen metabolism increases. This work lays a foundation for the idea that this unexpected pattern of physiological changes is consistent with basic thermodynamic considerations related to metabolism. In the context of this thermodynamic framework, the apparent mismatches in metabolic rates and CBF are related to preserving the entropy change of oxidative metabolism, specifically the O2/CO2 ratio in the mitochondria. However, the mechanism supporting this CBF response is likely not owing to feedback from a hypothetical O2 sensor in tissue, but rather is consistent with feed-forward control by signals from both excitatory and inhibitory neural activity. Quantitative predictions of the thermodynamic framework, based on models of O2 and CO2 transport and possible neural drivers of CBF control, are in good agreement with a wide range of experimental data, including responses to neural activation, hypercapnia, hypoxia and high-altitude acclimatization.This article is part of the theme issue ‘Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity’.  相似文献   

11.
12.

Objective

Muscle carnosine and its methylated form anserine are histidine-containing dipeptides. Both dipeptides have the ability to quench reactive carbonyl species and previous studies have shown that endogenous tissue levels are decreased in chronic diseases, such as diabetes.

Design and Methods

Rodent study: Skeletal muscles of rats and mice were collected from 4 different diet-intervention studies, aiming to induce various degrees of glucose intolerance: 45% high-fat feeding (male rats), 60% high-fat feeding (male rats), cafeteria feeding (male rats), 70% high-fat feeding (female mice). Body weight, glucose-tolerance and muscle histidine-containing dipeptides were assessed. Human study: Muscle biopsies were taken from m. vastus lateralis in 35 males (9 lean, 8 obese, 9 prediabetic and 9 newly diagnosed type 2 diabetic patients) and muscle carnosine and gene expression of muscle fiber type markers were measured.

Results

Diet interventions in rodents (cafeteria and 70% high-fat feeding) induced increases in body weight, glucose intolerance and levels of histidine-containing dipeptides in muscle. In humans, obese, prediabetic and diabetic men had increased muscle carnosine content compared to the lean (+21% (p>0.1), +30% (p<0.05) and +39% (p<0.05), respectively). The gene expression of fast-oxidative type 2A myosin heavy chain was increased in the prediabetic (1.8-fold, p<0.05) and tended to increase in the diabetic men (1.6-fold, p = 0.07), compared to healthy lean subjects.

Conclusion

Muscle histidine-containing dipeptides increases with progressive glucose intolerance, in male individuals (cross-sectional). In addition, high-fat diet-induced glucose intolerance was associated with increased muscle histidine-containing dipeptides in female mice (interventional). Increased muscle carnosine content might reflect fiber type composition and/or act as a compensatory mechanism aimed at preventing cell damage in states of impaired glucose tolerance.  相似文献   

13.
14.
Some highland populations have genetic adaptations that enable their successful existence in a hypoxic environment. Tibetans are protected against many of the harmful responses exhibited by non-adapted populations upon exposure to severe hypoxia, including elevated hemoglobin concentration (i.e., polycythemia). Recent studies have highlighted several genes subject to natural selection in native high-altitude Tibetans. Three of these genes, EPAS1, EGLN1 and PPARA, regulate or are regulated by hypoxia inducible factor, a principal controller of erythropoiesis and other organismal functions. Uncovering the molecular basis of hypoxic adaptation should have implications for understanding hematological and other adaptations involved in hypoxia tolerance. Because the hypoxia response involves a variety of cardiovascular, pulmonary and metabolic functions, this knowledge would improve our understanding of disease mechanisms and could ultimately be translated into targeted therapies for oxygen deprivation, cardiopulmonary and cerebral pathologies, and metabolic disorders such as diabetes and obesity.  相似文献   

15.
《Genomics》2019,111(6):1209-1215
The monal genus (Lophophorus) is a branch of Phasianidae and its species inhabit the high-altitude mountains of the Qinghai-Tibet Plateau. The Chinese monal, L. lhuysii, is a threatened endemic bird of China that possesses high-altitude adaptability, diversity of plumage color and potentially low reproductive life history. This is the first study to describe the monal genome using next generation sequencing technology. The Chinese monal genome size is 1.01 Gb, with 16,940 protein-coding genes. Gene annotation yielded 100.93 Mb (9.97%) repeat elements, 785 ncRNA, 5,465,549 bp (0.54%) SSR and 15,550 (92%) genes in public databases. Compared to other birds and mammals, the genome evolution analysis showed numerous expanded gene families and positive selected genes involved in high-altitude adaptation, especially related to the adaptation of low temperature and hypoxia. Consequently, this gene data can be used to investigate the molecular evolution of high-altitude adaptation in future bird research. Our first published genome of the genus Lophophorus will be integral for the study of monal population genetic diversity and conservation, genomic evolution and Galliformes species differentiation in the Qinghai-Tibetan Plateau.  相似文献   

16.
We compared the chronic effect of intermittent hypoxia and endurance training on the glucose tolerance and GLUT4 protein expression in rat skeletal muscle. Thirty-two Sprague-Dawley rats were matched for weight and assigned to one of the following four groups: control, endurance training, hypoxia, or hypoxia followed by endurance training. Hypoxic treatment consisted of breathing 14% O2 for 12 h/day under normobaric conditions, and the training protocol consisted of making animals swim 2 times for 3 h/day. At the end of the 3rd week, an oral glucose tolerance test (OGTT) was performed 16 h after treatments. At the end of the 4th week, GLUT4 protein, mRNA, and glycogen storage in skeletal muscle were determined. Endurance training significantly improved OGTT results. Glycogen content and GLUT4 protein expression in the plantaris and red gastrocnemius, but not in the soleus or white gastrocnemius muscles, were also elevated. Chronic intermittent hypoxia also improved OGTT results, but did not alter GLUT4 protein expression. Additionally, hypoxia followed by exercise training produced significant increases in GLUT4 protein and mRNA in a greater number of muscles compared to endurance training alone. Both exercise training and hypoxia significantly reduced body mass, and an additive effect of both treatments was found. In conclusion, chronic intermittent hypoxia improved glucose tolerance in the absence of increased GLUT4 protein expression. This treatment facilitated the exercise training effect on muscle GLUT4 expression and glycogen storage. These new findings open the possibility of utilizing intermittent hypoxia, with or without exercise training, for the prevention and clinical treatment of type 2 diabetes or insulin resistance.  相似文献   

17.
Maternal under-nutrition increases the risk of developing metabolic diseases. We studied the effects of chronic maternal dietary vitamin B12 restriction on lean body mass (LBM), fat free mass (FFM), muscle function, glucose tolerance and metabolism in Wistar rat offspring. Prevention/reversibility of changes by rehabilitating restricted mothers from conception or parturition and their offspring from weaning was assessed. Female weaning Wistar rats (n = 30) were fed ad libitum for 12 weeks, a control diet (n = 6) or the same with 40% restriction of vitamin B12 (B12R) (n = 24); after confirming deficiency, were mated with control males. Six each of pregnant B12R dams were rehabilitated from conception and parturition and their offspring weaned to control diet. While offspring of six B12R dams were weaned to control diet, those of the remaining six B12R dams continued on B12R diet. Biochemical parameters and body composition were determined in dams before mating and in male offspring at 3, 6, 9 and 12 months of their age. Dietary vitamin B12 restriction increased body weight but decreased LBM% and FFM% but not the percent of tissue associated fat (TAF%) in dams. Maternal B12R decreased LBM% and FFM% in the male offspring, but their TAF%, basal and insulin stimulated glucose uptake by diaphragm were unaltered. At 12 months age, B12R offspring had higher (than controls) fasting plasma glucose, insulin, HOMA-IR and impaired glucose tolerance. Their hepatic gluconeogenic enzyme activities were increased. B12R offspring had increased oxidative stress and decreased antioxidant status. Changes in body composition, glucose metabolism and stress were reversed by rehabilitating B12R dams from conception, whereas rehabilitation from parturition and weaning corrected them partially, highlighting the importance of vitamin B12 during pregnancy and lactation on growth, muscle development, glucose tolerance and metabolism in the offspring.  相似文献   

18.
We characterized 26 wild fruit flies comparative population genomics from six different altitude and latitude locations by whole genome resequencing. Genetic diversity was relatively higher in Ganzi and Chongqing populations. We also found 13 genes showing selection signature between different altitude flies and variants related to hypoxia and temperature stimulus, were preferentially selected during the flies evolution. One of the most striking selective sweeps found in all high altitude flies occurred in the region harboring Hsp70Aa and Hsp70Ab on chromosome 3R. Interestingly, these two genes are involved in GO terms including response to hypoxia, unfolded protein, temperature stimulus, heat, oxygen levels. Mutation in HPH gene, a candidate gene in the hypoxia inducible factor pathway, might contributes to hypoxic high-altitude adaptation. Intriguingly, some of the selected genes, primarily utilized in humans, were involved in the response to hypoxia, which could imply a conserved molecular mechanisms underlying high-altitude adaptation between insects and humans.  相似文献   

19.
The role for melatonin in glucose homeostasis and insulin resistance is not very clear and has recently been an active area of investigation. The present study investigated the role of melatonin in seasonal accumulation of adipose tissue in Scotophilus heathi, with particular reference to its role in glucose homeostasis and development of insulin resistance. The circulating melatonin levels correlated positively (p < 0.05) with the changes in body mass due to fat accumulation and circulating insulin level, but correlated negatively with the blood glucose level in S. heathi. The bats showed high circulating blood glucose levels and impaired glucose tolerance during the period of fat deposition suggesting insulin resistance condition which improves after winter when most of the fat has been utilized as a metabolic fuel. The high circulating melatonin levels during the period of maximum body fat at the beginning of winter prepare the bats for winter dormancy by modulating the glucose homeostasis through affecting blood glucose levels, muscle and liver glycogen stores, insulin receptor and glucose transporter 4 (GLUT 4) expression. This is also confirmed by in vivo study in which melatonin injection improves the glucose tolerance, increases muscle insulin receptor and GLUT 4 expression, and enhances glucose clearance from the blood. The results of present study further showed that the effect of melatonin injection on the blood glucose levels is determined by the metabolic state of the bats and may protect from decrease in blood glucose level during extreme starvation, however, melatonin when injected during fed state increases glucose clearance from the blood. In summary, the present study suggested that melatonin interferes with the glucose homeostasis through modulating intracellular glucose transport and may protect bats from hypoglycemia during winter dormancy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号