首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Batch culture experiments with the cyanobacterium Microcystis aeruginosa PCC 7806 were performed in order to test the hypothesis that microcystins (MCYSTs) are produced in response to a relative deficiency of intracellular inorganic carbon (Ci,i). In the first experiment, MCYST production was studied under increased Ci,i deficiency conditions, achieved by restricting sodium-dependent bicarbonate uptake through replacement of sodium bicarbonate in the medium with its potassium analog. The same experimental approach was used in a second experiment to compare the response of the wild-type strain M. aeruginosa PCC 7806 with its mcyB mutant, which lacks the ability to produce MCYSTs. In a third experiment, the impact of varying the Ci,i status on MCYST production was examined without suppressing the sodium-dependent bicarbonate transporter; instead, a detailed investigation of a dark-light cycle was performed. In all experiments, a relative Ci,i deficiency was indicated by an elevated variable fluorescence signal and led to enhanced phycocyanin cell quotas. Higher MCYST cell quotas (in the first and third experiments) and increased total (intracellular plus extracellular) MCYST production (in the first experiment) were detected with increased Ci,i deficiency. Furthermore, the MCYST-producing wild-type strain and its mcyB mutant showed basically the same response to restrained inorganic carbon uptake, with elevated variable fluorescence and phycocyanin cell quotas with increased Ci,i deficiency. The response of the wild type, however, was distinctly stronger and also included elevated chlorophyll a cell quotas. These differences indicate the limited ability of the mutant to adapt to low-Ci,i conditions. We concluded that MCYSTs may be involved in enhancing the efficiency of the adaptation of the photosynthetic apparatus to fluctuating inorganic carbon conditions in cyanobacterial cells.  相似文献   

2.
Microcystins are the most common cyanobacterial toxins found in freshwater lakes and reservoirs throughout the world. They are frequently produced by the unicellular, colonial cyanobacterium Microcystis aeruginosa; however, the role of the peptide for the producing organism is poorly understood. Differences in the cellular aggregation of M. aeruginosa PCC 7806 and a microcystin-deficient Delta mcyB mutant guided the discovery of a surface-exposed protein that shows increased abundance in PCC 7806 mutants deficient in microcystin production compared to the abundance of this protein in the wild type. Mass spectrometric and immunoblot analyses revealed that the protein, designated microcystin-related protein C (MrpC), is posttranslationally glycosylated, suggesting that it may be a potential target of a putative O-glycosyltransferase of the SPINDLY family encoded downstream of the mrpC gene. Immunofluorescence microscopy detected MrpC at the cell surface, suggesting an involvement of the protein in cellular interactions in strain PCC 7806. Further analyses of field samples of Microcystis demonstrated a strain-specific occurrence of MrpC possibly associated with distinct Microcystis colony types. Our results support the implication of microcystin in the colony specificity of and colony formation by Microcystis.  相似文献   

3.
Insights into the origins, function(s), and fates of cyanobacterial toxins may be obtained by an understanding of their location within cyanobacterial cells. Here, we have localised microcystins in laboratory cultures of Microcystis PCC 7806 and PCC 7820 by immunogold labelling. Cryosectioning was used for immunoelectron microscopy since microcystins were extracted during the ethanol-based dehydration steps routinely used for sample preparation. Microcystins were specifically localised in the nucleoplasm and were associated with all major inclusions of the microcystin-producing strains Microcystis PCC 7806 (MC(+)) and Microcystis PCC 7820, and labelling was preferentially associated with the thylakoids and around polyphosphate bodies. A mutant strain of Microcystis PCC 7806 (MC(-)) which does not produce microcystins was used as a control. Distribution of total gold label within each cell region or associated with inclusions indicated that most of the cells' microcystin pool was associated with the thylakoids (69%, PCC 7806 (MC(+)); 78%, PCC 7820), followed by the nucleoplasmic region (19%, PCC 7806 (MC(+)); 12%, PCC 7820). Cryosectioning is a useful technique since it reduces the extraction of microcystins during sample preparation for electron microscopy.  相似文献   

4.
Cell quotas of microcystin (Q(MCYST); femtomoles of MCYST per cell), protein, and chlorophyll a (Chl a), cell dry weight, and cell volume were measured over a range of growth rates in N-limited chemostat cultures of the toxic cyanobacterium Microcystis aeruginosa MASH 01-A19. There was a positive linear relationship between Q(MCYST) and specific growth rate (mu), from which we propose a generalized model that enables Q(MCYST) at any nutrient-limited growth rate to be predicted based on a single batch culture experiment. The model predicts Q(MCYST) from mu, mu(max) (maximum specific growth rate), Q(MCYSTmax) (maximum cell quota), and Q(MCYSTmin) (minimum cell quota). Under the conditions examined in this study, we predict a Q(MCYSTmax) of 0.129 fmol cell(-1) at mu(max) and a Q(MCYSTmin) of 0.050 fmol cell(-1) at mu = 0. Net MCYST production rate (R(MCYST)) asymptotes to zero at mu = 0 and reaches a maximum of 0.155 fmol cell(-1) day(-1) at mu(max). MCYST/dry weight ratio (milligrams per gram [dry weight]) increased linearly with mu, whereas the MCYST/protein ratio reached a maximum at intermediate mu. In contrast, the MCYST/Chl a ratio remained constant. Cell volume correlated negatively with mu, leading to an increase in intracellular MCYST concentration at high mu. Taken together, our results show that fast-growing cells of N-limited M. aeruginosa are smaller, are of lower mass, and have a higher intracellular MCYST quota and concentration than slow-growing cells. The data also highlight the importance of determining cell MCYST quotas, as potentially confusing interpretations can arise from determining MCYST content as a ratio to other cell components.  相似文献   

5.
The evolution of the microcystin toxin gene cluster in phylogenetically distant cyanobacteria has been attributed to recombination, inactivation, and deletion events, although gene transfer may also be involved. Since the microcystin-producing Microcystis aeruginosa PCC 7806 is naturally transformable, we have initiated the characterization of its type IV pilus system, involved in DNA uptake in many bacteria, to provide a physiological focus for the influence of gene transfer in microcystin evolution. The type IV pilus genes pilA, pilB, pilC, and pilT were shown to be expressed in M. aeruginosa PCC 7806. The purified PilT protein yielded a maximal ATPase activity of 37.5 +/- 1.8 nmol P(i) min(-1) mg protein(-1), with a requirement for Mg(2+). Heterologous expression indicated that it could complement the pilT mutant of Pseudomonas aeruginosa, but not that of the cyanobacterium Synechocystis sp. strain PCC 6803, which was unexpected. Differences in two critical residues between the M. aeruginosa PCC 7806 PilT (7806 PilT) and the Synechocystis sp. strain PCC 6803 PilT proteins affected their theoretical structural models, which may explain the nonfunctionality of 7806 PilT in its cyanobacterial counterpart. Screening of the pilT gene in toxic and nontoxic strains of Microcystis was also performed.  相似文献   

6.
The application of quantitative real-time PCR has been proposed for the quantification of toxic genotypes of cyanobacteria. We have compared the Taq Nuclease Assay (TNA) in quantifying the toxic cyanobacteria Microcystis sp. via the intergenic spacer region of the phycocyanin operon (PC) and mcyB indicative of the production of the toxic heptapeptide microcystin between three research groups employing three instruments (ABI7300, GeneAmp5700, ABI7500). The estimates of mcyB genotypes were compared using (i) DNA of a mcyB containing strain and a non-mcyB containing strain supplied in different mixtures across a low range of variation (0-10% of mcyB) and across a high range of variation (20-100%), and (ii) DNA from field samples containing Microcystis sp. For all three instruments highly significant linear regression curves between the proportion of the mcyB containing strain and the percentage of mcyB genotypes both within the low range and within the high range of mcyB variation were obtained. The regression curves derived from the three instruments differed in slope and within the high range of mcyB variation mcyB proportions were either underestimated (0-50%) or overestimated (0-72%). For field samples cell numbers estimated via both TNAs as well as mcyB proportions showed significant linear relationships between the instruments. For all instruments a linear relationship between the cell numbers estimated as PC genotypes and the cell numbers estimated as mcyB genotypes was observed. The proportions of mcyB varied from 2 to 28% and did not differ between the instruments. It is concluded that the TNA is able to provide quantitative estimates on mcyB genotype numbers that are reproducible between research groups and is useful to follow variation in mcyB genotype proportion occurring within weeks to months.  相似文献   

7.
郭莉莎  章军  吴娟  徐虹 《微生物学报》2012,52(2):228-235
【目的】研究铜绿微囊藻细胞死亡过程中形态和生理生化变化,探讨蓝藻细胞死亡机制。【方法】通过黑暗限气处理模拟水华爆发后期水体环境,在处理后不同时间取样,对藻液的OD值,溶氧含量和pH值进行监测,使用透射电镜对细胞形态结构变化进行观察,通过胱天蛋白酶(Cysteine-dependent aspartate specificprotease,Caspase)活性检测、活性氧含量测定、末端脱氧核糖核酸转移酶介导的dUTP缺口末端标记(Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling,TUNEL)染色和琼脂糖凝胶电泳对处理后藻细胞的死亡生理进行研究。【结果】黑暗限气处理后,藻培养液pH值和溶解氧含量下降,处理12 h后藻液开始变黄,48 h后藻细胞全部死亡。电镜观察结果表明,藻细胞在黑暗限气处理所导致的死亡过程中出现空泡和类囊体、核糖体等内部结构解体但细胞壁仍保持完整等现象。活性氧含量和caspase活性检测表明,在藻细胞死亡过程中活性氧含量和caspase活性上升。TUNEL染色和琼脂糖凝胶电泳分析发现,藻细胞在死亡过程中DNA发生断裂和降解。【结论】铜绿微囊藻细胞在黑暗和限气处理中表现出和真核生物细胞程序性死亡相类似的死亡特征,这说明细胞死亡机制是保守的,原核细胞和真核细胞一样具有程序性死亡机制。  相似文献   

8.
The effects of microcystins on Daphnia galeata, a typical filter-feeding grazer in eutrophic lakes, were investigated. To do this, the microcystin-producing wild-type strain Microcystis aeruginosa PCC7806 was compared with a mcy PCC7806 mutant, which could not synthesize any variant of microcystin due to mutation of a microcystin synthetase gene. The wild-type strain was found to be poisonous to D. galeata, whereas the mcy mutant did not have any lethal effect on the animals. Both variants of PCC7806 were able to reduce the Daphnia ingestion rate. Our results suggest that microcystins are the most likely cause of the daphnid poisoning observed when wild-type strain PCC7806 is fed to the animals, but these toxins are not responsible for inhibition of the ingestion process.  相似文献   

9.
The influence of cell-bound microcystins on the survival time and feeding rates of six Daphnia clones belonging to five common species was studied. To do this, the effects of the microcystin-producing Microcystis strain PCC7806 and its mutant, which has been genetically engineered to knock out microcystin synthesis, were compared. Additionally, the relationship between microcystin ingestion rate by the Daphnia clones and Daphnia survival time was analyzed. Microcystins ingested with Microcystis cells were poisonous to all Daphnia clones tested. The median survival time of the animals was closely correlated to their microcystin ingestion rate. It was therefore suggested that differences in survival among Daphnia clones were due to variations in microcystin intake rather than due to differences in susceptibility to the toxins. The correlation between median survival time and microcystin ingestion rate could be described by a reciprocal power function. Feeding experiments showed that, independent of the occurrence of microcystins, cells of wild-type PCC7806 and its mutant are able to inhibit the feeding activity of Daphnia. Both variants of PCC7806 were thus ingested at low rates. In summary, our findings strongly suggest that (i) sensitivity to the toxic effect of cell-bound microcystins is typical for Daphnia spp., (ii) Daphnia spp. and clones may have a comparable sensitivity to microcystins ingested with food particles, (iii) Daphnia spp. may be unable to distinguish between microcystin-producing and -lacking cells, and (iv) the strength of the toxic effect can be predicted from the microcystin ingestion rate of the animals.  相似文献   

10.
11.
Iron uptake by microcystin-producing and non-microcystin-producing strains of Microcystis aeruginosa was investigated through short-term uptake assays. Although strain-specific differences were observed, the siderophore-independent Fe uptake kinetics were essentially similar (e.g., maximum uptake rates of 2.0 to 3.3 amol·cell(-1)·h(-1)) for the wild-type toxic strain PCC7806 and a genetically engineered mutant unable to produce microcystin.  相似文献   

12.
Fibroblast extracts and fetal liver homogenates from patients with propionic acidemia due to inherited deficiency of propionyl CoA carboxylase (PCC) were analyzed for the presence of immunologically cross-reactive PCC protein. Using several rabbit antisera raised against homogeneous human liver PCC, homogeneous pig heart PCC, or the individual non-identical subunits of the human liver enzyme, we found no detectable cross-reacting material by direct or competitive immunotitration in several cell lines from patients in either major complementation group (pcc A; pcc C) with isolated PCC deficiency. In contrast, cells of a patient from the bio complementation group contained normal amounts of immunoreactive PCC. Further analysis of the pcc A and pcc C mutants revealed that their residual propionyl CoA carboxylating activity varied greatly depending on the concentration of extract or homogenate protein used in the PCC assay. When propionyl CoA carboxylation was assayed at high protein concentration in a fetal liver homogenate from a pcc C patient, the apparent PCC activity was comparable to that found in normal human fetal liver. Significantly, the specific activity in the mutant, but not in the control, extract declined steeply as protein concentration was lowered, and this loss could not be prevented by adding PCC substrates, bovine serum albumin, glycerol, or 2-mercaptoethanol. Moreover, detailed analyses of immunotitration curves of control fibroblasts extracts showed that fresh extracts contained an amount of nonimmunotitratable carboxylating activity corresponding to the residual activity present in fresh extracts of mutant cell lines. We conclude that the residual propionyl CoA carboxylating activity found in isolated PCC deficiency represents another carboxylase that can utilize propionyl CoA as a substrate rather than a mutant form of PCC with markedly different immunochemical and physicochemical properties.  相似文献   

13.
Pan X  Chang F  Kang L  Liu Y  Li G  Li D 《Journal of plant physiology》2008,165(16):1691-1697
Environmental factors that affect the growth and microcystin production of microcystis have received worldwide attention because of the hazards microcystin poses to environmental safety and public health. Nevertheless, the effects of organic anthropogenic pollution on microcystis are rarely discussed. Gibberellin A(3) (GA(3)) is a vegetable hormone widely used in agriculture and horticulture that can contaminate water as an anthropogenic pollutant. Because of its common occurrence, we studied the effects of GA(3) on growth and microcystin production of Microcystis aeruginosa (M. aeruginosa) PCC7806 with different concentrations (0.001-25mg/L) in batch culture. The control was obtained without gibberellin under the same culture conditions. Growth, estimated by dry weight and cell number, increased after the GA(3) treatment. GA(3) increased the amounts of chlorophyll a, phycocyanin and cellular-soluble protein in the cells of M. aeruginosa PCC7806, but decreased the accumulation of water-soluble carbohydrates. In addition, GA(3) was observed to affect nitrogen absorption of the test algae, but to have no effect on the absorption of phosphorus. The amount of microcystin measured by enzyme-linked immunosorbent assay (ELISA) increased in GA(3) treatment groups, but the stimulatory effects were different in different culture phases. It is suggested that GA(3) increases M. aeruginosa growth by stimulating its absorbance of nitrogen and increasing its ability to use carbohydrates, accordingly increasing cellular pigments and thus finally inducing accumulation of protein and microcystin.  相似文献   

14.
15.
16.
研究选取了水体常见蓝藻优势种类——铜绿微囊藻(Microcystis aeruginosa PCC7806)作为研究对象, 了解磺酰脲类除草剂甲磺隆(Metsulfuron-methyl)对铜绿微囊藻生长和光合系统的影响。研究表明, 当甲磺隆浓度大于80 mg/L时, 对铜绿微囊藻的生长具有显著抑制。通过回归分析和Probit分析, 甲磺隆对铜绿微囊藻生长的EC50为81.998 mg/L。细胞色素研究结果显示, 实验第6天, 各浓度处理下单位细胞内Chl.a和类胡萝卜素含量均低于对照组, 且当甲磺隆浓度为80 mg/L时, 单位细胞内类胡萝卜素含量显著低于对照组。快速叶绿素荧光诱导动力学变化结果分析显示, 实验第6天甲磺隆胁迫下单位反应中心捕获的用于电子传递的能量(ET0/RC)及单位反应中心用于电子传递的量子产额(φE0)受到显著抑制, 综合细胞色素变化结果显示, 甲磺隆能显著抑制光合系统反应中心电子受体侧电子性能。综上所述, 甲磺隆可能作用于光合系统反应中心电子受体侧, 从而对铜绿微囊藻光合系统造成影响。  相似文献   

17.
利用发酵罐加装外置环形光源构建藻类连续培养系统, 以产毒微囊藻PCC 7806及其无毒突变株PCC 7806 mcyB–为培养材料, 通过对补料时间、接种密度和稀释率参数的优化, 获得最优培养条件, 并应用于产毒与无毒微囊藻的竞争实验中。通过优化得到连续培养的最优培养条件: 补料时间为第4天, 起始接种密度为4×106 cells/mL, 稀释率为0.15/d。在连续培养下, 光照为35 μmol/(m2·s)时, 以1﹕1的起始比例接种产毒与无毒微囊藻, 二者间的竞争会达到平衡, 并以无毒微囊藻占据优势, 且两者以不同的优势度长时间维持不变。在此基础上, 开展了不同光强对产毒与无毒微囊藻竞争影响的实验, 结果表明, 光强为35和80 μmol/(m2·s)时, 无毒株在连续培养中占据优势; 而光强为5和15 μmol/(m2·s)时, 无毒和产毒微囊藻维持起始接种比例不变。研究通过优化连续培养条件为室内藻类竞争实验提供了更为适宜的培养模式。  相似文献   

18.
The influence of cell-bound microcystins on the survival time and feeding rates of six Daphnia clones belonging to five common species was studied. To do this, the effects of the microcystin-producing Microcystis strain PCC7806 and its mutant, which has been genetically engineered to knock out microcystin synthesis, were compared. Additionally, the relationship between microcystin ingestion rate by the Daphnia clones and Daphnia survival time was analyzed. Microcystins ingested with Microcystis cells were poisonous to all Daphnia clones tested. The median survival time of the animals was closely correlated to their microcystin ingestion rate. It was therefore suggested that differences in survival among Daphnia clones were due to variations in microcystin intake rather than due to differences in susceptibility to the toxins. The correlation between median survival time and microcystin ingestion rate could be described by a reciprocal power function. Feeding experiments showed that, independent of the occurrence of microcystins, cells of wild-type PCC7806 and its mutant are able to inhibit the feeding activity of Daphnia. Both variants of PCC7806 were thus ingested at low rates. In summary, our findings strongly suggest that (i) sensitivity to the toxic effect of cell-bound microcystins is typical for Daphnia spp., (ii) Daphnia spp. and clones may have a comparable sensitivity to microcystins ingested with food particles, (iii) Daphnia spp. may be unable to distinguish between microcystin-producing and -lacking cells, and (iv) the strength of the toxic effect can be predicted from the microcystin ingestion rate of the animals.  相似文献   

19.
Evidence for a DNA inversion system in Bordetella pertussis   总被引:2,自引:0,他引:2  
An isolation procedure was developed to provide within one day microcystin-LR, a cyclic heptapeptide toxin from Microcystis aeruginosa PCC 7806. After ODS (octadecylsilyl) solid phase extraction, the crude toxin fraction was chromatographed using a strong anion exchange column. The toxin was eluted with 0.02 M ammonium bicarbonate. An at least 95% purity was revealed on HPLC separation by monitoring at 214 nm. Application of the procedure to the cyclic pentapeptide toxin nodularin from Nodularia spumigena AV2 was examined.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号