首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chaperonin-assisted protein folding proceeds through cycles of ATP binding and hydrolysis by GroEL, which undergoes a large structural change by the ATP binding or hydrolysis. One of the main concerns of GroEL is the mechanism of the productive and cooperative structural change of GroEL induced by the nucleotide. We studied the cooperative nature of GroEL by nucleotide titration using isothermal titration calorimetry and fluorescence spectroscopy. Our results indicated that the binding of ADP and ATP analogs to a single ring mutant (SR1), as well as that to GroEL, was non-cooperative. Only ATP induces an apparently cooperative conformational change in both proteins. Furthermore, the fluorescence changes of pyrene-labeled GroEL indicated that GroEL has two kinds of nucleotide binding sites. The fluorescence titration result fits well with a model in which two kinds of binding sites are both non-cooperative and independent of each other. These results suggest that the binding and hydrolysis of ATP may be necessary for the cooperative transition of GroEL.  相似文献   

2.
Transduction of adenosine triphosphate (ATP) chemical-bond energy into work to drive large-scale conformational changes is common in proteins. Two specific examples of ATP-utilizing proteins are the nitrogenase iron protein and the ATP binding-cassette transporter protein, BtuCD. Nitrogenase catalyzes biological nitrogen fixation whereas BtuCD transports vitamin B(12) across membranes. Both proteins drive their reactions with ATP. To interpret how the mechanical force generated by ATP binding and hydrolysis is propagated in these proteins, a coarse-grained elastic network model is employed. The analysis shows that subunits of the proteins move against each other in a concerted manner. The lowest-frequency modes of the nitrogenase iron protein and of the ATP binding-cassette transporter BtuCD protein are found to link the functionally critical domains, and these modes are suggested to be responsible for (at least the initial stages) large-scale ATP-coupled conformational changes.  相似文献   

3.
In this work, we show that the nonspecific DNA-binding protein Sso7d from the crenarchaeon Sulfolobus solfataricus displays a cation-dependent ATPase activity with a pH optimum around neutrality and a temperature optimum of 70 degrees C. Measurements of tryptophan fluorescence and experiments that used 1-anilinonaphthalene-8-sulfonic acid as probe demonstrated that ATP hydrolysis induces a conformational change in the molecule and that the binding of the nucleotide triggers the ATP hydrolysis-induced conformation of the protein to return to the native conformation. We found that Sso7d rescues previously aggregated proteins in an ATP hydrolysis-dependent manner; the native conformation of Sso7d forms a complex with the aggregates, while the ATP hydrolysis-induced conformation is incapable of this interaction. Sso7d is believed to be the first protein isolated from an archaeon capable of rescuing aggregates.  相似文献   

4.
Group II chaperonins, found in archaea and in eukaryotic cytosol, do not have a co-chaperonin corresponding to GroES. Instead, it is suggested that the helical protrusion extending from the apical domain acts as a built-in lid for the central cavity and that the opening and closing of the lid is regulated by ATP binding and hydrolysis. However, details of this conformational change remain unclear. To investigate the conformational change associated with the ATP-driven cycle, we conducted protease sensitivity analyses and tryptophan fluorescence spectroscopy of alpha-chaperonin from a hyperthermophilic archaeum, Thermococcus strain KS-1. In the nucleotide-free or ADP-bound state, the chaperonin, especially in the helical protrusion region, was highly sensitive to proteases. Addition of ATP and ammonium sulfate induced the transition to the relatively protease-resistant form. The fluorescence intensity of the tryptophan residue introduced at the tip of the helical protrusion was enhanced by the presence of ATP or ammonium sulfate. We conclude that ATP binding induces the conformational change from the lid-open to lid-closed form in archaeal group II chaperonin.  相似文献   

5.
Suspensions of isolated basal bodies undergo a characteristic decrease in turbidity following their exposure to 10(-3) M ATP. Typically, turbidity changes range from 8% to 20%, depending on the preparation, with an average change of 12%. Nucleotides other than ATP did not cause a turbidity decrease. The reaction has a pH optimum of pH 8.5 and is inhibited by concentrations of divalent cations greater than 2 X 10(-3) M. These results indicate that ATP induces a conformational change in the basal body that may be related to its activity in the cell.  相似文献   

6.
In order to fold non-native proteins, chaperonin GroEL undergoes numerous conformational changes and GroES binding in the ATP-dependent reaction cycle. We constructed the real-time three-dimensional-observation system at high resolution using a newly developed fast-scanning atomic force microscope. Using this system, we visualized the GroES binding to and dissociation from individual GroEL with a lifetime of 6 s (k=0.17 s(-1)). We also caught ATP/ADP-induced open-closed conformational changes of individual GroEL in the absence of qGroES and substrate proteins. Namely, the ATP/ADP-bound GroEL can change its conformation 'from closed to open' without additional ATP hydrolysis. Furthermore, the lifetime of open conformation in the presence of ADP ( approximately 1.0 s) was apparently lower than those of ATP and ATP-analogs (2-3 s), meaning that ADP-bound open-form is structurally less stable than ATP-bound open-form. These results indicate that GroEL has at least two distinct open-conformations in the presence of nucleotide; ATP-bound prehydrolysis open-form and ADP-bound open-form, and the ATP hydrolysis in open-form destabilizes its open-conformation and induces the 'from open to closed' conformational change of GroEL.  相似文献   

7.
E R Johnson  D B McKay 《Biochemistry》1999,38(33):10823-10830
ATP binding induces a conformational change in 70-kDa heat shock proteins (Hsp70s) that facilitates release of bound polypeptides. Using the bovine heat shock cognate protein (Hsc70) as a representative of the Hsp70 family, we have characterized the effect of mutations on the coupling between ATP binding and the nucleotide-induced conformational change. Steady-state solution small-angle X-ray scattering and kinetic fluorescence measurements on a 60-kDa fragment of Hsc70 show that point mutations K71M, E175S, D199S, and D206S in the nucleotide binding cleft impair the ability of ATP to induce a conformational change. A secondary mutation in the peptide binding domain, E543K, "rescues" the ATP-induced transition for three of these mutations (E175S/E543K, D199S/E543K, and D206S/E543K) but not for K71M/E543K. Analysis of kinetics of the ATPase cycle confirm that these effects do not result from unexpectedly rapid ATP hydrolysis or slow ATP binding. Crystallographic structures of E175S, D199S, and D206S mutant ATPase fragment proteins show that the mutations do not perturb the tertiary structure of the protein but do significantly alter the protein-ligand interactions, due in part to an apparent charge compensation effect whereby mutating a (probably) negatively charged carboxyl group to a neutral serine displaces a K+ ion from the nucleotide binding cleft in two out of three cases (E175S and D199S but not D206S).  相似文献   

8.
1. The thermodynamics and molecular basis of energy-linked conformational changes in the cytochrome aa3 and ATP synthetase complexes of the mitochondrial membrane have been studied with spectrophotometrical and fluorometrical techniques. 2. Ferric cytochrome aa3 exists in two conformations, high spin and low spin, the equilibrium between these states being controlled by the electrical potential difference across the mitochondrial membrane. The conformational change is brought about by an electrical field-driven binding of one proton per aa3 to the complex. At pH 7.2 the concentration of the two conformations is equal at a membrane potential of 170 mV corresponding to about 4 kcal/mole. 3. The high to low spin transition in ferric aa3 is also induced by hydrolysis of ATP in which case two molecules of aa3 are shifted per ATP molecule hydrolyzed. This is in accordance with translocation of two protons across the mitochondrial membrane coupled to hydrolysis of ATP as proposed in the chemiosmotic theory of oxidative phosphorylation. 4. The conformational transition in cytochrome aa3 is not an expression of the formation of a 'high-energy' intermediate or reversal of the energy-transducing pathway of oxidative phosphorylation, but is presumably the basis of allosteric control of the activity of cytochrome oxidase by the energy state of the mitochondrion. This control is exerted by a regulatory mechanism in which the electrical potential difference controls the conformation and redox properties of the heme centres and thereby the rate of oxygen consumption. 5. The synthesis of one molecule of ATP by oxidative phosphorylation is energetically equivalent to the work done in carrying two electrical charges across the entire mitochondrial membrane. 6. Fluorescence changes of aurovertin bound to ATP synthetase reveal that the electrical membrane potential induces a conformational change in the F1 portion of the enzyme which is probably associated with dissociation of the natural F1 inhibitor protein. This conformational change is energetically equivalent to the work done in carrying one electrical charge across the mitochondrial membrane. 7. A model is proposed for the mechanism of the electrical field-induced conformational changes in the cytochrome aa3 and ATP synthetase complexes, and the significance of these changes in the mechanism and control of mitochondrial energy conservation is discussed.  相似文献   

9.
The chaperoning activity of the heat shock protein hsp90 is directed, in part, by the binding and hydrolysis of ATP and also by association with co-chaperone proteins. One co-chaperone, p23, binds to hsp90 only when hsp90 is in a conformation induced by the binding of ATP. Once formed, the p23-hsp90 complex is very stable upon the removal of ATP and dissipates at 30 degrees with a half-life of about 45 min. This was shown to be due to the high stability of the ATP-induced state of hsp90, not to the rate of p23 dissociation. Further stabilization of this ATP-induced state is achieved by including molybdate or by use of the ATP analogue ATPgammaS. This conformational state of hsp90 is correlated with the tight binding of ADP resulting from hydrolysis of bound ATP. Both p23 and molybdate enhance and stabilize the nucleotide-bound state of hsp90, and this state is maximized by the presence of both agents. These results can be explained in a model where the binding of ATP induces a conformational transition in hsp90 that traps the nucleotide and is committed to ATP hydrolysis. p23 specifically recognizes this state and may also facilitate subsequent steps in the chaperoning cycle.  相似文献   

10.
Yap KL  Ames JB  Swindells MB  Ikura M 《Proteins》1999,37(3):499-507
The EF-hand motif, which assumes a helix-loop-helix structure normally responsible for Ca2+ binding, is found in a large number of functionally diverse Ca2+ binding proteins collectively known as the EF-hand protein superfamily. In many superfamily members, Ca2+ binding induces a conformational change in the EF-hand motif, leading to the activation or inactivation of target proteins. In calmodulin and troponin C, this is described as a change from the closed conformational state in the absence of Ca2+ to the open conformational state in its presence. It is now clear from structures of other EF-hand proteins that this "closed-to-open" conformational transition is not the sole model for EF-hand protein structural response to Ca2+. More complex modes of conformational change are observed in EF-hand proteins that interact with a covalently attached acyl group (e.g., recoverin) and in those that dimerize (e.g., S100B, calpain). In fact, EF-hand proteins display a multitude of unique conformational states, together constituting a conformational continuum. Using a quantitative 3D approach termed vector geometry mapping (VGM), we discuss this tertiary structural diversity of EF-hand proteins and its correlation with target recognition.  相似文献   

11.
Nucleotide binding domains (NBD1 and NBD2) of the cystic fibrosis transmembrane conductance (CFTR), the defective protein in cystic fibrosis, are responsible for controlling the gating of the chloride channel and are the putative binding site for several candidate drugs in the disease treatment. We studied the structural properties of recombinant NBD1, NBD2, and an equimolar NBD1/NBD2 mixture in solution by small-angle X-ray scattering. We demonstrated that NBD1 or NBD2 alone have an overall structure similar to that observed for crystals. Application of 2 mM ATP induces a dimerization of NBD1 but does not modify the NBD2 monomeric conformation. An equimolar mixture of NBD1/NBD2 in solution shows a dimeric conformation, and the application of ATP to the solution causes a conformational change in the NBD1/NBD2 complex into a tight heterodimer. We hypothesize that a similar conformation change occurs in situ and that transition is part of the gating mechanism. To our knowledge, this is the first direct observation of a conformational change of the NBD1/NBD2 interaction by ATP. This information may be useful to understand the physiopathology of cystic fibrosis.  相似文献   

12.
13.
The kinetics of the E(2) --> E(1) conformational change of unphosphorylated Na(+),K(+)-ATPase from rabbit kidney and shark rectal gland were investigated via the stopped-flow technique using the fluorescent label RH421 (pH 7.4, 24 degrees C). The enzyme was pre-equilibrated in a solution containing 25 mM histidine and 0.1 mM EDTA to stabilize initially the E(2) conformation. When rabbit kidney enzyme was mixed with NaCl alone, tris ATP alone or NaCl, and tris ATP simultaneously, a fluorescence decrease was observed. The reciprocal relaxation time, 1/tau, of the fluorescent transient was found to increase with increasing NaCl concentration and reached a saturating value in the presence of 1 mM tris ATP of 54 +/- 3 s(-1) in the case of rabbit kidney enzyme. The experimental behavior could be described by a binding of Na(+) to the enzyme in the E(2) state with a dissociation constant of 31 +/- 7 mM, which induces a subsequent rate-limiting conformational change to the E(1) state. Similar behavior, but with a decreased saturating value of 1/tau, was found when NaCl was replaced by choline chloride. Analogous experiments performed with enzyme from shark rectal gland showed similar effects, but with a significantly lower amplitude of the fluorescence change and a higher saturating value of 1/tau for both the NaCl and choline chloride titrations. The results suggest that Na(+) ions or salt in general play a regulatory role, similar to that of ATP, in enhancing the rate of the rate-limiting E(2) --> E(1) conformational transition by interaction with the E(2) state.  相似文献   

14.
The molecular process by which insulin binding to the receptor alpha-subunit induces activation of the receptor beta-subunit with ensuing substrate phosphorylation remains unclear. In this study, we aimed at approaching this molecular mechanism of signal transduction and at delineating the cytoplasmic domains implied in this process. To do this, we used antipeptide antibodies to the following sequences of the receptor beta-subunit: (i) positions 962-972 in the juxtamembrane domain, (ii) positions 1247-1261 at the end of the kinase domain, and (iii) positions 1294-1317 and (iv) positions 1309-1326, both in the receptor C terminus. We have previously shown that insulin binding to its receptor induces a conformational change in the beta-subunit C terminus. Here, we demonstrate that receptor autophosphorylation induces an additional conformational change. This process appears to be distinct from the one produced by ligand binding and can be detected in at least three different beta-subunit regions: the juxtamembrane domain, the kinase domain, and the C terminus. Hence, the cytoplasmic part of the receptor beta-subunit appears to undergo an extended conformational change upon autophosphorylation. By contrast, the insulin-induced change does not affect the juxtamembrane domain 962-972 nor the kinase domain 1247-1261 and may be limited to the receptor C terminus. Further, we show that the hormone-dependent conformational change is maintained in a kinase-deficient receptor due to a mutation at lysine 1018. Therefore, during receptor activation, the ligand-induced change could precede ATP binding and receptor autophosphorylation. We propose that insulin binding leads to a transient receptor form that may allow ATP binding and, subsequently, autophosphorylation. The second conformational change could unmask substrate-binding sites and stabilize the receptor in an active conformation.  相似文献   

15.
Escherichia coli Rep helicase catalyzes the unwinding of duplex DNA in reactions that are coupled to ATP binding and hydrolysis. We have investigated the kinetic mechanism of ATP binding and hydrolysis by a proposed intermediate in Rep-catalyzed DNA unwinding, the Rep "P2S" dimer (formed with the single-stranded (ss) oligodeoxynucleotide, (dT)16), in which only one subunit of a Rep homo-dimer is bound to ssDNA. Pre-steady-state quenched-flow studies under both single turnover and multiple turnover conditions as well as fluorescence stopped-flow studies were used (4 degrees C, pH 7.5, 6 mM NaCl, 5 mM MgCl2, 10 % (v/v) glycerol). Although steady-state studies indicate that a single ATPase site dominates the kinetics (kcat=17(+/-2) s-1; KM=3 microM), pre-steady-state studies provide evidence for a two-ATP site mechanism in which both sites of the dimer are catalytically active and communicate allosterically. Single turnover ATPase studies indicate that ATP hydrolysis does not require the simultaneous binding of two ATP molecules, and under these conditions release of product (ADP-Pi) is preceded by a slow rate-limiting isomerization ( approximately 0.2 s-1). However, product (ADP or Pi) release is not rate-limiting under multiple turnover conditions, indicating the involvement of a second ATP site under conditions of excess ATP. Stopped-flow fluorescence studies monitoring ATP-induced changes in Rep's tryptophan fluorescence displayed biphasic time courses. The binding of the first ATP occurs by a two-step mechanism in which binding (k+1=1.5(+/-0.2)x10(7) M-1 s-1, k-1=29(+/-2) s-1) is followed by a protein conformational change (k+2=23(+/-3) s-1), monitored by an enhancement of Trp fluorescence. The second Trp fluorescence quenching phase is associated with binding of a second ATP. The first ATP appears to bind to the DNA-free subunit and hydrolysis induces a global conformational change to form a high energy intermediate state with tightly bound (ADP-Pi). Binding of the second ATP then leads to the steady-state ATP cycle. As proposed previously, the role of steady-state ATP hydrolysis by the DNA-bound Rep subunit may be to maintain the DNA-free subunit in an activated state in preparation for binding a second fragment of DNA as needed for translocation and/or DNA unwinding. We propose that the roles of the two ATP sites may alternate upon binding DNA to the second subunit of the Rep dimer during unwinding and translocation using a subunit switching mechanism.  相似文献   

16.
Cryptochromes are widely distributed blue light photoreceptors involved in numerous signaling functions in plants and animals. Both plant and animal-type cryptochromes are found to bind ATP and display intrinsic autokinase activity; however the functional significance of this activity remains a matter of speculation. Here we show in purified preparations of Arabidopsis cry1 that ATP binding induces conformational change independently of light and increases the amount and stability of light-induced flavin radical formation. Nucleotide binding may thereby provide a mechanism whereby light responsivity in organisms can be regulated through modulation of cryptochrome photoreceptor conformation.  相似文献   

17.
The effect of Cr(NH3)2ATP, a virtually inert, inner sphere metal-ligand complex, on the kinetics of purified yeast hexokinase PII has been studied at pH 6.5 and pH 7.5. At pH 6.5, where the normal assays exhibit a slow burst-type transient, low concentrations of Cr(NH3)2ATP were found to activate both phii, the initial velocity, and phiII, the steady state velocity. At higher concentrations, Cr(NH3)2ATP was found to be a competitive inhibitor versus MgATP for both phii and phiII. The apparent Ki values for both velocities were the same. The inhibition by Cr(NH3)2ATP at pH 6.5 was found to be a slow process with half-times similar to those found for the normal burst-type transient at this pH value. At pH 7.5, where normal assays exhibit linear progress curves, Cr(NH3)2ATP behaved similarly to that observed before at pH 7 (Danenberg, D. D., and Cleland, W. W. (1975) Biochemistry 14, 28-39), i.e. it was a competitive inhibitor versus MgATP and it caused a slowing of the reaction rate over the first several minutes. The apparent Ki for the initial velocity was 8-fold higher than the apparent Ki for the steady state velocity, suggesting tighter binding of Cr(NH3)2ATP with time. Preincubation experiments indicated that the normal pH 6.5 burst-type transient could be eliminated by appropriate preincubation with Cr(NH3)2ATP and a sugar. In agreement with Danenberg and Cleland (1975), similar preincubations have been shown to produce linear assays at pH 7.5 in the presence of Cr(NH3)2ATP. Similar results were seen with MgITP as the nucleotide substrate, where a burst-type transient is not seen at either pH value under normal assay conditions. At pH 7.5, a slow decrease in the reaction rate is seen over the first several minutes in the presence of Cr(NH3)2ATP. The apparent Ki for phii was 7-fold higher than the apparent Ki value for phiII, again suggesting a tighter binding of Cr(NH3)2ATP with time. A similar observation was made at pH 6.5, but the Ki values for phii and phiII were the same, suggesting no tightening of the binding of Cr(NH3)2ATP with time at this pH value. These results suggested that both slow processes reflect the same basic molecular change, but the consequences are different at the two pH values, presumably because of the difference in the charge of the enzyme. The Cr(NH3)2ATP kinetics at pH 6.5 have been interpreted in terms of a modification of the slow transition mechanism for hexokinase (Shill, J. P., and Neet, K. E. (1975) J. Biol. Chem. 250, 2259-2268). It is postulated that glucose and Cr(NH3)2ATP induce the same slow conformational change at pH 6.5 as that induced by glucose and MgATP, which gives rise to the normal burst-type transient. This suggests that Cr(NH3)2ATP may be a useful tool for physical studies to determine the cause of the slow transition of yeast hexokinase. Activation by low concentrations of Cr(NH3)2ATP was interpreted as binding of the nucleotide to an activator site on the enzyme, causing a shift in the distribution of enzyme towards the more active form.  相似文献   

18.
The thermodynamics and kinetics of folding of common-type acylphosphatase have been studied under a variety of experimental conditions and compared with those of the homologous muscle acylphosphatase. Intrinsic fluorescence and circular dichroism have been used as spectroscopic probes to follow the folding and unfolding reactions. Both proteins appear to fold via a two-state mechanism. Under all the conditions studied, common-type acylphosphatase possesses a lower conformational stability than the muscle form. Nevertheless, common-type acylphosphatase folds more rapidly, suggesting that the conformational stability and the folding rate are not correlated in contrast to recent observations for a number of other proteins. The unfolding rate of common-type acylphosphatase is much higher than that of the muscle enzyme, indicating that the differences in conformational stability between the two proteins are primarily determined by differences in the rate of unfolding. The equilibrium m value is markedly different for the two proteins in the pH range of maximum conformational stability (5. 0-7.5); above pH 8.0, the m value for common-type acylphosphatase decreases abruptly and becomes similar to that of the muscle enzyme. Moreover, at pH 9.2, the dependencies of the folding and unfolding rate constants of common-type acylphosphatase on denaturant concentration (mf and mu values, respectively) are notably reduced with respect to pH 5.5. The pH-induced decrease of the m value can be attributed to the deprotonation of three histidine residues that are present only in the common-type isoenzyme. This would decrease the positive net charge of the protein, leading to a greater compactness of the denatured state. The folding and unfolding rates of common-type acylphosphatase are not, however, significantly different at pH 5.5 and 9.2, indicating that this change in compactness of the denatured and transition states does not have a notable influence on the rate of protein folding.  相似文献   

19.
UvrA and UvrB proteins play key roles in the damage recognition step in the nucleotide excision repair. However, the molecular mechanism of damage recognition by these proteins is still not well understood. In this work we analyzed the interaction between single-stranded DNA (ssDNA) labeled with a fluorophore tetramethylrhodamine (TMR) and Thermus thermophilus HB8 UvrA (ttUvrA) and UvrB (ttUvrB) proteins. TMR-labeled ssDNA (TMR-ssDNA) as well as UV-irradiated ssDNA stimulated ATPase activity of ttUvrB more strongly than did normal ssDNA, indicating that this fluorescent ssDNA was recognized as damaged ssDNA. The addition of ttUvrA or ttUvrB enhanced the fluorescence intensity of TMR-ssDNA, and the intensity was much greater in the presence of ATP. Fluorescence titration indicated that ttUvrA has higher specificity for TMR-ssDNA than for normal ssDNA in the absence of ATP. The ttUvrB showed no specificity for TMR-ssDNA, but it took over 200 min for the fluorescence intensity of the ttUvrB-TMR-ssDNA complex to reach saturation in the presence of ATP. This time-dependent change could be separated into two phases. The first phase was rapid, whereas the second phase was slow and dependent on ATP hydrolysis. Time dependence of ATPase activity and fluorescence polarization suggested that changes other than the binding reaction occurred during the second phase. These results strongly suggest that ttUvrB binds ssDNA quickly and that a conformational change in ttUrvB-ssDNA complex occurs slowly. We also found that DNA containing a fluorophore as a lesion is useful for directly investigating the damage recognition by UvrA and UvrB.  相似文献   

20.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a unique member of the ATP-binding cassette (ABC) protein superfamily. Unlike most other ABC proteins that function as active transporters, CFTR is an ATP-gated chloride channel. The opening of CFTR’s gate is associated with ATP-induced dimerization of its two nucleotide-binding domains (NBD1 and NBD2), whereas gate closure is facilitated by ATP hydrolysis-triggered partial separation of the NBDs. This generally held theme of CFTR gating—a strict coupling between the ATP hydrolysis cycle and the gating cycle—is put to the test by our recent finding of a short-lived, post-hydrolytic state that can bind ATP and reenter the ATP-induced original open state. We accidentally found a mutant CFTR channel that exhibits two distinct open conductance states, the smaller O1 state and the larger O2 state. In the presence of ATP, the transition between the two states follows a preferred O1→O2 order, a telltale sign of a violation of microscopic reversibility, hence demanding an external energy input likely from ATP hydrolysis, as such preferred gating transition was abolished in a hydrolysis-deficient mutant. Interestingly, we also observed a considerable amount of opening events that contain more than one O1→O2 transition, indicating that more than one ATP molecule may be hydrolyzed within an opening burst. We thus conclude a nonintegral stoichiometry between the gating cycle and ATP consumption. Our results lead to a six-state gating model conforming to the classical allosteric mechanism: both NBDs and transmembrane domains hold a certain degree of autonomy, whereas the conformational change in one domain will facilitate the conformational change in the other domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号