首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thymidylate synthetase (EC 2.1.1.B.) from blast cells of patients with acute myelocytic leukemia has been purified more than 1470-fold by affinity column chromatography. Methotrexate was the affinity ligand. dUMP was found to be a necessary additive for retention of the enzyme by the affinity column. Disc electrophoresis and sucrose density gradient centrifugation revealed a single enzyme species with a molecular weight of 76,000. The enzyme exhibits a temperature-dependent conformational change with activation energies of 5.3 +/- 0.4 and 17.3 +/- 1.9 kcal/mol, respectively, above and below a transitional temperature of 35 degrees. This conformational change is reflected in the binding affinity of dUMP but not of 5,10-methylenetetrahydrofolate. The enzyme displays a broad pH maximum in the range of pH 7.4 to 8.8. The Michaelis constants for dUMP and (+/--L-5,10-methylenetetrahydrofolate are 1.8 +/- 0.2 and 31 +/- 8.3 micrometer, respectively. Initial velocity and product inhibition studies reveal the enzymic mechanism to be ordered sequential. dUMP binds before 5,10-methylenetetrahydrofolate and dihydrofolate is released before TMP. 5-Fluoro-2'-deoxy-5'-uridylate (FdUMP) behaves as in irreversible inhibitor with a Ki of 1.68 +/- 0.45 nM. The enzyme has a turnover number of 6 min-1 per FdUMP binding site. Methotrexate inhibits noncompetitively with respect to dUMP and binds tighter to the enzyme in the presence of dUMP. Methotrexate antagonizes inactivation of the enzyme by FdUMP.  相似文献   

2.
A procedure for purifying human cytoplasmic and mitochondrial deoxycytidine kinase (NTP:deoxycytidine 5'-phosphotransferase, EC 2.7.1.74) was developed. Both purified isozymes have a similar molecular weight, activation energy and catalyze the reaction by a sequential mechanism. These two isozymes differ with respect to their substrate specificities. With cytoplasmic deoxycytidine kinase, ATP, GTP and TTP have the highest reaction velocity. Pyrimidine nucleoside triphosphates have higher affinity but lower V than purine nucleoside triphosphates. Cytidine and arabinosylcytidine can serve as substrates. With mitochondrial isozyme only ATP gives the highest reaction velocity. ATP and dATP have the same Km but different V values. Besides deoxycytidine, also deoxythymidine but not cytidine or arabinosylcytidine can serve as substrates. There are also differences between these two isozymes with respect to their sensitivity to inhibition. For cytoplasmic enzyme, Br5dCyd and Iodo5dCyd are not inhibitory. Both dCTP and UTP are competitive inhibitors (Ki 0.25 and 0.5 micronM, respectively) with respect to ATP. For mitochondrial isozyme both Br5dCyd and Iodo5dCyd are inhibitory and dCTP and TTP are competitive inhibitors (Ki 2 and 10 micronM, respectively) with respect to ATP.  相似文献   

3.
L S Lee  Y c Cheng 《Biochemistry》1976,15(17):3686-3690
Cytoplasmic and mitochondrial deoxythymidine kinase isozymes derived from the blast cells of acute myelocytic leukemia differ in their substrate specificity and kinetic behavior. These enzymes require divalent cations for their activity. The data suggest that the major role of idvalent cations is to chelate with ATP; the complex thus formed serves as the phosphate donor for the reaction. The activity of various triphosphate nucleosides as a phosphate donor for cytoplasmic deoxythymidine kinase is as follows: ATP = dATP greater than ara-ATP greater than GTP greater than CTP greater than dGTP = dCTP greater than dUTP, whereas for mitochondrial deoxythymidine kinase, the order of activity is ATP greater than CTP greater than UTP = dATP greater than ara-ATP greater than dGTP = dCTP greater than dUTP. Neither IdUTP nor dTTP could serve as a phosphate donor in the reaction catalyzed by either isozyme. From the many pyrimidine analogues tested for their binding affinity to each of these isozymes, I-dUrd and Br-dUrd had high good affinity which was equivalent to that of deoxythymidine. 5-Allyl-dUrd, 5-ethyl-dUrd, and 5-propyl-dUrd were only weakly bound to each isozyme. 5-I-dCyd, 5-Br-dCyd, dCyd, and 5-vinyl-dUrd were tightly bound to mitochondrial deoxythymidine kinase but not to the cytoplasmic isozyme. dTTP and I-dUTP are potent inhibitors of the reaction catalyzed by both isozymes. In contrast, dCTP and ara-CTP are potent inhibitors only of the mitochondrial isozyme, but not of the cytoplasmic isozyme. ATP-MG2+ acts as a sigmoidal substrate of the cytoplasmic isozyme with a"Km" of 0.22 mM, and as a regular substrate of the mitochondrial isozyme with a Km of 0.1 mM. Deoxythymidine acts as a regular substrate for both cytoplasmic and mitochondrial isozyme with a Km of 2.6 and 5.2 muM, respectively. Initial velocity as well as product inhibition studies suggest that the cytoplasmic isozyme catalyzes the reaction via a "sequential" mechanism. In contrast, mitochondrial deoxythymidine kinase catalyzes the reaction via a "ping-pong" mechanism.  相似文献   

4.
Two forms of deoxythymidine kinase from blast cells of acute myelocytic leukemia were identified by electrophoresis. One was associated mainly with the cytoplasm and the other with mitochondria. Both isozymes were separated and purified by differential affinity column chromatography which resulted in 2416- and 1634-fold purification of the cytoplasmic and mitochondrial enzymes, respectively. Affinity gel was prepared by linkage through position 3' of deoxythymidine. Each enzyme had the same electrophoretic mobility in the purified state as it did in the enzyme derived from the corresponding subcellular fraction of the homogenate. Thymidine phosphorylase was not retarded by the affinity column. The purified cytoplasmic and mitochondrial deoxythymidine kinase had different molecular weights, sensitivities to inhibition by ammonium sulfate, activation energies for the reaction and divalent cation requirements. Adenosine, guanosine, and cytosine 3':5'-monophosphates, putrescine, spermine, and spermidine were neither activators nor inhibitors of either deoxythymidine kinase.  相似文献   

5.
Adenosine 5'-phosphosulfate (APS) kinase, the second enzyme in the pathway of inorganic sulfate assimilation, was purified to near homogeneity from mycelium of the filamentous fungus, Penicillium chrysogenum. The enzyme has a native molecular weight of 59,000-60,000 and is composed of two 30,000-dalton subunits. At 30 degrees C, pH 8.0 (0.1 M Tris-chloride buffer), 5.5 microM APS, 5 mM MgATP, 5 mM excess MgCl2, and "high" salt (70-150 mM (NH4)2SO4), the most highly purified preparation has a specific activity of 24.7 units X mg of protein-1 in the physiological direction of adenosine 3'-phosphate 5'-phosphosulfate (PAPS) formation. This activity is nearly 100-fold higher than that of any previously purified preparation of APS kinase. APS kinase is subject to potent substrate inhibition by APS. In the absence of added salt, the initial velocity at 5 mM MgATP plus 5 mM Mg2+ is maximal at about 1 microM APS and half-maximal at 0.2 and 4.4 microM APS. In the presence of 200 mM NaCl or 70-150 mM (NH4)2SO4, the optimum APS concentration shifts to 4-6 microM APS; the half-maximal values shift to 1-1.3 and 21-27 microM APS. The steady state kinetics of the reaction were investigated using a continuous spectrophotometric assay. The families of reciprocal plots in the range 0.25-5 mM MgATP and 0.8-5.1 microM APS are linear and intersect on the horizontal axis. Appropriate replots yield KmMgATP = 1.5 mM, KmAPS = 1.4 microM, and Vmax, = 38.7 units X mg of protein-1. Excess APS is an uncompetitive inhibitor with respect to MgATP (K1APS = 23 microM). PAPS, the product of the forward reaction, is also uncompetitive with MgATP. PAPS is not competitive with APS. In the reverse direction, the plots have the characteristics of a rapid equilibrium ordered sequence with MgADP adding before PAPS. The kinetic constants are KmPAPS = 8 microM, KiMgADP = 560 microM, and Vmaxr = 0.16 units X mg of protein-1. Iso-PAPS (the 2'-phosphate isomer of PAPS) is competitive with PAPS and uncompetitive with respect to MgADP (Ki = 6 microM). APS kinase is inactivated by phenylglyoxal, suggesting the involvement of an essential argininyl residue. MgATP or MgADP at 10 Ki protect against inactivation. APS or PAPS at 600 and 80 Km, respectively, are ineffective alone, but provide nearly complete protection in the presence of 0.1 Ki of MgADP or MgATP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The gene encoding for thymidylate kinase from Plasmodium falciparum was obtained by PCR and expressed in Escherichia coli and the enzyme was investigated as a possible new drug target. The enzyme is a homodimer exhibiting maximal kinase activity over a wide pH range of 7-9 and is characterized by marked stability. Compared with the human enzyme, the recombinant P. falciparum TMP kinase showed a broader spectrum of substrate specificity. The enzyme not only phosphorylates dTMP and dUMP but can also tolerate the bulkier purines dGMP, GMP and dIMP. Initial velocity studies showed that the Km values for TMP and dGMP are 22 and 30 microM, respectively. The turnover number kcat(TMP) was found to be 3.4 s(-1), a value indicating the higher catalytic efficiency of the plasmodium enzyme. From the present study, we suggest that the design of appropriate inhibitors especially purine based compounds could have a selective inhibitory effect on the parasite enzyme.  相似文献   

7.
Thymidylate kinase from the livers of 18-day-old chick embryos was concentrated 423-fold. The purification procedure included acid precipitation, ammonium sulfate fractionation, gel filtration on Sephadex G-100 and G-75 Super Fine, and ion-exchange chromatography on Diethylaminoethyl Sephadex A-50. This enzyme was found to be very labile but could be stabilized for long periods of time by its substrate (thymidine 5′-monophosphate) in the presence of 2-mercaptoethanol. Enzymes responsible for the formation of thymidine 5′-diphosphate and thymidine 5′-triphosphate, respectively, were separated during fractionation procedures. Thymidylate kinase from chick embryo liver was found to be a single protein having a molecular weight of approximately 46,000, Michaelis constant approximately 8 × 10?5m, and a broad pH optimum between 6.6 and 8.6. A 2–3 mm requirement of Mg2+ above the adenosine 5′-triphosphate concentration was shown to be necessary for maximum enzyme activity. The enzyme appears to be competitively inhibited by thymidine, thymidine 5′-diphosphate, and thymidine 5′-triphosphate and noncompetitively inhibited by adenosine 5′-diphosphate.Thymidylate kinase enzymes isolated from two stages of developing embryonic liver and adult chick liver were shown to be identical.  相似文献   

8.
Thymidylate synthetase (EC 2.1.1.45) from rat regenerating liver has been purified over 5000-fold to apparent homogeneity by a procedure involving two affinity methods. Molecular weight of the native enzyme was found to be about 68,000, as determined by gel filtration. Electrophoresis in polyacrylamide gels containing sodium dodecyl sulfate yielded a single band of molecular weight of 35,000, suggesting that thymidylate synthetase is a dimer of very similar or identical subunits. The Michaelis constants for deoxyuridylate (dUMP) and (+/-)L-5,10-methylenetetrahydrofolate are 6.8 microM and 65 microM, respectively. Reaction kinetics and product inhibition studies reveal the enzymatic mechanism to be ordered sequential. 5-Fluoro-dUMP, halogenated analog of the nucleotide substrate is a competitive inhibitor of the enzyme, with an apparent Ki value of 5 nM. Amethopterin, analog of the cofactor is also a competitive inhibitor with an apparent Ki value of 23 microM.  相似文献   

9.
Pyravate kinase (ATP: pyruvate 2-0 phosphotransferase E.C.2.7.1.40) was purified from Brochothrix thermosphacta. The enzyme is a homotetramer of monomer Mr 58,000. Fructose-1,6-bisphosphate stimulates activity and promotes hyperbolic kinetics although it is not essential for enzyme activity. The positive effect of fructose-1,6-bisphosphate on activity is repressed by inorganic phosphate which enhances cooperative kinetics. Unlike pyruvate kinases from other sources, the Brochothrix enzyme is uncompetitively inhibited by glucose-6-phosphate, although at high concentration. ATP is a strong inhibitor of pyruvate kinase and shifts the residual activity/pH profile towards more alkaline values.  相似文献   

10.
11.
Catalytically active Pneumocystis carinii thymidylate synthase is expressed to the extent of about 4% of the soluble protein in Escherichia coli chi 2913 harboring plasmid pUETS-1.8 (U. Edman, J. C. Edman, B. Lundgren, and D. V. Santi, Proc. Natl. Acad. Sci. USA 86, 6503-6507, 1989). Ion-exchange, affinity, hydrophobic, and reactive dye agarose chromatography steps were explored to devise a large-scale purification protocol for P. carinii thymidylate synthase. Sequential DE52, Q-Sepharose, phenyl-Sepharose, and Cibacron Blue F3GA chromatography yielded enzyme that was homogeneous by SDS-PAGE in a yield of over 50%. The sequence of the first 10 amino acid residues of the purified protein was in accord with that predicted from the DNA sequence. Isoelectric focusing gave a pI of 6.2. Kinetic analysis of the purified enzyme revealed that the Km values were 4.7 +/- 1.3 microM for dUMP and 15.7 +/- 4.3 microM for 5,10-methylenetetrahydrofolate, similar to those of many other thymidylate synthases; the kcat of the most active preparation was 0.8 s-1. The enzyme is stable for at least 2 months when stored at -80 degrees C in the presence of 40% glycerol, Tris-HCl, and thiol.  相似文献   

12.
A new fast assay procedure for increasing deoxyuridine triphosphate nucleotidohydrolase activity was developed. With this assay procedure, this enzyme derived from blast cells of patients with acute lymphocytic leukemia was purified at least 1218-fold. The molecular weight was estimated by gel filtration to be 43,000. The enzyme exhibited optimal activity over a pH range of 7 to 8 and the activation energy was estimated to be 6.5 kcal/mol at pH 7.5. While the enzyme had activity in the absence of added divalent cations, the activity could be inhibited by EDTA but not by phenanthroline. The inhibition caused by EDTA could be reversed by Mg2+ or Zn2+. The enzyme had maximal activity in the presence of Mg2+ (40 muM) and Mg2+ (4 mM) stabilized the enzyme at 37 degrees C. Cupric ion (0.5 mM) inhibited (50%) enzyme activity in the presence or absence of Mg2+. The substrate for the enzyme was dUTP and the apparent Km was 1 muM. No other deoxyribonucleoside or ribonucleoside triphosphate served as a substrate for the enzyme.  相似文献   

13.
14.
15.
Recombinant mouse thymidylate synthase (TS) expressed at high levels in Escherichia coli was purified to homogeneity in greater than 70% yield by a rapid three-step procedure. Both 0.1% Triton X-100 and 10% glycerol were required to stabilize the enzyme whose activity remained unchanged after 1 month when stored at -20 degrees C. Thermal inactivation of the enzyme was a first-order process at 37 degrees C, with t1/2 values of 6.9, 15.6 and 3.0 min at pH 5.5, 7.0 and 8.5, respectively. The presence of saturating levels of dUMP at pH 8.5 increased the t1/2 of inactivation of 38 min. The pH profile for enzyme activity showed a narrow optimum region centered at pH 7.0, which was mirrored by the shape of the Km, dUMP/Vmax plot. The pH dependence of Kd for the covalent inhibitory ternary complex of enzyme, 5-fluoro-2'-deoxyuridylate and 5,10-methylenetetrahydrofolate exhibited a broad minimum between pH 5.5 and 8.5, and ranged between 3.1, 0.8 and 1.1 nM at pH 5.5, 7.0 and 8.5, respectively. The UV/VIS spectrum of the native enzyme exhibited a maximum at 280 nm (epsilon = 98,200 M-1 cm-1), while that of the inhibitory ternary complex showed an additional maximum at 320 nm. The 19F-NMR spectrum of the mouse enzyme:FdUMP binary complex revealed two new resonances at -2.8 and -34.8 ppm. The most deshielded resonance represented the noncovalent binary complex while the other resonance was assigned to the nucleotide covalently bound to the enzyme. The alteration of nucleotide binding equilibria produced by addition of H4 folate was exemplified by both an increase in intensity and a 5 ppm deshielding of the resonance attributed to the covalent FdUMP-enzyme complex. Addition of formaldehyde to the latter mixture produced the covalent ternary complex which resulted in the collapse of the resonances at -2.8 and -39.5 ppm and the appearance of a new resonance at -12.4 ppm.  相似文献   

16.
17.
Thymidylate synthetase (TS) and dihydrofolate reductase (DHFR) in Leishmania tropica exist as a bifunctional protein. By use of a methotrexate-resistant strain, which overproduces the bifunctional enzyme, the protein was purified 80-fold to apparent homogeneity in two steps. The native protein has an apparent molecular weight of 110 000 and consists of two subunits with identical size and charge. Available data indicate that each of the subunits possesses TS and DHFR. The TS of the bifunctional protein forms a covalent 5-fluoro-2'-deoxyuridylate (FdUMP)-(+/-)-5,10-methylenetetrahydrofolate-enzyme complex in which 2 mol of FdUMP is bound per mole of enzyme. In contrast, titration of DHFR with methotrexate indicated that only 1 mol of the inhibitor is bound per mole of dimeric enzyme. Both TS and DHFR activities of the bifunctional enzyme were inactivated by the sulfhydryl reagent N-ethylmaleimide. Substrates of the individual enzymes afforded protection against inactivation, indicating that each enzyme requires at least one cysteine for catalytic activity. Kinetic evidence indicates that most, if not all, of the 7,8-dihydrofolate produced by TS is channeled to DHFR faster than it is released into the medium. Although the mechanism of channeling is unknown, the possibility that the two enzymes share a common folate binding site has been ruled out.  相似文献   

18.
Euglena gracilis chloroplast leucyl-tRNA synthetase was purified to homogeneity by a series of steps including ammonium sulfate precipitation and chromatography on hydroxylapatite, DEAE-cellulose, Sepharose 6B, phosphocellulose, and Blue Dextran-Sepharose. The purified enzyme exhibits a specific activity of 1233 units/mg of protein, which is one of the highest specific activities obtained for an aminoacyl-tRNA synthetase prepared from plant cells. The enzyme has an apparent Km value of 8 x 10(-6) M for L-leucine, 1.3 x 10(-4) M for ATP, and 1.3 x 10(-6) M for tRNALeu. Chloroplast leucyl-tRNA synthetase appears to be a monomeric enzyme with a molecular weight of 100 000. The amino acid composition of chloroplast leucyl-tRNA synthetase has been determined. It is the first reported for a chloroplast aminoacyl-tRNA synthetase, and it reveals a relatively large proportion of apolar residues, as in the case of prokaryotic aminoacyl-tRNA synthetases.  相似文献   

19.
The tricarboxylate carrier from rat liver mitochondria has been purified and reconstituted into phospholipid vesicles. Its activity has been characterized by both a radioactive citrate uptake assay and a coupled enzymatic assay. A Km of 40 microM and a Vmax of 1.56 mumol x min-1 x mg-1 have been determined for the carrier. Cholesterol levels of between 5-10% of total lipid content are shown to cause a decrease in carrier activity.  相似文献   

20.
We have partially purified a protein kinase from rat pancreas that phosphorylates two light-chain subunits of pancreatic myosin, a doublet with components of 18 and 20 kDa. This protein kinase was purified approx. 1000-fold by sequential (NH4)2SO4 fractionation, gel filtration, ion-exchange and affinity chromatography on calmodulin-Sepharose 4B. The resultant enzyme preparation is free of cyclic AMP-dependent protein kinase, protein kinase C and calmodulin-dependent type I or II kinase activities. The purified protein kinase is completely dependent on Ca2+ and calmodulin, and phosphorylates a 20 kDa light-chain subunit of intact gizzard myosin, suggesting that it belongs to a class of enzymes known as myosin light-chain kinase (MLCK). The apparent Km values of the putative pancreatic MLCK for ATP (73 microM), gizzard myosin light chains (18 microM) and calmodulin (2 nM) are similar to those reported for MLCKs isolated from smooth muscle, platelet and other sources. The enzyme is half-maximally activated at a free Ca2+ concentration of 2.5 microM. A single component of the affinity-purified kinase reacts with antibodies to turkey gizzard MLCK. The apparent molecular mass of this component is 138 kDa. Immunoprecipitation of a pancreatic homogenate with these antibodies decreases calmodulin-dependent kinase activity for pancreatic myosin by over 85%. The immunoprecipitate contains a single electrophoretic band of 138 kDa. Tryptic phosphopeptide analyses of pancreatic myosin, phosphorylated by either gizzard or pancreatic MLCK, are identical. Thus the enzyme that we have purified from rat pancreas is a MLCK, as judged by (1) absolute dependence on Ca2+ and calmodulin, (2) high affinity for calmodulin, (3) narrow substrate specificity for the light-chain subunit of myosin, and (4) reactivity with antibodies to turkey gizzard MLCK. These studies establish the existence of a pancreatic MLCK which may be responsible for regulating myosin phosphorylation and enzyme secretion in situ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号