首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microviscosity η of the plasma-membrane lipid matrix was measured in exponentially growing and differentiating C1300 mouse neuroblastoma cells, attached to a glass substratum, by fluorescence polarisation of 1,6-diphenyl-1,3,5-hexatriene. Upon differentiation η decreases progressively, reaching values below those observed in the growth phase. Treatment of the cells with dipalmitoyl phosphatidylcholine vesicles reversibly inhibits morphological differentiation. The results show that a high membrane fluidity is a prerequisite for differentiation.  相似文献   

2.
3.
4.
Mouse neuroblastoma cells (clone N1E-115) differentiate in culture upon withdrawal of serum growth factors and acquire the characteristics of neurons. We have shown tht exponentially growing N1E-115 cells possess functional epidermal growth factor (EGF) receptors but that the capacity for binding EGF and for stimulation of DNA synthesis is lost as the cells differentiate. Furthermore, in exponentially growing cells, EGF induces a rapid increase in amiloride-sensitive Na+ influx, followed by stimulation of the (Na+-K+)ATPase, indicating that activation of the Na+/H+ exchange mechanism in N1E-115 cells [1] may be induced by EGF. The ionic response is also lost during differentiation, but we have shown that the stimulation of both Na+ and K+ influx is directly proportional to the number of occupied receptors in all cells whether exponentially growing or differentiating, thus only indirectly dependent on the external EGF concentration. The linearity of the relationships indicates that there is no rate-limiting step between EGF binding and the ionic response. Our data would suggest that as neuroblastoma cells differentiate and acquire neuronal properties, their ability to respond to mitogens, both biologically and in the activation of cation transport processes, progressively decreases owing to the loss of the appropriate receptors.  相似文献   

5.
The interphase nucleus and nuclear envelope can acquire a myriad of shapes in normal or pathological cell states. There exist a wide variety of indentations and invaginations, of protrusions and evaginations. It has been difficult to classify and name all of these nuclear shapes and, consequently, a barrier to understanding the biochemical and biophysical causes. This review focuses upon one type of nuclear envelope shape change, named “nuclear envelope-limited chromatin sheets” (ELCS), which appears to involve exaggerated nuclear envelope growth, carrying with it one or more layers of ∼30 nm diameter heterochromatin. A hypothesis on the formation of ELCS is proposed, relating higher order heterochromatin structure in an interphase nucleus, nuclear envelope growth, and nuclear envelope-heterochromatin interactions.  相似文献   

6.
7.
Microviscosity (eta) of the plasma-membrane lipid matrix was measured in exponentially growing and differentiating C1300 mouse neuroblastoma cells, attached to a glass substratum, by fluorescence polarisation of 1,6-diphenyl-1,3,5-hexatriene. Upon differentiation eta decreases progressively, reaching values below those observed in the growth phase. Treatment of the cells with dipalmitoyl phosphatidylcholine vesicles reversibly inhibits morphological differentiation. The results show that a high membrane fluidity is a prerequisite for differentiation.  相似文献   

8.
The histone H3 variant centromere protein A (CENP-A) is central to centromere formation throughout eukaryotes. A long-standing question in centromere biology has been the organization of CENP-A at the centromere and its implications for the structure of centromeric chromatin. In this study, we describe the three-dimensional localization of CENP-A at the inner kinetochore plate through serial-section transmission electron microscopy of human mitotic chromosomes. At the kinetochores of normal centromeres and at a neocentromere, CENP-A occupies a compact domain at the inner kinetochore plate, stretching across two thirds of the length of the constriction but encompassing only one third of the constriction width and height. Within this domain, evidence of substructure is apparent. Combined with previous chromatin immunoprecipitation results (Saffery, R., H. Sumer, S. Hassan, L.H. Wong, J.M. Craig, K. Todokoro, M. Anderson, A. Stafford, and K.H.A. Choo. 2003. Mol. Cell. 12:509–516; Chueh, A.C., L.H. Wong, N. Wong, and K.H.A. Choo. 2005. Hum. Mol. Genet. 14:85–93), our data suggest that centromeric chromatin is arranged in a coiled 30-nm fiber that is itself coiled or folded to form a higher order structure.  相似文献   

9.
10.
11.
Hexamethylene bisacetamide (HMBA), a potent inducer of erythroid differentiation in murine erythroleukemia cells (1), induces differentiation in mouse neuroblastoma cells, as indicated by the extension of neurites and the development of an excitable membrane. HMBA is effective at concentrations 50-fold lower than dimethylsulfoxide (2), another inducer of differentiation in both mouse neuroblastoma and murine erythroleukemia cells.  相似文献   

12.
13.
14.
M Lundell  H G Martinson 《Biochemistry》1989,28(25):9757-9765
Active genes in higher eukaryotes reside in chromosomal domains which are more sensitive to digestion by DNase I than the surrounding inactive chromatin. Although it is widely assumed that some modification of higher order structure is important to the preferential DNase I sensitivity of active chromatin, this has so far not been tested. Here we show that the structural distinction between DNase I sensitive and resistant chromatin is remarkably stable to digestion by trypsin. Chick embryonic red blood cell nuclei were subjected to increasing levels of trypsin digestion and then assayed in the following three ways: (1) by gel electrophoresis for histone cleavage, (2) by sedimentation and nuclease digestion for loss of higher order structure, and (3) by dot-blot hybridization to globin and ovalbumin probes for disappearance of preferential DNase I sensitivity. We have found that chromatin higher order structure is lost concomitantly with the cleavage of histones H1, H5, and H3. In contrast, the preferential sensitivity of the globin domain to DNase I persists until much higher concentrations of trypsin, and indeed is not completely abolished even by the highest levels of trypsin we have used. We therefore conclude that the structural distinction of active chromatin, recognized by DNase I, does not reside at the level of higher order structure.  相似文献   

15.
16.
The surface charge of neuroblastoma cells (clone C1300-N18TG2) was studied by microelectrophoresis. The surface charge of these cells was shown to be determined mainly by anionic groups of the membrane, located in a layer about 10 mm thick, with a density of 0.2 e/nm3, covering its outer surface. These groups interact with Ca ions with a binding constant of KCa=10–50 liters/mole and titrate corresponding to pK=3.8. The electrophoretic mobility of the neuroblastoma cells is reduced by trypsin, neuraminidase, and N-bromosuccinimide, which irreversibly neutralizes carboxyl groups, and is increased on treatment of the cells with tosyl chloride — a specific reagent for amino groups. The value of the surface charge also depends on the conditions of culture of the cell population. The process of morphological differentiation of the cells (termination of division, dendrite formation), induced by removal of serum from the medium, leads to an increase of about 30% in their electrophoretic mobility. If cells are cultured in medium containing 10 and 50% of blood serum, enabling them to multiply, variations are observed in the mean electrophoretic mobility, which are opposite in phase to the 24-hourly increase in the number of cells. It is suggested that these effects are determined by partial "self-synchronization" of the cell population. It is concluded that the surface charge of neuroblastoma cells, measured by the microelectrophoresis method, is determined mainly by carboxyl groups of peripheral proteins and gangliosides of the membrane, and that the content of these compounds in the membrane depends on the phase of cell development.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR. Translated from Neirofiziologiya, Vol. 17, No. 2, pp. 168–174, March–April, 1985.  相似文献   

17.
Peptides derived from calf thymus H1 and rat liver H1, comprising only the globular and COOH-terminal domains of the intact molecule and therefore lacking NH2-terminal domains, have been shown by reconstitution to be as effective as the complete H1 molecule in inducing higher-order-chromatin structure. As the globular domain of H1 alone cannot induce chromatin folding, our results demonstrate that this function is primarily controlled by the COOH-terminal domain of the molecule. Surprisingly, these peptides do not locate correctly with respect to the nucleosome. This is demonstrated by their failure to confer upon reconstitutes the ability to protect DNA fragments of chromatosome length when digested with micrococcal nuclease. The precise placement of the H1 molecule (globular domain) with respect to the nucleosome is shown to be influenced by the "tail" domains of both H1 and the core histones.  相似文献   

18.
19.
20.

Background

Neuroblastoma is a malignant childhood tumour arising from precursor cells of the sympathetic nervous system. Genomic amplification of the MYCN oncogene is associated with dismal prognosis. For this group of high-risk tumours, the induction of tumour cell differentiation is part of current treatment protocols. MicroRNAs (miRNAs) are small non-coding RNA molecules that effectively reduce the translation of target mRNAs. MiRNAs play an important role in cell proliferation, apoptosis, differentiation and cancer. In this study, we investigated the role of N-myc on miRNA expression in MYCN-amplified neuroblastoma. We performed a miRNA profiling study on SK-N-BE (2) cells, and determined differentially expressed miRNAs during differentiation initiated by MYCN knockdown, using anti-MYCN short-hairpin RNA (shRNA) technology.

Results

Microarray analyses revealed 23 miRNAs differentially expressed during the MYCN knockdown-mediated neuronal differentiation of MNA neuroblastoma cells. The expression changes were bidirectional, with 11 and 12 miRNAs being up- and down-regulated, respectively. Among the down-regulated miRNAs, we found several members of the mir-17 family of miRNAs. Mir-21, an established oncomir in a variety of cancer types, became strongly up-regulated upon MYCN knockdown and the subsequent differentiation.Neither overexpression of mir-21 in the high-MYCN neuroblastoma cells, nor repression of increased mir-21 levels during MYCN knockdown-mediated differentiation had any significant effects on cell differentiation or proliferation.

Conclusions

We describe a subset of miRNAs that were altered during the N-myc deprived differentiation of MYCN-amplified neuroblastoma cells. In this context, N-myc acts as both an activator and suppressor of miRNA expression. Mir-21 was up-regulated during cell differentiation, but inhibition of mir-21 did not prevent this process. We were unable to establish a role for this miRNA during differentiation and proliferation of the two neuroblastoma cell lines used in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号