首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Streptococcus pneumoniae is a member of the Mitis group of streptococci which, according to 16S rRNA-sequence based phylogenetic reconstruction, includes 12 species. While other species of this group are considered prototypes of commensal bacteria, S. pneumoniae is among the most frequent microbial killers worldwide. Population genetic analysis of 118 strains, supported by demonstration of a distinct cell wall carbohydrate structure and competence pheromone sequence signature, shows that S. pneumoniae is one of several hundred evolutionary lineages forming a cluster separate from Streptococcus oralis and Streptococcus infantis. The remaining lineages of this distinct cluster are commensals previously collectively referred to as Streptococcus mitis and each represent separate species by traditional taxonomic standard. Virulence genes including the operon for capsule polysaccharide synthesis and genes encoding IgA1 protease, pneumolysin, and autolysin were randomly distributed among S. mitis lineages. Estimates of the evolutionary age of the lineages, the identical location of remnants of virulence genes in the genomes of commensal strains, the pattern of genome reductions, and the proportion of unique genes and their origin support the model that the entire cluster of S. pneumoniae, S. pseudopneumoniae, and S. mitis lineages evolved from pneumococcus-like bacteria presumably pathogenic to the common immediate ancestor of hominoids. During their adaptation to a commensal life style, most of the lineages gradually lost the majority of genes determining virulence and became genetically distinct due to sexual isolation in their respective hosts.  相似文献   

2.
The cell wall of Streptococcus mitis biovar 1 strain SK137 contains the C-polysaccharide known as the common antigen of a closely related species Streptococcus pneumoniae, and a teichoic acid-like polysaccharide with a unique structure. The two polysaccharides are different entities and could be partially separated by gel chromatography. The structures of the two polysaccharides were determined by chemical methods and by NMR spectroscopy. The teichoic acid-like polymer has a heptasaccharide phosphate repeating unit with the following structure: The structure neither contains ribitol nor glycerol phosphate as classical teichoic acids do, thus we have used the expression teichoic acid-like for this polysaccharide. The following structure of the C-polysaccharide repeating unit was established: where AAT is 2-acetamido-4-amino-2,4, 6-trideoxy-D-galactose. It has a carbohydrate backbone identical to that of one of the two structures of C-polysaccharide previously identified in S. pneumoniae. C-polysaccharide of S. mitis is characterized by the presence, in each repeating unit, of two residues of phosphocholine and both galactosamine residues in the N-acetylated form. Immunochemical analysis showed that C-polysaccharide constitutes the Lancefield group O antigen. Studies using mAbs directed against the backbone and against the phosphocholine moiety of the C-polysaccharide revealed several different patterns of these epitopes among 95 S. mitis and Streptococcus oralis strains tested and the exclusive presence of the group O antigen in the majority of S. mitis biovar 1 strains.  相似文献   

3.
The occurrence of highly variable penicillin-binding proteins (PBPs) in penicillin-resistant Streptococcus pneumoniae suggested that transfer of homologous genes from related species may be involved in resistance development. Antiserum and monoclonal antibodies raised against PBPs 1a and 2b from the susceptible S. pneumoniae R6 strain were used to identify related PBPs in 41 S. mitis, S. sanguis I and S. sanguis II strains mostly isolated in South Africa with MIC values ranging from less than 0.15 to 16 mg/ml. Furthermore, the possibility of genetic exchange was examined with 30 penicillin-resistant strains of this collection (MIC greater than 0.06 mg/ml) as donors using S. pneumoniae R6 as recipient in transformation experiments. The majority of S. mitis and S. sanguis II strains but none of the S. sanguis I strains could transform penicillin resistance genes into S. pneumoniae R6. All positive donor strains and all susceptible isolates of S. mitis and S. sanguis II strains contained PBPs which cross-reacted with the anti-PBP 1a and/or anti-PBP 2b antibodies. On the other hand, only five of the 14 S. sanguis I strains contained a PBP that reacted with one of the antibodies. This strongly suggested the presence of genes homologous to the pneumococcal PBP 1a and 2b genes in viridans streptococci, and documents that penicillin resistance determinants can be transformed from viridans streptococci into the pneumococcus.  相似文献   

4.
The dnaJ and gyrB nucleotide sequences were determined for members of the genus Streptococcus. The average similarity between the species tested was 76.4% (69.7-100%) for dnaJ and 75.9 (70.1-98.7%) for gyrB. These data indicated that the dnaJ and gyrB genes are more divergent and more discriminatory than the 16S rDNA gene. Furthermore, the variation in the dnaJ nucleotide sequences among the mitis group was greater than that of the gyrB nucleotide sequences, especially between Streptococcus pneumoniae and Streptococcus mitis. Subsequently, the high discrimination power of dnaJ within the mitis group was confirmed. Thus, we conclude that the dnaJ and gyrB genes are efficient alternative targets for the classification of the genus Streptococcus, and that dnaJ is suitable for phylogenetic analysis of closely related Streptococcus strains.  相似文献   

5.
Choline-binding proteins (CBPs) from Streptococcus pneumoniae are involved in several important processes. Inactivation of zmpB, a gene that encodes a surface-located putative zinc metalloprotease, in a S. pneumoniae serotype 4 strain was recently reported to reveal a composite phenotype, including extensive chain formation, lysis defect and transformation deficiency. This phenotype was associated with the lack of surface expression of several CBPs, including the major autolysin LytA. LytA, normally 36 kDa in size, was reported to form an SDS-resistant 80 kDa complex with CinA. ZmpB was therefore proposed to control translocation of CBPs to the surface, possibly through the proteolytic release of CBPs (and RecA) from CinA. Based on the use of 12 independent mariner insertions in the zmpB gene of the well-characterized R6 laboratory strain, we could not confirm several of these observations. Our zmpB mutants: (i) did not form chains; (ii) lysed normally in the presence of deoxycholate, which indicates the presence of a functional autolysin; (iii) transformed at normal frequency; and (iv) contained bona fide CinA and LytA species. Polymorphism of ZmpB between R6 and the serotype 4 isolate could not account for the discrepancy, as inactivation of zmpB (through replacement by transposon-inactivated zmpB R6 alleles) in the latter strain did not affect separation of daughter cells and autolysis. The conflicting observations could be explained by our finding that the reportedly serotype 4 zmpB 'mutant' differed from its S. pneumoniae parent in lacking capsule and in exhibiting characteristic traits of the Streptococcus viridans group, including resistance to optochin.  相似文献   

6.
Streptococcus mitis strain SK598, which represents a subgroup of biovar 1, possesses a unique variant of the C-polysaccharide found in the cell wall of all strains of Streptococcus pneumoniae and in some strains of S. mitis. This new variant lacks the choline methyl groups in contrast to the previously characterized forms of C-polysaccharide, which all contain one or two choline residues per repeat. The following structure of the repeating unit of the SK598 polysaccharide was established: where AAT is 2-acetamido-4-amino-2,4,6-trideoxy-d-galactose. This structure is identical to the double choline-substituted form of C-polysaccharide, except that it is substituted with ethanolamine instead of choline. This extends the number of recognized C-polysaccharide variants to four.  相似文献   

7.
We performed suppression subtractive hybridization to identify genomic differences between Streptococcus mitis and Streptococcus pneumoniae. Based on the pheA gene, a primer set specific to S. mitis detection was found in 18 out of 103 S. mitis-specific clones. Our findings would be useful for discrimination of S. mitis from other closely related cocci in the oral environment.  相似文献   

8.
Streptococcus pneumoniae is a major cause of morbidity and mortality worldwide. The existence of approximately 90 antigenically distinct capsular serotypes has greatly complicated the development of an effective pneumococcal vaccine. Virulence-associated proteins common and conserved among all capsular types now represent the best strategy to combat pneumococcal infections. PiuA and PiaA are the lipoprotein components of two pneumococcal iron ABC transporters and are required for full virulence in mouse models of infection. Here we describe a study of the distribution and genetic diversity of PiuA and PiaA within typical and atypical S. pneumoniae, Streptococcus oralis, and Streptococcus mitis strains. The genes encoding both PiuA and PiaA were present in all typical pneumococci tested, (covering 20 and 27 serotypes, respectively). The piuA gene was highly conserved within the typical pneumococci (0.3% nucleotide divergence), but was also present in "atypical" pneumococci and the closely related species S. mitis and S. oralis, showing up to 10.4% nucleotide divergence and 7.5% amino acid divergence from the typical pneumococcal alleles. Conversely, the piaA gene was found to be specific to typical pneumococci, 100% conserved, and absent from the oral streptococci, including isolates of S. mitis known to possess pneumolysin and autolysin. These are desirable qualities for a vaccine candidate and as a diagnostic tool for S. pneumoniae.  相似文献   

9.
We have detected a cholesterol-dependent cytolysin, which we have named mitilysin, in a small number of Streptococcus mitis isolates. We have sequenced the mitilysin gene from seven isolates of S. mitis. Comparisons with the pneumococcal pneumolysin gene show 15 amino acid substitutions. S. mitis appear to release mitilysin extracellularly. Certain alleles of mitilysin are not recognized by a monoclonal antibody raised to the related toxin pneumolysin. Based on enzyme-linked immunosorbent assay and neutralization assay results, one isolate of S. mitis may produce a further hemolytic toxin in addition to mitilysin. As genetic exchange is known to occur between S. mitis and Streptococcus pneumoniae, this finding may have implications for the development of vaccines or therapies for pneumococcal disease that are based on pneumolysin.  相似文献   

10.
Abstract The choline-containing teichoic and lipoteichoic acids play an important part in cell wall metabolism of Streptococcus pneumoniae . We propose that a choline kinase enzyme has a role in the synthesis of these antigens. The presence of this enzyme was demonstrated in cell free extracts of S. pneumoniae by measuring the fall in ATP concentration due to phosphorylation of choline. Genomic DNA of S. pneumoniae hybridised with a probe consisting of an internal fragment of the choline kinase gene of Saccharomyces cerevisiae and one consisting of the choline binding domain of lytA .  相似文献   

11.
The cholesterol-dependent cytolysins (CDCs) are a large family of pore-forming toxins that often exhibit distinct structural changes that modify their pore-forming activity. A soluble platelet aggregation factor from Streptococcus mitis (Sm-hPAF) was characterized and shown to be a functional CDC with an amino-terminal fucose-binding lectin domain. Sm-hPAF, or lectinolysin (LLY) as renamed herein, is most closely related to CDCs from Streptococcus intermedius (ILY) and Streptococcus pneumoniae (pneumolysin or PLY). The LLY gene was identified in strains of S. mitis, S. pneumoniae, and Streptococcus pseudopneumoniae. LLY induces pore-dependent changes in the light scattering properties of the platelets that mimic those induced by platelet aggregation but does not induce platelet aggregation. LLY monomers form the typical large homooligomeric membrane pore complex observed for the CDCs. The pore-forming activity of LLY on platelets is modulated by the amino-terminal lectin domain, a structure that is not present in other CDCs. Glycan microarray analysis showed the lectin domain is specific for difucosylated glycans within Lewis b (Le (b)) and Lewis y (Le (y)) antigens. The glycan-binding site is occluded in the soluble monomer of LLY but is apparently exposed after cell binding, since it significantly increases LLY pore-forming activity in a glycan-dependent manner. Hence, LLY represents a new class of CDC whose pore-forming mechanism is modulated by a glycan-binding domain.  相似文献   

12.
The nutritional requirement that Streptococcus pneumoniae has for the aminoalcohol choline as a component of teichoic and lipoteichoic acids appears to be exclusive to this prokaryote. A mutation in the tacF gene, which putatively encodes an integral membrane protein (possibly, a teichoic acid repeat unit transporter), has been recently identified as responsible for generating a choline-independent phenotype of S. pneumoniae (M. Damjanovic, A. S. Kharat, A. Eberhardt, A. Tomasz, and W. Vollmer, J. Bacteriol. 189:7105-7111, 2007). We now report that Streptococcus mitis can grow in choline-free medium, as previously illustrated for Streptococcus oralis. While we confirmed the finding by Damjanovic et al. of the involvement of TacF in the choline dependence of the pneumococcus, the genetic transformation of S. pneumoniae R6 by using S. mitis SK598 DNA and several PCR-amplified tacF fragments suggested that a minimum of two mutations were required to confer improved fitness to choline-independent S. pneumoniae mutants. This conclusion is supported by sequencing results also reported here that indicate that a spontaneous mutant of S. pneumoniae (strain JY2190) able to proliferate in the absence of choline (or analogs) is also a double mutant for the tacF gene. Microscopic observations and competition experiments during the cocultivation of choline-independent strains confirmed that a minimum of two amino acid changes were required to confer improved fitness to choline-independent pneumococcal strains when growing in medium lacking any aminoalcohol. Our results suggest complex relationships among the different regions of the TacF teichoic acid repeat unit transporter.  相似文献   

13.
Streptococcus pseudopneumoniae is a member of the viridans group streptococci (VGS) whose pathogenic significance is unclear. We announce the complete genome sequence of S. pseudopneumoniae IS7493. The genome sequence will assist in the characterization of this new organism and facilitate the development of accurate diagnostic assays to distinguish it from Streptococcus pneumoniae and Streptococcus mitis.  相似文献   

14.
目的通过采集健康人群口咽部分泌物,分析上呼吸道中α-溶血性链球菌的分布状况,并对革兰阳性化脓性球菌进行生物拮抗试验,为进一步研究上呼吸道益生菌提供理论基础。方法随机自愿原则,用无菌咽拭子采集沈阳市年龄在3~75岁的300名健康人群咽后壁分泌物,对α-溶血性链球菌进行鉴定和定量分析。对致病菌的生物拮抗试验采用小缸杯法。结果定量分析显示不同年龄人群咽后壁的α-溶血性链球菌检出率均较高。在咽后壁菌群中α-溶血性链球菌构成比最多的是幼儿组,达到60.3%。其中唾液链球菌群在幼儿组所占比重最大;老年组人群格氏链球菌占比较大;儿童、青年、成人以缓症链球菌和口腔链球菌为主。对革兰阳性化脓性球菌的生物拮抗试验显示,1株婴儿链球菌婴儿亚种能够拮抗8株致病菌;4株分离菌只能拮抗1株病原菌,提示不同的菌株拮抗病原菌的能力差异较大。结论α-溶血性链球菌在人群中分布广,数量多,不同年龄人群的菌群构成存在差异。并且某些菌株显示出对致病菌较强的生物拮抗作用,推测这些菌株在呼吸道黏膜保护中起到重要作用,可作为上呼吸道益生菌的备选菌株。  相似文献   

15.
肺炎链球菌(Streptococcus pneumoniae,SP)普遍定植于呼吸道,是人类重要的侵袭性病原菌之一,是社区获得性肺炎、中耳炎、脑膜炎、菌血症、鼻窦炎的主要病原菌。肺炎链球菌粘附和毒力因子A(pneumococcal adherence and virulence factor A,PavA)是肺炎链球菌早期感染和侵袭过程中关键的毒力因子。体外试验表明,缺失PavA的肺炎链球菌的突变株其粘附和侵入上皮细胞和内皮细胞的能力明显下降。作为一种保护性抗原,其诱导的细胞和体液免疫可以有效的抵抗肺炎链球菌的感染,是肺炎链球菌新一代疫苗的候选蛋白。但是,PavA在肺炎链球菌与人肺上皮细胞交互对话中作用机制的研究尚属空白,本文就肺炎链球菌粘附和毒力因子A得最新研究进展作一综述。  相似文献   

16.
Abstract Streptococcus pneumoniae is one of the important human pathogens in clinical microbiology. A polymerase chain reaction assay was designed to detect and identify S. pneumoniae through amplification of the ribosomal DNA spacer regions between the pneumococcal 16S-23S ribosomal RNA genes. Thirty-two Streptococcus and non- Streptococcus strains were tested to verify the specificity of the assay, and only S. pneumoniae strains gave a positive reaction. This method is a powerful technique for the rapid identification of S. pneumoniae .  相似文献   

17.
Genetic Diversity of the Streptococcal Competence (com) Gene Locus   总被引:6,自引:0,他引:6       下载免费PDF全文
The com operon of naturally transformable streptococcal species contains three genes, comC, comD, and comE, involved in the regulation of competence. The comC gene encodes a competence-stimulating peptide (CSP) thought to induce competence in the bacterial population at a critical extracellular concentration. The comD and comE genes are believed to encode the transmembrane histidine kinase and response regulator proteins, respectively, of a two-component regulator, with the comD-encoded protein being a receptor for CSP. Here we report on the genetic variability of comC and comD within Streptococcus pneumoniae isolates. Comparative analysis of sequence variations of comC and comD shows that, despite evidence for horizontal gene transfer at this locus and the lack of transformability of many S. pneumoniae strains in the laboratory, there is a clear correlation between the presence of a particular comC allele and the cognate comD allele. These findings effectively rule out the possibility that the presence of noncognate comC and comD alleles may be responsible for the inability to induce competence in many isolates and indicate the importance of a functional com pathway in these isolates. In addition, we describe a number of novel CSPs from disease-associated strains of S. mitis and S. oralis. The CSPs from these isolates are much more closely related to those from S. pneumoniae than to most CSPs previously reported from S. mitis and S. oralis, suggesting that these particular organisms may be a potential source of DNA in recombination events generating the mosaic structures commonly reported in genes of S. pneumoniae that are under strong selective pressure.  相似文献   

18.
The surface properties of nine Streptococcus mitis and four Peptostreptococcus micros strains from the oral cavity were examined and compared with a large group of oral streptococci. Zeta potential and contact angle measurements were employed to determine physico-chemical cell surface properties. In addition, elemental surface concentration ratios were obtained via X-ray photoelectron spectroscopy, and surface structures were examined with transmission electron microscopy. The S. mitis and P. micros strains were found to have higher isoelectric points, higher hydrophobicities and higher N/C surface concentration ratios than some other oral streptococci. The combined data suggest that both species possess large amounts of surface protein. All the S. mitis strains displayed abundant surface fibrils in negative staining, but the P. micros strains were devoid of surface appendages indicating that surface protein is present in different forms in the two species. The surfaces of S. mitis and P. micros type strains differed significantly from the other strains examined.  相似文献   

19.
Advances in high-throughput DNA sequencing technologies have determined an explosion in the number of sequenced bacterial genomes. Comparative sequence analysis frequently reveals evidences of homologous recombination occurring with different mechanisms and rates in different species, but the large-scale use of computational methods to identify recombination events is hampered by their high computational costs. Here, we propose a new method to identify recombination events in large datasets of whole genome sequences. Using a filtering procedure of the gene conservation profiles of a test genome against a panel of strains, this algorithm identifies sets of contiguous genes acquired by homologous recombination. The locations of the recombination breakpoints are determined using a statistical test that is able to account for the differences in the natural rate of evolution between different genes. The algorithm was tested on a dataset of 75 genomes of Staphylococcus aureus and 50 genomes comprising different streptococcal species, and was able to detect intra-species recombination events in S. aureus and in Streptococcus pneumoniae. Furthermore, we found evidences of an inter-species exchange of genetic material between S. pneumoniae and Streptococcus mitis, a closely related commensal species that colonizes the same ecological niche. The method has been implemented in an R package, Reco, which is freely available from supplementary material, and provides a rapid screening tool to investigate recombination on a genome-wide scale from sequence data.  相似文献   

20.
Non-typeable isolates of Streptococcus pneumoniae collected from Asian countries were characterized by optochin susceptibility test, bile solubility test, multilocus sequence typing of housekeeping genes, amplification of virulence-related genes, 16S rDNA-RsaI digestion, and 16S rDNA sequencing. Six of 54 non-typeable pneumococcal isolates showed divergence of gene sequences of recP and xpt from typical pneumococcal strains. Of these six atypical pneumococcal strains, two showed different results in optochin susceptibility or bile solubility test from typical pneumococcal strains. All six isolates showed high sequence dissimilarities of multilocus sequence typing, 16S rDNA sequences, and lytA sequences from typical S. pneumoniae strains. Data from this study suggest that classic tests such as optochin susceptibility and bile solubility tests may lead to incorrect identification of S. pneumoniae. These atypical strains may belong to different bacterial species from S. pneumoniae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号