共查询到20条相似文献,搜索用时 15 毫秒
1.
A key component in the regulation of V(D)J recombination is control of the accessibility of RAG proteins to recombination signal sequences (RSS). Nucleosomes are known to inhibit this accessibility. We show here that the signal sequence itself represses accessibility by causing nucleosome positioning over the RSS. This positioning is mediated, in vitro and in vivo, by the conserved nonamer of the RSS. Consistent with this strong positioning, nucleosomes at RSSs are resistant to remodelling by nucleosome sliding. In vivo we find that consensus RSSs are preferentially protected, whereas those that lack a consensus nonamer, including some cryptic RSSs, fail to position nucleosomes. Decreased protection of these non-consensus RSSs correlates with their increased use in recombination assays. We therefore suggest that nucleosome positioning by RSSs provides a previously unanticipated level of protection and regulation of V(D)J recombination. 相似文献
2.
Footprint analysis of recombination signal sequences in the 12/23 synaptic complex of V(D)J recombination 下载免费PDF全文
Nagawa F Kodama M Nishihara T Ishiguro K Sakano H 《Molecular and cellular biology》2002,22(20):7217-7225
In V(D)J joining of antigen receptor genes, two recombination signal sequences (RSSs), 12-RSS and 23-RSS, are paired and complexed with the protein products of recombination-activating genes RAG1 and RAG2. Using magnetic beads, we purified the pre- and postcleavage complexes of V(D)J joining and analyzed them by DNase I footprinting. In the precleavage synaptic complex, strong protection was seen not only in the 9-mer and spacer regions but also near the coding border of the 7-mer. This is a sharp contrast to the single RSS-RAG complex where the 9-mer plays a major role in the interaction. We also analyzed the postcleavage signal end complex by footprinting. Unlike what was seen with the precleavage complex, the entire 7-mer and its neighboring spacer regions were protected. The present study indicates that the RAG-RSS interaction in the 7-mer region drastically changes once the synaptic complex is formed for cleavage. 相似文献
3.
Walker Hoolehan Justin C Harris Jennifer N Byrum Destiny A Simpson Karla
K Rodgers 《Nucleic acids research》2022,50(20):11696
In the adaptive immune system, V(D)J recombination initiates the production of a diverse antigen receptor repertoire in developing B and T cells. Recombination activating proteins, RAG1 and RAG2 (RAG1/2), catalyze V(D)J recombination by cleaving adjacent to recombination signal sequences (RSSs) that flank antigen receptor gene segments. Previous studies defined the consensus RSS as containing conserved heptamer and nonamer sequences separated by a less conserved 12 or 23 base-pair spacer sequence. However, many RSSs deviate from the consensus sequence. Here, we developed a cell-based, massively parallel assay to evaluate V(D)J recombination activity on thousands of RSSs where the 12-RSS heptamer and adjoining spacer region contained randomized sequences. While the consensus heptamer sequence (CACAGTG) was marginally preferred, V(D)J recombination was highly active on a wide range of non-consensus sequences. Select purine/pyrimidine motifs that may accommodate heptamer unwinding in the RAG1/2 active site were generally preferred. In addition, while different coding flanks and nonamer sequences affected recombination efficiency, the relative dependency on the purine/pyrimidine motifs in the RSS heptamer remained unchanged. Our results suggest RAG1/2 specificity for RSS heptamers is primarily dictated by DNA structural features dependent on purine/pyrimidine pattern, and to a lesser extent, RAG:RSS base-specific interactions. 相似文献
4.
Synapsis of recombination signal sequences located in cis and DNA underwinding in V(D)J recombination 下载免费PDF全文
V(D)J recombination requires binding and synapsis of a complementary (12/23) pair of recombination signal sequences (RSSs) by the RAG1 and RAG2 proteins, aided by a high-mobility group protein, HMG1 or HMG2. Double-strand DNA cleavage within this synaptic, or paired, complex is thought to involve DNA distortion or melting near the site of cleavage. Although V(D)J recombination normally occurs between RSSs located on the same DNA molecule (in cis), all previous studies that directly assessed RSS synapsis were performed with the two DNA substrates in trans. To overcome this limitation, we have developed a facilitated circularization assay using DNA substrates of reduced length to assess synapsis of RSSs in cis. We show that a 12/23 pair of RSSs is the preferred substrate for synapsis of cis RSSs and that the efficiency of pairing is dependent upon RAG1-RAG2 stoichiometry. Synapsis in cis occurs rapidly and is kinetically favored over synapsis of RSSs located in trans. This experimental system also allowed the generation of underwound DNA substrates containing pairs of RSSs in cis. Importantly, we found that the RAG proteins cleave such substrates substantially more efficiently than relaxed substrates and that underwinding may enhance RSS synapsis as well as RAG1/2-mediated catalysis. The energy stored in such underwound substrates may be used in the generation of DNA distortion and/or protein conformational changes needed for synapsis and cleavage. We propose that this unwinding is uniquely sensed during synapsis of an appropriate 12/23 pair of RSSs. 相似文献
5.
6.
DNA sequence and structure requirements for cleavage of V(D)J recombination signal sequences. 总被引:10,自引:8,他引:10 下载免费PDF全文
Purified RAG1 and RAG2 proteins can cleave DNA at V(D)J recombination signals. In dissecting the DNA sequence and structural requirements for cleavage, we find that the heptamer and nonamer motifs of the recombination signal sequence can independently direct both steps of the cleavage reaction. Proper helical spacing between these two elements greatly enhances the efficiency of cleavage, whereas improper spacing can lead to interference between the two elements. The signal sequences are surprisingly tolerant of structural variation and function efficiently when nicks, gaps, and mismatched bases are introduced or even when the signal sequence is completely single stranded. Sequence alterations that facilitate unpairing of the bases at the signal/coding border activate the cleavage reaction, suggesting that DNA distortion is critical for V(D)J recombination. 相似文献
7.
The V(D)J recombination reaction in jawed vertebrates is catalyzed by the RAG1 and RAG2 proteins, which are believed to have emerged approximately 500 million years ago from transposon-encoded proteins. Yet no transposase sequence similar to RAG1 or RAG2 has been found. Here we show that the approximately 600-amino acid “core” region of RAG1 required for its catalytic activity is significantly similar to the transposase encoded by DNA transposons that belong to the Transib superfamily. This superfamily was discovered recently based on computational analysis of the fruit fly and African malaria mosquito genomes. Transib transposons also are present in the genomes of sea urchin, yellow fever mosquito, silkworm, dog hookworm, hydra, and soybean rust. We demonstrate that recombination signal sequences (RSSs) were derived from terminal inverted repeats of an ancient Transib transposon. Furthermore, the critical DDE catalytic triad of RAG1 is shared with the Transib transposase as part of conserved motifs. We also studied several divergent proteins encoded by the sea urchin and lancelet genomes that are 25%−30% identical to the RAG1 N-terminal domain and the RAG1 core. Our results provide the first direct evidence linking RAG1 and RSSs to a specific superfamily of DNA transposons and indicate that the V(D)J machinery evolved from transposons. We propose that only the RAG1 core was derived from the Transib transposase, whereas the N-terminal domain was assembled from separate proteins of unknown function that may still be active in sea urchin, lancelet, hydra, and starlet sea anemone. We also suggest that the RAG2 protein was not encoded by ancient Transib transposons but emerged in jawed vertebrates as a counterpart of RAG1 necessary for the V(D)J recombination reaction. 相似文献
8.
V(D)J recombination is a process integral to lymphocyte development. However, this process is not always benign, since certain lymphoid malignancies exhibit recurrent chromosomal abnormalities, such as translocations and deletions, that harbor molecular signatures suggesting an origin from aberrant V(D)J recombination. Translocations involving LMO2, TAL1, Ttg-1, and Hox11, as well as a recurrent interstitial deletion at 1p32 involving SIL/SCL, are cited examples of illegitimate V(D)J recombination. Previous studies using extrachromosomal substrates reveal that cryptic recombination signal sequences (cRSSs) identified near the translocation breakpoint in these examples support V(D)J recombination with efficiencies ranging from about 30- to 20,000-fold less than bona fide V(D)J recombination signals. To understand the molecular basis for these large differences, we investigated the binding and cleavage of these cRSSs by the RAG1/2 proteins that initiate V(D)J recombination. We find that the RAG proteins comparably bind all cRSSs tested, albeit more poorly than a consensus RSS. We show that four cRSSs that support levels of V(D)J recombination above background levels in cell culture (LMO2, TAL1, Ttg-1, and SIL) are also cleaved by the RAG proteins in vitro with efficiencies ranging from 18 to 70% of a consensus RSS. Cleavage of LMO2 and Ttg-1 by the RAG proteins can also be detected in cell culture using ligation-mediated PCR. In contrast, Hox11 and SCL are nicked but not cleaved efficiently in vitro, and cleavage at other adventitious sites in plasmid substrates may also limit the ability to detect recombination activity at these cRSSs in cell culture. 相似文献
9.
V(D)J recombination plays a prominent role in the generation of the antigen receptor repertoires of B and T lymphocytes. It is also likely to be involved in the formation of chromosomal translocations, some of which may result from interchromosomal recombination. We have investigated the potential of the V(D)J recombination machinery to perform intermolecular recombination between two plasmids, either unlinked or linked by catenation. In either case, recombination occurs in trans to yield signal and coding joints, and the results do not support the existence of a mechanistic block to the formation of coding joints in trans. Instead, we observe that linearization of the substrate, which does not alter the cis or trans status of the recombination signals, causes a specific and dramatic reduction in coding joint formation. This unexpected result leads us to propose a "release and recapture" model for V(D)J recombination in which coding ends are frequently released from the postcleavage complex and the efficiency of coding joint formation is influenced by the efficiency with which such ends are recaptured by the complex. This implies the existence of mechanisms, operative during recombination of chromosomal substrates, that act to prevent coding end release or to facilitate coding end recapture. 相似文献
10.
11.
V(D)J recombination frequencies can be profoundly affected by changes in the spacer sequence 总被引:2,自引:0,他引:2
Montalbano A Ogwaro KM Tang A Matthews AG Larijani M Oettinger MA Feeney AJ 《Journal of immunology (Baltimore, Md. : 1950)》2003,171(10):5296-5304
Each V, D, and J gene segment is flanked by a recombination signal sequence (RSS), composed of a conserved heptamer and nonamer separated by a 12- or 23-bp spacer. Variations from consensus in the heptamer or nonamer at specific positions can dramatically affect recombination frequency, but until recently, it had been generally held that only the length of the spacer, but not its sequence, affects the efficacy of V(D)J recombination. In this study, we show several examples in which the spacer sequence can significantly affect recombination frequencies. We show that the difference in spacer sequence alone of two V(H)S107 genes affects recombination frequency in recombination substrates to a similar extent as the bias observed in vivo. We show that individual positions in the spacer can affect recombination frequency, and those positions can often be predicted by their frequency in a database of RSS. Importantly, we further show that a spacer sequence that has an infrequently observed nucleotide at each position is essentially unable to support recombination in an extrachromosmal substrate assay, despite being flanked by a consensus heptamer and nonamer. This infrequent spacer sequence RSS shows only a 2-fold reduction of binding of RAG proteins, but the in vitro cleavage of this RSS is approximately 9-fold reduced compared with a good RSS. These data demonstrate that the spacer sequence should be considered to play an important role in the recombination efficacy of an RSS, and that the effect of the spacer occurs primarily subsequent to RAG binding. 相似文献
12.
Initiation of V(D)J recombination in vivo: role of recombination signal sequences in formation of single and paired double-strand breaks. 总被引:8,自引:0,他引:8 下载免费PDF全文
In V(D)J recombination, double-strand breaks (DSBs) are introduced at recombination signal sequences (RSSs) which consist of three distinct elements: a heptamer, a 12 or 23 nucleotide spacer and a nonamer. Efficient DSB formation requires a 12/23 RSS pair and occurs at both RSS in a temporally coupled fashion (coupled cleavage). It remains unknown which RSS elements are important for coupled cleavage. Furthermore, it has not been established whether some RSS components are critical only for cleavage in cis, with others mainly promoting cleavage in trans at the partner RSS. We investigated these questions by analyzing the effects of RSS mutations on the formation of DSBs in vivo. The abundance of DSBs in cis (at the mutant RSS) and in trans (at the consensus RSS) was determined using an established ligation-mediated PCR assay. We also developed a Southern blotting approach that allows the first direct measurement of dual and single RSS cleavage in vivo. Our results demonstrate that the heptamer, spacer and nonamer elements are all required for coupled cleavage in vivo. These studies also provide evidence for cleavage events involving a single RSS both in mutant substrates and in substrates containing a consensus 12/23 RSS pair. 相似文献
13.
Substrates for studying V(D)J recombination in human cells and two human pre-B-cell lines that have active V(D)J recombination activity are described. Using these substrates, we have been able to analyze the relative efficiency of signal joint and coding joint formation. Coding joint formation was five- to sixfold less efficient than signal joint formation in both cell lines. This imbalance between the two halves of the reaction was demonstrated on deletional substrates, where each joint is assayed individually. In both cell lines, the inversional reaction (which requires formation of both a signal and a coding joint) was more than 20-fold less efficient than signal joint formation alone. The signal and coding sequences are identical in all of these substrates. Hence, the basis for these differential reaction ratios appears to be that coding joint and signal joint formation are both inefficient and their combined effects are such that inversions (two-joint reactions) reflect the product of these inefficiencies. Physiologically, these results have two implications. First, they show how signal and coding joint formation efficiencies can affect the ratio of deletional to inversional products at endogenous loci. Second, the fact that not all signal and coding joints go to completion implies that the recombinase is generating numerous broken ends. Such unresolved ends may participate in pathologic chromosomal rearrangements even when the other half of the same reaction may have proceeded to resolution. 相似文献
14.
Background
The processes involved in the somatic assembly of antigen receptor genes are unique to the immune system and are driven largely by random events. Subtle biases, however, may exist and provide clues to the molecular mechanisms involved in their assembly and selection. Large-scale efforts to provide baseline data about the genetic characteristics of immunoglobulin (Ig) genes and the mechanisms involved in their assembly have recently become possible due to the rapid growth of genetic databases.Results
We gathered and analyzed nearly 6,500 productive human Ig heavy chain genes and compared them with 325 non-productive Ig genes that were originally rearranged out of frame and therefore incapable of being biased by selection. We found evidence for differences in n-nucleotide tract length distributions which have interesting interpretations for the mechanisms involved in n-nucleotide polymerization. Additionally, we found striking statistical evidence for pairing preferences among D and J segments. We present a statistical model to support our hypothesis that these pairing biases are due to multiple sequential D-to-J rearrangements.Conclusion
We present here the most precise estimates of gene segment usage frequencies currently available along with analyses regarding n-nucleotide distributions and D-J segment pair preferences. Additionally, we provide the first statistical evidence that sequential D-J recombinations occur at the human heavy chain locus during B-cell ontogeny with an approximate frequency of 20%. 相似文献15.
Murray JM O'Neill JP Messier T Rivers J Walker VE McGonagle B Trombley L Cowell LG Kelsoe G McBlane F Finette BA 《Journal of immunology (Baltimore, Md. : 1950)》2006,177(8):5393-5404
V(D)J recombinase mediates rearrangements at immune loci and cryptic recombination signal sequences (cRSS), resulting in a variety of genomic rearrangements in normal lymphocytes and leukemic cells from children and adults. The frequency at which these rearrangements occur and their potential pathologic consequences are developmentally dependent. To gain insight into V(D)J recombinase-mediated events during human development, we investigated 265 coding junctions associated with cRSS sites at the hypoxanthine-guanine phosphoribosyltransferase (HPRT) locus in peripheral T cells from 111 children during the late stages of fetal development through early adolescence. We observed a number of specific V(D)J recombinase processing features that were both age and gender dependent. In particular, TdT-mediated nucleotide insertions varied depending on age and gender, including percentage of coding junctions containing N-nucleotide inserts, predominance of GC nucleotides, and presence of inverted repeats (Pr-nucleotides) at processed coding ends. In addition, the extent of exonucleolytic processing of coding ends was inversely related to age. We also observed a coding-partner-dependent difference in exonucleolytic processing and an age-specific difference in the subtypes of V(D)J-mediated events. We investigated these age- and gender-specific differences with recombination signal information content analysis of the cRSS sites in the human HPRT locus to gain insight into the mechanisms mediating these developmentally specific V(D)J recombinase-mediated rearrangements in humans. 相似文献
16.
Mihai Ciubotaru Marius D. Surleac Lauren Ann Metskas Peter Koo Elizabeth Rhoades Andrei J. Petrescu David G. Schatz 《Nucleic acids research》2015,43(2):917-931
V(D)J recombination is initiated by RAG1 and RAG2, which together with HMGB1 bind to a recombination signal sequence (12RSS or 23RSS) to form the signal complex (SC) and then capture a complementary partner RSS, yielding the paired complex (PC). Little is known regarding the structural changes that accompany the SC to PC transition or the structural features that allow RAG to distinguish its two asymmetric substrates. To address these issues, we analyzed the structure of the 12RSS in the SC and PC using fluorescence resonance energy transfer (FRET) and molecular dynamics modeling. The resulting models indicate that the 12RSS adopts a strongly bent V-shaped structure upon RAG/HMGB1 binding and reveal structural differences, particularly near the heptamer, between the 12RSS in the SC and PC. Comparison of models of the 12RSS and 23RSS in the PC reveals broadly similar shapes but a distinct number and location of DNA bends as well as a smaller central cavity for the 12RSS. These findings provide the most detailed view yet of the 12RSS in RAG–DNA complexes and highlight structural features of the RSS that might underlie activation of RAG-mediated cleavage and substrate asymmetry important for the 12/23 rule of V(D)J recombination. 相似文献
17.
18.
M Gellert 《Trends in genetics : TIG》1992,8(12):408-412
The diversity of immunoglobulins and T cell receptors is largely due to the assembly of functional genes from separate segments. The mechanism by which these gene fragments are joined is starting to be deciphered, with broken DNA molecules that may be intermediates in the reaction providing a new clue. 相似文献
19.
Novel strand exchanges in V(D)J recombination 总被引:37,自引:0,他引:37
We describe novel products of V(D)J recombination in which signal sequences become joined to coding elements, in contrast to the standard reaction whose products are junctions of two signal sequences or two coding elements. In this variant reaction, the recombination machinery evidently recognizes signal sequences and introduces strand breaks at the normal positions, but then connects the elements in unusual combinations. The lack of fixed directionality indicates that recombination sites are not uniquely aligned when strand exchange occurs. The discovery of these variant junctions suggests a model for the evolution of the antigen receptor loci. 相似文献
20.
Unintended DNA rearrangements in a differentiating lymphocyte can have severe, oncogenic consequences, but the mechanisms for avoiding pathogenic outcomes in V(D)J recombination are not well understood. The first level at which fidelity is instituted is in discrimination by the recombination proteins between authentic and inauthentic recombination signal sequences. Nevertheless, this discrimination is not absolute and cannot fully eliminate targeting errors. To learn more about the basis of specificity during V(D)J recombination, we have investigated whether it is possible for the recombination machinery to detect an inaccurately targeted sequence subsequent to cleavage. These studies indicate that even postcleavage steps in V(D)J recombination are sequence specific and that noncanonical sequences will not efficiently support the resolution of recombination intermediates in vivo. Accordingly, interventions after a mistargeting event conceivably occur at a late stage in the joining process and the likelihood may well be crucial to enforcing fidelity during antigen receptor gene rearrangement. 相似文献