首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Escherichia coli, FtsEX, a member of the ABC transporter superfamily, is involved in regulating the assembly and activation of the divisome to couple cell wall synthesis to cell wall hydrolysis at the septum. Genetic studies indicate FtsEX acts on FtsA to begin the recruitment of the downstream division proteins but blocks septal PG synthesis until a signal is received that divisome assembly is complete. However, the details of how FtsEX localizes to the Z ring and how it interacts with FtsA are not clear. Our results show that recruitment of FtsE and FtsX is codependent and suggest that the FtsEX complex is recruited through FtsE interacting with the conserved tail of FtsZ (CCTP), thus adding FtsEX to a growing list of proteins that interacts with the CCTP of FtsZ. Furthermore, we find that the N‐terminus of FtsX is not required for FtsEX localization to the Z ring but is required for its functions in cell division indicating that it interacts with FtsA. Taken together, these results suggest that FtsEX first interacts with FtsZ to localize to the Z ring and then interacts with FtsA to promote divisome assembly and regulate septal PG synthesis.  相似文献   

2.
FtsE and FtsX of Escherichia coli constitute an apparent ABC transporter that localizes to the septal ring. In the absence of FtsEX, cells divide poorly and several membrane proteins essential for cell division are largely absent from the septal ring, including FtsK, FtsQ, FtsI, and FtsN. These observations, together with the fact that ftsE and ftsX are cotranscribed with ftsY, which helps to target some proteins for insertion into the cytoplasmic membrane, suggested that FtsEX might contribute to insertion of division proteins into the membrane. Here we show that this hypothesis is probably wrong, because cells depleted of FtsEX had normal amounts of FtsK, FtsQ, FtsI, and FtsN in the membrane fraction. We also show that FtsX localizes to septal rings in cells that lack FtsE, arguing that FtsX targets the FtsEX complex to the ring. Nevertheless, both proteins had to be present to recruit further Fts proteins to the ring. Mutant FtsE proteins with lesions in the ATP-binding site supported septal ring assembly (when produced together with FtsX), but these rings constricted poorly. This finding implies that FtsEX uses ATP to facilitate constriction rather than assembly of the septal ring. Finally, topology analysis revealed that FtsX has only four transmembrane segments, none of which contains a charged amino acid. This structure is not what one would expect of a substrate-specific transmembrane channel, leading us to suggest that FtsEX is not really a transporter even though it probably has to hydrolyze ATP to support cell division.Cell division in Escherichia coli is carried out by ∼20 proteins that localize to the midcell, where they form a structure called the septal ring (also called the divisome or septalsome) (4, 27, 55, 57). One component of the septal ring is an apparent ABC transporter composed of the integral membrane protein FtsX and its associated cytoplasmic ATPase, FtsE (15, 47). FtsE and FtsX are widely conserved among gram-negative and gram-positive bacteria. ftsE and/or ftsX mutants exhibit division defects in E. coli, Neisseria gonorrhoeae, Aeromonas hydrophila, and Flavobacterium johnsoniae, indicating that FtsEX function in cell division is conserved in these organisms (33, 40, 43, 45). In contrast, FtsEX of Bacillus subtilis has no obvious role in cell division but instead regulates entry into sporulation (24).One interesting property of E. coli ftsEX null mutants is that they can be rescued by a variety of osmotic protectants (44). For example, when grown in LB containing >0.5% NaCl, an E. coli ftsEX null mutant is viable and only mildly filamentous, but upon shift to LB lacking NaCl, the cells become filamentous and die (20, 47). A shift to low-osmolarity medium is also accompanied by a dramatic slowing of the overall rate of growth (mass increase) (47). We suspect that ftsEX contributes to both cell division and growth, but it has proven difficult to exclude the possibility that the growth defect is caused by attempts at cell division that go awry.FtsEX contributes to cytokinesis by improving the assembly and/or stability of the septal ring. Septal ring assembly in an ftsEX mutant is fairly normal in LB that contains 1% NaCl but defective in LB that lacks NaCl (hereinafter referred to as LB0N) (47). More precisely, in LB0N, septal ring assemblies contain the “early” division proteins FtsZ, FtsA, and ZipA but lack the “late” proteins FtsK, FtsQ, FtsL, FtsI, and FtsN. The mechanism by which FtsEX contributes to septal ring assembly is still under investigation, but it probably involves protein-protein interactions, because FtsX has been shown to interact with FtsA and FtsQ in a bacterial two-hybrid system (31), while FtsE has been shown to interact with FtsZ in a coprecipitation assay (15). The FtsE-FtsZ interaction could be important for improving constriction rather than, or in addition to, septal ring assembly.Remarkably, nothing is known about FtsEX''s most obvious potential function—transporting a substrate involved in septum assembly. We are aware of only two studies that attempted to address this issue. The first concluded that FtsEX is needed for insertion of potassium transporters in the cytoplasmic membrane (54). However, in our view the data were not compelling and the connection to cell division, if any, is not obvious. The other study noted that ftsE and ftsX are cotranscribed with ftsY, which is a component of the signal recognition particle pathway for insertion of many proteins into the cytoplasmic membrane (20). That study therefore tested an ftsEX null mutant for defects in export of β-lactamase to the periplasm or insertion of leader peptidase into the cytoplasmic membrane. No such defects were found, so the authors concluded that FtsEX function is probably unrelated to FtsY. Besides these studies, at least one review article suggested that FtsEX might insert division proteins into the cytoplasmic membrane (8). Obviously, the finding that localization of several membrane proteins to the septal ring shows a leaky but pronounced dependence on FtsEX could be explained if the “missing” proteins were not getting into the membrane efficiently. Despite these speculations about potential FtsEX substrates, it is important to note that some members of the ABC “transporter” family do not move anything across cell membranes (reviewed in reference 19), so it cannot be taken for granted that FtsEX is a transporter at all.  相似文献   

3.
FtsE and FtsX have homology to the ABC transporter superfamily of proteins and appear to be widely conserved among bacteria. Early work implicated FtsEX in cell division in Escherichia coli, but this was subsequently challenged, in part because the division defects in ftsEX mutants are often salt remedial. Strain RG60 has an ftsE::kan null mutation that is polar onto ftsX. RG60 is mildly filamentous when grown in standard Luria-Bertani medium (LB), which contains 1% NaCl, but upon shift to LB with no NaCl growth and division stop. We found that FtsN localizes to potential division sites, albeit poorly, in RG60 grown in LB with 1% NaCl. We also found that in wild-type E. coli both FtsE and FtsX localize to the division site. Localization of FtsX was studied in detail and appeared to require FtsZ, FtsA, and ZipA, but not the downstream division proteins FtsK, FtsQ, FtsL, and FtsI. Consistent with this, in media lacking salt, FtsA and ZipA localized independently of FtsEX, but the downstream proteins did not. Finally, in the absence of salt, cells depleted of FtsEX stopped dividing before any change in growth rate (mass increase) was apparent. We conclude that FtsEX participates directly in the process of cell division and is important for assembly or stability of the septal ring, especially in salt-free media.  相似文献   

4.
FtsE and FtsX, which are widely conserved homologs of ABC transporters and interact with each other, have important but unknown functions in bacterial cell division. Coimmunoprecipitation of Escherichia coli cell extracts revealed that a functional FLAG-tagged version of FtsE, the putative ATP-binding component, interacts with FtsZ, the bacterial tubulin homolog required to assemble the cytokinetic Z ring and recruit the components of the divisome. This interaction is independent of FtsX, the predicted membrane component of the ABC transporter, which has been shown previously to interact with FtsE. The interaction also occurred independently of FtsA or ZipA, two other E. coli cell division proteins that interact with FtsZ. In addition, FtsZ copurified with FLAG-FtsE. Surprisingly, the conserved C-terminal tail of FtsZ, which interacts with other cell division proteins, such as FtsA and ZipA, was dispensable for interaction with FtsE. In support of a direct interaction with FtsZ, targeting of a green fluorescent protein (GFP)-FtsE fusion to Z rings required FtsZ, but not FtsA. Although GFP-FtsE failed to target Z rings in the absence of ZipA, its localization was restored in the presence of the ftsA* bypass suppressor, indicating that the requirement for ZipA is indirect. Coexpression of FLAG-FtsE and FtsX under certain conditions resulted in efficient formation of minicells, also consistent with an FtsE-FtsZ interaction and with the idea that FtsE and FtsX regulate the activity of the divisome.  相似文献   

5.
The peptidoglycan (PG) sacculus, a meshwork of polysaccharide strands cross‐linked by short peptides, protects bacterial cells against osmotic lysis. To enlarge this covalently closed macromolecule, PG hydrolases must break peptide cross‐links in the meshwork to allow insertion of new glycan strands between the existing ones. In the rod‐shaped bacterium Bacillus subtilis, cell wall elongation requires two redundant endopeptidases, CwlO and LytE. However, it is not known how these potentially autolytic enzymes are regulated to prevent lethal breaches in the cell wall. Here, we show that the ATP‐binding cassette transporter‐like FtsEX complex is required for CwlO activity. In Escherichia coli, FtsEX is thought to harness ATP hydrolysis to activate unrelated PG hydrolases during cell division. Consistent with this regulatory scheme, B. subtilis FtsE mutants that are unable to bind or hydrolyse ATP cannot activate CwlO. Finally, we show that in cells depleted of both CwlO and LytE, the PG synthetic machinery continues moving circumferentially until cell lysis, suggesting that cross‐link cleavage is not required for glycan strand polymerization. Overall, our data support a model in which the FtsEX complex is a remarkably flexible regulatory module capable of controlling a diverse set of PG hydrolases during growth and division in different organisms.  相似文献   

6.
ABC transporters are integral membrane pumps that are responsible for the import or export of a diverse range of molecules across cell membranes. ABC transporters have been implicated in many phenomena of medical importance, including cystic fibrosis and multidrug resistance in humans. The molecular architecture of ABC transporters comprises two transmembrane domains and two ATP-binding cassettes, or nucleotide-binding domains (NBDs), which are highly conserved and contain motifs that are crucial to ATP binding and hydrolysis. Despite the improved clarity of recent structural, biophysical, and biochemical data, the seemingly simple process of ATP binding and hydrolysis remains controversial, with a major unresolved issue being whether the NBD protomers separate during the catalytic cycle. Here chemical cross-linking data is presented for the bacterial ABC multidrug resistance (MDR) transporter LmrA. These indicate that in the absence of nucleotide or substrate, the NBDs come into contact to a significant extent, even at 4°C, where ATPase activity is abrogated. The data are clearly not in accord with an inward-closed conformation akin to that observed in a crystal structure of V. cholerae MsbA. Rather, they suggest a head-to-tail configuration ‘sandwich’ dimer similar to that observed in crystal structures of nucleotide-bound ABC NBDs. We argue the data are more readily reconciled with the notion that the NBDs are in proximity while undergoing intra-domain motions, than with an NBD ‘Switch’ mechanism in which the NBD monomers separate in between ATP hydrolysis cycles.  相似文献   

7.
The genes ftsE and ftsX are organized in one operon together with ftsY. FtsY codes for the receptor of the signal recognition particle (SRP) that functions in targeting a subset of inner membrane proteins. We have found no indications for a structural relationship between FtsE/X and FtsY. Evidence is presented that FtsE and FtsX form a complex in the inner membrane that bears the characteristics of an ATP-binding cassette (ABC)-type transporter. FtsE is a hydrophilic nucleotide-binding protein that has a tendency to dimerize and associates with the inner membrane through an interaction with the integral membrane protein FtsX. An FtsE null mutant showed filamentous growth and appeared viable on high salt medium only, indicating a role for FtsE in cell division and/or salt transport.  相似文献   

8.
ATP-binding cassette (ABC) transporters are integral membrane proteins that actively transport molecules across cell membranes. In Escherichia coli they consist primarily of import systems that involve in addition to the ABC transporter itself a substrate binding protein and outer membrane receptors or porins, and a number of transporters with varied functions. Recent crystal structures of a number of ATPase domains, substrate binding proteins, and full-length transporters have given new insight in the molecular basis of transport. Bioinformatics approaches allow an approximate identification of all ABC transporters in E. coli and their relation to other known transporters. Computational approaches involving modeling and simulation are beginning to yield insight into the dynamics of the transporters. We summarize the function of the known ABC transporters in E. coli and mechanistic insights from structural and computational studies.  相似文献   

9.
Insertion of new material into the Escherichia coli peptidoglycan (PG) sacculus between the cytoplasmic membrane and the outer membrane requires a well-organized balance between synthetic and hydrolytic activities to maintain cell shape and avoid lysis. Since most bacteria carry multiple enzymes carrying the same type of PG hydrolytic activity, we know little about the specific function of given enzymes. Here we show that the DD-carboxy/endopeptidase PBP4 localizes in a PBP1A/LpoA and FtsEX dependent fashion at midcell during septal PG synthesis. Midcell localization of PBP4 requires its non-catalytic domain 3 of unknown function, but not the activity of PBP4 or FtsE. Microscale thermophoresis with isolated proteins shows that PBP4 interacts with NlpI and the FtsEX-interacting protein EnvC, an activator of amidases AmiA and AmiB, which are needed to generate denuded glycan strands to recruit the initiator of septal PG synthesis, FtsN. The domain 3 of PBP4 is needed for the interaction with NlpI and EnvC, but not PBP1A or LpoA. In vivo crosslinking experiments confirm the interaction of PBP4 with PBP1A and LpoA. We propose that the interaction of PBP4 with EnvC, whilst not absolutely necessary for mid-cell recruitment of either protein, coordinates the activities of PBP4 and the amidases, which affects the formation of denuded glycan strands that attract FtsN. Consistent with this model, we found that the divisome assembly at midcell was premature in cells lacking PBP4, illustrating how the complexity of interactions affect the timing of cell division initiation.  相似文献   

10.
The ATP binding cassette (ABC) family of transporters moves small molecules (lipids, sugars, peptides, drugs, nutrients) across membranes in nearly all organisms. Transport activity requires conformational switching between inward-facing and outward-facing states driven by ATP-dependent dimerization of two nucleotide binding domains (NBDs). The mechanism that connects ATP binding and hydrolysis in the NBDs to conformational changes in a substrate binding site in the transmembrane domains (TMDs) is currently an outstanding question. Here we use sequence coevolution analyses together with biochemical characterization to investigate the role of a highly conserved region in intracellular loop 1 we define as the GRD motif in coordinating domain rearrangements in the heterodimeric peptide exporter from Thermus thermophilus, TmrAB. Mutations in the GRD motif alter ATPase activity as well as transport. Disulfide crosslinking, evolutionary trace, and evolutionary coupling analysis reveal that these effects are likely due to the destabilization of a network in which the GRD motif in TmrA bridges residues of the Q-loop, X-loop, and ABC motif in the NBDs to residues in the TmrAB peptide substrate binding site, thus providing an avenue for conformational coupling. We further find that disruption of this network in TmrA versus TmrB has different functional consequences, hinting at an intrinsic asymmetry in heterodimeric ABC transporters extending beyond that of the NBDs. These results support a mechanism in which the GRD motifs help coordinate a transition to an outward open conformation, and each half of the transporter likely plays a different role in the conformational cycle of TmrAB.  相似文献   

11.
The LolCDE complex, an ATP-binding cassette (ABC) transporter, releases lipoproteins from the inner membrane, thereby initiating lipoprotein sorting to the outer membrane of Escherichia coli. The LolCDE complex is composed of two copies of an ATPase subunit, LolD, and one copy each of integral membrane subunits LolC and LolE. LolD hydrolyzes ATP on the cytoplasmic side of the inner membrane, while LolC and/or LolE recognize and release lipoproteins anchored to the periplasmic leaflet of the inner membrane. Thus, functional interaction between LolD and LolC/E is critically important for coupling of ATP hydrolysis to the lipoprotein release reaction. LolD contains a characteristic sequence called the LolD motif, which is highly conserved among LolD homologs but not other ABC transporters of E. coli. The LolD motif is suggested to be a region in contact with LolC/E, judging from the crystal structures of other ABC transporters. To determine the functions of the LolD motif, we mutagenized each of the 32 residues of the LolD motif and isolated 26 dominant-negative mutants, whose overexpression arrested growth despite the chromosomal lolD(+) background. We then selected suppressor mutations of the lolC and lolE genes that correct the growth defect caused by the LolD mutations. Mutations of the lolC suppressors were mainly located in the periplasmic loop, whereas ones of lolE suppressors were mainly located in the cytoplasmic loop, suggesting that the mode of interaction with LolD differs between LolC and LolE. Moreover, the LolD motif was found to be critical for functional interplay with LolC/E, since some LolD mutations lowered the ATPase activity of LolCDE without affecting that of LolD.  相似文献   

12.
Recent crystal structures of the multidrug ATP‐binding cassette (ABC) exporters Sav1866 from Staphylococcus aureus, MsbA from Escherichia coli, Vibrio cholera, and Salmonella typhimurium, and mouse ABCB1a suggest a common alternating access mechanism for export. However, the molecular framework underlying this mechanism is critically dependent on assumed conformational relationships between nonidentical crystal structures and therefore requires biochemical verification. The structures of homodimeric MsbA reveal a pair of glutamate residues (E208 and E208′) in the intracellular domains of its two half‐transporters, close to the nucleotide‐binding domains (NBDs), which are in close proximity of each other in the outward‐facing state but not in the inward‐facing state. Using intermolecular cysteine crosslinking between E208C and E208C′ in E. coli MsbA, we demonstrate that the NBDs dissociate in nucleotide‐free conditions and come close on ATP binding and ADP·vanadate trapping. Interestingly, ADP alone separates the half‐transporters like a nucleotide‐free state, presumably for the following catalytic cycle. Our data fill persistent gaps in current studies on the conformational dynamics of a variety of ABC exporters. Based on a single biochemical method, the findings describe a conformational cycle for a single ABC exporter at major checkpoints of the ATPase reaction under experimental conditions, where the exporter is transport active. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
ATP-binding cassette (ABC)-type ATPases are chemomechanical engines involved in diverse biological pathways. Recent genomic information reveals that ABC ATPase domains/subunits act not only in ABC transporters and structural maintenance of chromosome proteins, but also in iron-sulfur (Fe-S) cluster biogenesis. A novel type of ABC protein, the SufBCD complex, functions in the biosynthesis of nascent Fe-S clusters in almost all Eubacteria and Archaea, as well as eukaryotic chloroplasts. In this study, we determined the first crystal structure of the Escherichia coli SufBCD complex, which exhibits the common architecture of ABC proteins: two ABC ATPase components (SufC) with function-specific components (SufB-SufD protomers). Biochemical and physiological analyses based on this structure provided critical insights into Fe-S cluster assembly and revealed a dynamic conformational change driven by ABC ATPase activity. We propose a molecular mechanism for the biogenesis of the Fe-S cluster in the SufBCD complex.  相似文献   

14.
Although ftsE and ftsX are not universally present in bacteria, they are present in various Neisseria species as determined by Southern hybridization. The ftsE and ftsX genes of Neisseria gonorrhoeae (Ng) CH811 were cloned, sequenced and were shown to be co-transcribed from two promoters (P(E)1 and P(E)2) which were identified upstream of ftsE(Ng) by primer extension. Sequence analysis of FtsE(Ng) and alignment with other FtsE indicated that it contained the conserved motifs of ABC domains while sequence alignment of FtsX(Ng) with other published FtsX sequences predicted that they all contain four transmembrane segments and a conserved motif (Leu-hydrophobic aa-Gly-Ala/Gly) which may prove to be important for FtsX function. The viability of ftsE(Ng) and ftsX(Ng) mutants that were constructed by insertional inactivation indicated that these genes are not essential. The role of FtsE and FtsX is controversial. Analysis of ftsE(Ng) and ftsX(Ng) mutants by transmission electron microscopy showed that both exhibited morphological abnormalities indicative of defective division sites and in some cases aberrant condensation of DNA.  相似文献   

15.
Elicitation of drug resistance and various survival strategies inside host macrophages have been the hallmarks of Mycobacterium tuberculosis as a successful pathogen. ATP Binding Cassette (ABC) transporter type proteins are known to be involved in the efflux of drugs in bacterial and mammalian systems. FtsE, an ABC transporter type protein, in association with the integral membrane protein FtsX, is involved in the assembly of potassium ion transport proteins and probably of cell division proteins as well, both of which being relevant to tubercle bacillus. In this study, we cloned ftsE gene of M. tuberculosis, overexpressed and purified. The recombinant MtFtsE-6xHis protein and the native MtFtsE protein were found localized on the membrane of E. coli and M. tuberculosis cells, respectively. MtFtsE-6xHis protein showed ATP binding in vitro, for which the K42 residue in the Walker A motif was found essential. While MtFtsE-6xHis protein could partially complement growth defect of E. coli ftsE temperature-sensitive strain MFT1181, co-expression of MtFtsE and MtFtsX efficiently complemented the growth defect, indicating that the MtFtsE and MtFtsX proteins might be performing an associated function. MtFtsE and MtFtsX-6xHis proteins were found to exist as a complex on the membrane of E. coli cells co-expressing the two proteins.  相似文献   

16.
ATP-binding cassette (ABC) transporters have often been refractory to over-expression. Using the C41(DE3) E. coli as a host strain, membrane vesicles highly enriched (>50%) in YvcC, a previously uncharacterized ABC transporter from Bacillus subtilis homologous to P-glycoprotein multidrug transporters, were obtained. The functionality of YvcC was assessed by its high vanadate-sensitive ATPase activity and its ability to transport a fluorescent drug, the Hoechst 33342.  相似文献   

17.
Lantibiotics are peptide-derived antibacterial substances produced by some Gram-positive bacteria and characterized by the presence of unusual amino acids, like lanthionines and dehydrated amino acids. Because lantibiotic producers may be attacked by self-produced lantibiotics, they express immunity proteins on the cytoplasmic membrane. An ATP-binding cassette (ABC) transport system mediated by the LanFEG protein complex is a major system in lantibiotic immunity. Multiple-sequence alignment analysis revealed that LanF proteins contain the E loop, a variant of the Q loop, which is a well-conserved motif in the nucleotide-binding domains (NBDs) of general ABC transporters. To elucidate E loop function, we introduced a mutation in the NukF protein, which is involved in the nukacin-ISK-1 immunity system. Amino acid replacement of glutamic acid in the E loop with glutamine (E85Q) resulted in slight decreases in the immunity level and transport activity. Additionally, the E85A mutation severely impaired the immunity level and transport activity. On the other hand, ATPase activities of purified E85Q and E85A mutants were almost similar to that of the wild type. These results suggested that the E loop found in ABC transporters involved in lantibiotic immunity plays a significant role in the function of these transporters, especially in the structural change of transmembrane domains.Lantibiotics are antibacterial peptides produced by some Gram-positive bacteria and are characterized by the presence of unusual amino acids, such as lanthionine and dehydrated amino acid residues (4, 9, 20). The unusual amino acids are introduced after translation by a modification enzyme(s), and their subsequent processing and secretion are carried out by a leader peptidase and transporter, respectively. Since the secreted mature lantibiotics have the potential to attack producer cells, lantibiotic-producer cells express self-protection systems against their own lantibiotics. These self-protection systems have 2 major mechanisms: a lantibiotic transport mechanism mediated by an ATP-binding cassette (ABC) transporter (LanFEG) and a lantibiotic-binding mechanism mediated by a lipoprotein (LanI) or a membrane protein (LanH) (2, 8, 26, 33, 34).Transport by LanFEG is a common and major mechanism in the lantibiotic immunity systems. LanFEG and LanI are needed for full immunity against nisin and subtilin, which are type A(I) lantibiotics (33, 34). However, the immunity level conferred by LanFEG is much higher than that conferred by LanI. LanFEG and LanH are expressed against nukacin ISK-1, which is a type A(II) lantibiotic produced by Staphylococcus warneri ISK-1 (2). As in the case of nisin and subtilin, LanFEG plays a major role in the level of immunity against nukacin ISK-1. Moreover, against lacticin 481, which is also a type A(II) lantibiotic, only LanFEG is expressed and it confers full immunity (9).ABC transporters function as molecular pumps and transport various substrates, such as nutrients, lipids, and antibiotics coupled to ATP hydrolysis (10, 31). Bacterial ABC transporters consist of 2 transmembrane domains (TMDs) and 2 nucleotide-binding domains (NBDs). They utilize ATP hydrolysis as a source of energy for the transport. The NBD of an ABC transporter has several conserved motifs, such as Walker A, Walker B, Q loop, Signature, and H loop, in its amino acid sequence, and these motifs are involved in the functions of ABC transporters (31). Although the detailed substrate-binding mechanism is still unknown, the dimerization of NBDs concomitant with ATP binding leads to the conformational change of 2 TMDs, resulting in transport of the substrate (31). Sequence similarities and hydrophobicity profiles suggest that LanFEG consists of 2 heterodimeric subunits containing TMDs (LanEG) and 2 homodimeric subunits containing NBDs (LanF) (4, 27).In general, ABC transporters that had been identified together with their substrates mediate the transport of the substrate across the membrane. An exception reported previously is the Lol system, which releases lipoproteins from the inner membrane to the outer membrane in Gram-negative bacteria (40). However, LanFEG proteins are believed to scavenge lantibiotics present on the membrane. This hypothesis is strongly supported by the mode of action of lantibiotics: many lantibiotics, especially type A(I) lantibiotics, show pore-forming activity against model membranes (4). Taken together, the transport mechanism of LanFEG seems to be different from that of general ABC transporters.The immunity mechanism against nukacin ISK-1 mediated by NukFEG and NukH has been investigated before (2, 21-23, 39). On the basis of our analysis, we suggested that NukFEG transports both nukacin ISK-1 on the membrane and nukacin ISK-1 captured by NukH (2, 22). Since the transport reaction depended on the metabolic energy of the cells, we presumed that ATP hydrolysis by NukF is a driving force for the transport (22).Using multiple sequence alignment analysis, we have found that all the LanF proteins have the E loop as a variant of the Q loop in general ABC transporters. Therefore, in this study, we investigated the function of the E loop existing in NukF by using site-directed mutagenesis. A bioassay using nukacin ISK-1 and recombinant Lactococcus lactis expressing nukF and its mutants showed that the E loop is important for immunity. Additionally, a transport assay with fluorescein isothiocyanate (FITC)-labeled nukacin ISK-1 indicated that the E loop is involved in transport activity. Since purified NukF and E loop mutants showed similar ATPase activity, we proposed that the E loop has an important role in the function of LanFEG, especially in coupled movement with the transmembrane subunit NukEG.  相似文献   

18.
The Escherichia coli toxin exporter HlyB comprises an integral membrane domain fused to a cytoplasmic domain of the ATP-binding casette (ABC) super-family, and it directs translocation of the 110kDa haemolysin protein out of the bacterial cell without using an N-terminal secretion signal peptide. We have exploited the ability to purify the soluble HlyB ABC domain as a fusion with glutathione S-transferase to obtain a direct correlation of the in vivo export of protein by HlyB with the degree of ATP binding and hydrolysis measured in vitro. Mutations in residues that are invariant or highly conserved in the ATP-binding fold and glycine-rich linker peptide of prokaryotic and eukaryotic ABC transporters caused a complete less of both HlyB exporter function and ATPase activity in proteins still able to bind ATP effectively and undergo ATP-induced conformational change. Mutation of less-conserved residues caused reduced export and ATP hydrolysis, but not ATP binding, whereas substitutions of poorly conserved residues did not impair activity either in vivo or in vitro. The data show that protein export by HlyB has an absolute requirement for the hydrolysis of ATP bound by its cytoplasmic domain and indicate that comparable mutations that disable other prokaryotic and eukaryotic ABC transporters also cause a specific loss of enzymatic activity.  相似文献   

19.
The human multidrug resistance protein 3 (MDR3/ABCB4) belongs to the ubiquitous family of ATP-binding cassette (ABC) transporters and is located in the canalicular membrane of hepatocytes. There it flops the phospholipids of the phosphatidylcholine (PC) family from the inner to the outer leaflet. Here, we report the characterization of wild type MDR3 and the Q1174E mutant, which was identified previously in a patient with progressive familial intrahepatic cholestasis type 3 (PFIC-3). We expressed different variants of MDR3 in the yeast Pichia pastoris, purified the proteins via tandem affinity chromatography, and determined MDR3-specific ATPase activity in the presence or absence of phospholipids. The ATPase activity of wild type MDR3 was stimulated 2-fold by liver PC or 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine lipids. Furthermore, the cross-linking of MDR3 with a thiol-reactive fluorophore blocked ATP hydrolysis and exhibited no PC stimulation. Similarly, phosphatidylethanolamine, phosphatidylserine, and sphingomyelin lipids did not induce an increase of wild type MDR3 ATPase activity. The phosphate analogues beryllium fluoride and aluminum fluoride led to complete inhibition of ATPase activity, whereas orthovanadate inhibited exclusively the PC-stimulated ATPase activity of MDR3. The Q1174E mutation is located in the nucleotide-binding domain in direct proximity of the leucine of the ABC signature motif and extended the X loop, which is found in ABC exporters. Our data on the Q1174E mutant demonstrated basal ATPase activity, but PC lipids were incapable of stimulating ATPase activity highlighting the role of the extended X loop in the cross-talk of the nucleotide-binding domain and the transmembrane domain.  相似文献   

20.
In Escherichia coli, at least 12 proteins, FtsZ, ZipA, FtsA, FtsE/X, FtsK, FtsQ, FtsL, FtsB, FtsW, FtsI, FtsN, and AmiC, are known to localize to the septal ring in an interdependent and sequential pathway to coordinate the septum formation at the midcell. The FtsEX complex is the latest recruit of this pathway, and unlike other division proteins, it is shown to be essential only on low-salt media. In this study, it is shown that ftsEX null mutations are not only salt remedial but also osmoremedial, which suggests that FtsEX may not be involved in salt transport as previously thought. Increased coexpression of cell division proteins FtsQ-FtsA-FtsZ or FtsN alone restored the growth defects of ftsEX mutants. ftsEX deletion exacerbated the defects of most of the mutants affected in Z ring localization and septal assembly; however, the ftsZ84 allele was a weak suppressor of ftsEX. The viability of ftsEX mutants in high-osmolarity conditions was shown to be dependent on the presence of a periplasmic protein, SufI, a substrate of twin-arginine translocase. In addition, SufI in multiple copies could substitute for the functions of FtsEX. Taken together, these results suggest that FtsE and FtsX are absolutely required for the process of cell division in conditions of low osmotic strength for the stability of the septal ring assembly and that, during high-osmolarity conditions, the FtsEX and SufI functions are redundant for this essential process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号