首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The villin headpiece (HP67) is a 67 residue, monomeric protein derived from the C-terminal domain of villin. Wild-type HP67 (WT HP67) is the smallest fragment of villin that retains strong in vitro actin-binding activity. WT HP67 is made up of two subdomains, which form a tightly packed interface. The C-terminal subdomain of WT HP67, denoted HP35, is rich in helical structure, folds in isolation, and has been widely used as a model system for folding studies. In contrast, very little is known about the folding of the intact villin headpiece domain. Here, NMR, CD and H/2H amide exchange measurements are used to follow the pH, thermal and urea-induced unfolding of WT HP67 and a mutant (HP67 H41Y) in which a buried conserved histidine in the N-terminal subdomain, His41, has been mutated to Tyr. Although most small proteins display two-state equilibrium unfolding, the results presented here demonstrate that unfolding of the villin headpiece is a multistate process. The presence of a folded N-terminal subdomain is shown to stabilize the C-terminal subdomain, increasing the midpoints of the thermal and urea-induced unfolding transitions and increasing protection factors for H/2H exchange. Histidine 41 has been shown to act as a pH-dependent switch in wild-type HP67: the N-terminal subdomain is unfolded when His41 is protonated, while the C-terminal subdomain remains folded irrespective of the protonation state of His41. Mutation of His41 to Tyr eliminates the segmental pH-dependent unfolding of the headpiece. The mutation stabilizes both domains, but folding is still multistate, indicating that His41 is not solely responsible for the unusual equilibrium unfolding behavior of villin headpiece domain.  相似文献   

2.
Packer LE  Song B  Raleigh DP  McKnight CJ 《Biochemistry》2011,50(18):3706-3712
Villin-type headpiece domains are ~70 residue motifs that reside at the C-terminus of a variety of actin-associated proteins. Villin headpiece (HP67) is a commonly used model system for both experimental and computational studies of protein folding. HP67 is made up of two subdomains that form a tightly packed interface. The isolated C-terminal subdomain of HP67 (HP35) is one of the smallest autonomously folding proteins known. The N-terminal subdomain requires the presence of the C-terminal subdomain to fold. In the structure of HP67, a conserved salt bridge connects N- and C-terminal subdomains. This buried salt bridge between residues E39 and K70 is unusual in a small protein domain. We used mutational analysis, monitored by CD and NMR, and functional assays to determine the role of this buried salt bridge. First, the two residues in the salt bridge were replaced with strictly hydrophobic amino acids, E39M/K70M. Second, the two residues in the salt bridge were swapped, E39K/K70E. Any change from the wild-type salt bridge residues results in unfolding of the N-terminal subdomain, even when the mutations were made in a stabilized variant of HP67. The C-terminal subdomain remains folded in all mutants and is stabilized by some of the mutations. Using actin sedimentation assays, we find that a folded N-terminal domain is essential for specific actin binding. Therefore, the buried salt bridge is required for the specific folding of the N-terminal domain which confers actin-binding activity to villin-type headpiece domains, even though the residues required for this specific interaction destabilize the C-terminal subdomain.  相似文献   

3.
Meng J  Vardar D  Wang Y  Guo HC  Head JF  McKnight CJ 《Biochemistry》2005,44(36):11963-11973
Villin-type headpiece domains are approximately 70 amino acid modular motifs found at the C terminus of a variety of actin cytoskeleton-associated proteins. The headpiece domain of villin, a protein found in the actin bundles of the brush border epithelium, is of interest both as a compact F-actin binding domain and as a model folded protein. We have determined the high-resolution crystal structures of chicken villin headpiece (HP67) at 1.4 A resolution as well as two mutants, R37A and W64Y, at 1.45 and 1.5 A resolution, respectively. Replacement of R37 causes a 5-fold reduction in F-actin binding affinity in sedimentation assays. Replacement of W64 results in a much more drastic reduction in F-actin binding affinity without significant changes in headpiece structure or stability. The detailed comparison of these crystal structures with each other and to our previously determined NMR structures of HP67 and the 35-residue autonomously folding subdomain in villin headpiece, HP35, provides the details of the headpiece fold and further defines the F-actin binding site of villin-type headpiece domains.  相似文献   

4.
The helical subdomain of the villin headpiece (HP36) is one of the smallest naturally occurring proteins that folds cooperatively. Its small size, rapid folding, and simple three-helix topology have made it an extraordinary popular model system for computational, theoretical, and experimental studies of protein folding. Aromatic-proline interactions involving Trp64 and Pro62 have been proposed to play a critical role in specifying the subdomain fold by acting as gatekeeper residues. Note that the numbering corresponds to full-length headpiece. Mutation of Pro62 has been shown to lead to a protein that does not fold, but this may arise for two different reasons: The residue may make interactions that are critical for the specificity of the fold or the mutation may simply destabilize the domain. In the first case, the protein cannot fold, while in the second, the small fraction of molecules that do fold adopt the correct structure. The modest stability of the wild type prevents a critical analysis of these interactions because even moderately destabilizing mutations lead to a very small folded state population. Using a hyperstable variant of HP36, denoted DM HP36, as our new wild type, we characterized a set of mutants designed to assess the role of the putative gatekeeper interactions. Four single mutants, DM Pro62Ala, DM Trp64Leu, DM Trp64Lys, and DM Trp64Ala, and a double mutant, DM Pro62Ala Trp64Leu, were prepared. All mutants are less stable than DM HP36, but all are well folded as judged by CD and 1H NMR. All of the mutants display sigmoidal thermal unfolding and urea-induced unfolding curves. Double-mutant cycle analysis shows that the interactions between Pro62 and Trp64 are weak but favorable. Interactions involving Pro62 and proline-aromatic interactions are, thus, not required for specifying the subdomain fold. The implications for the design and thermodynamics of miniature proteins are discussed.  相似文献   

5.
Headpiece (HP) is a 76-residue F-actin-binding module at the C terminus of many cytoskeletal proteins. Its 35-residue C-terminal subdomain is one of the smallest known motifs capable of autonomously adopting a stable, folded structure in the absence of any disulfide bridges, metal ligands, or unnatural amino acids. We report the three-dimensional solution structures of the C-terminal headpiece subdomains of human villin (HVcHP) and human advillin (HAcHP), determined by two-dimensional 1H-NMR. They represent the second and third structures of such C-terminal headpiece subdomains to be elucidated so far. A comparison with the structure of the chicken villin C-terminal subdomain reveals a high structural conservation. Both C-terminal subdomains bind specifically to F-actin. Mutagenesis is used to demonstrate the involvement of Trp 64 in the F-actin-binding surface. The latter residue is part of a conserved structural feature, in which the surface-exposed indole ring is stacked on the proline and lysine side chain embedded in a PXWK sequence motif. On the basis of the structural and mutational data concerning Trp 64 reported here, the results of a cysteine-scanning mutagenesis study of full headpiece, and a phage display mutational study of the 69-74 fragment, we propose a modification of the model, elaborated by Vardar and coworkers, for the binding of headpiece to F-actin.  相似文献   

6.
Tang Y  Rigotti DJ  Fairman R  Raleigh DP 《Biochemistry》2004,43(11):3264-3272
The villin headpiece subdomain is a cooperatively folded 36-residue, three-alpha-helix protein. The domain is one of the smallest naturally occurring sequences which has been shown to fold. Recent experimental studies have shown that it folds on the 10-micros time scale. Its small size, simple topology, and very rapid folding have made it an attractive target for computational studies of protein folding. We present temperature-dependent NMR studies that provide evidence for significant structure in the denatured state of the headpiece subdomain. A set of peptide fragments derived from the headpiece were also characterized in order to determine if there is a significant tendency to form a locally stabilized structure in the denatured state. Peptides corresponding to each of the three isolated helices and to the connection between the first and second helices were largely unstructured. A longer peptide fragment which contains the first and second helices shows considerable structure, as judged by NMR and CD. Concentration-dependent CD measurements and analytical ultracentrifugation experiments indicate that the structure is not due to self-association. NMR studies indicate that the structure is stabilized by tertiary interactions involving phenylalanines and Val 50. A peptide in which two of the three phenylalanines are changed to leucine is considerably less structured, confirming the importance of the phenylalanines. This work indicates that there is significant structure in the denatured state of this rapidly folding protein.  相似文献   

7.
Small autonomously folding proteins are of interest as model systems to study protein folding, as the same molecule can be used for both experimental and computational approaches. The question remains as to how well these minimized peptide model systems represent larger native proteins. For example, is the core of a minimized protein tolerant to mutation like larger proteins are? Also, do minimized proteins use special strategies for specifying and stabilizing their folded structure? Here we examine these questions in the 35‐residue autonomously folding villin headpiece subdomain (VHP subdomain). Specifically, we focus on a cluster of three conserved phenylalanine (F) residues F47, F51, and F58, that form most of the hydrophobic core. These three residues are oriented such that they may provide stabilizing aromatic–aromatic interactions that could be critical for specifying the fold. Circular dichroism and 1D‐NMR spectroscopy show that point mutations that individually replace any of these three residues with leucine were destabilized, but retained the native VHP subdomain fold. In pair‐wise replacements, the double mutant that retains F58 can adopt the native fold, while the two double mutants that lack F58 cannot. The folding of the double mutant that retains F58 demonstrates that aromatic–aromatic interactions within the aromatic cluster are not essential for specifying the VHP subdomain fold. The ability of the VHP subdomain to tolerate mutations within its hydrophobic core indicates that the information specifying the three dimensional structure is distributed throughout the sequence, as observed in larger proteins. Thus, the VHP subdomain is a legitimate model for larger, native proteins.  相似文献   

8.
In an attempt to elucidate the biological function of villin-like actin-binding proteins in plants we have cloned several genes encoding Arabidopsis proteins with high homology to animal villin. We found that Arabidopsis contains at least four villin-like genes (AtVLNs) encoding four different VLN isoforms. Two AtVLN isoforms are more closely related to mammalian villin in their primary structure and are also antigenically related, whereas the other two contain significant changes in the C-terminal headpiece domain. RNA and promoter/beta-glucuronidase expression studies demonstrated that AtVLN genes are expressed in all organs, with elevated expression levels in certain types of cells. These results suggest that AtVLNs have less-specialized functions than mammalian villin, which is found only in the microvilli of brush border cells. Immunoblot experiments using a monoclonal antibody against pig villin showed that AtVLNs are widely distributed in a variety of plant tissues. Green fluorescent protein fused to full-length AtVLN and individual AtVLN headpiece domains can bind to both animal and plant actin filaments in vivo.  相似文献   

9.
Lin CY  Hu CK  Hansmann UH 《Proteins》2003,52(3):436-445
We report results from all-atom Monte Carlo simulations of the 36-residue villin headpiece subdomain HP-36. Protein-solvent interactions are approximated by an implicit solvent model. The parallel tempering is used to overcome the problem of slow convergence in low-temperature protein simulations. Our results show that this technique allows one to sample native-like structures of small proteins and points out the need for improved energy functions.  相似文献   

10.
A growing family of F-actin-bundling proteins harbors a modular F-actin-binding headpiece domain at the C terminus. Headpiece provides one of the two F-actin-binding sites essential for filament bundling. Here, we report the first structure of a functional headpiece domain. The NMR structure of chicken villin headpiece (HP67) reveals two subdomains that share a tightly packed hydrophobic core. The N-terminal subdomain contains bends, turns, and a four-residue alpha-helix as well as a buried histidine residue that imparts a pH-dependent folding. The C-terminal subdomain is composed of three alpha-helices and its folding is pH-independent. Two residues previously implicated in F-actin-binding form a buried salt-bridge between the N and C-terminal subdomains. The rest of the identified actin-binding residues are solvent-exposed and map onto a unique F-actin-binding surface.  相似文献   

11.
Dematin is an actin‐binding protein originally identified in the junctional complex of the erythrocyte plasma membrane, and is present in many nonerythroid cells. Dematin headpiece knockout mice display a spherical red cell phenotype and develop a compensated anemia. Dematin has two domains: a 315‐residue, proline‐rich “core” domain and a 68‐residue carboxyl‐terminal villin‐type “headpiece” domain. Expression of full‐length dematin in E. coli as a GST recombinant protein results in truncation within a proline, glutamic acid, serine, threonine rich region (PEST). Therefore, we designed a mutant construct that replaces the PEST sequence. The modified dematin has high actin binding activity as determined by actin sedimentation assays. Negative stain electron microscopy demonstrates that the modified dematin also exhibits actin bundling activity like that of native dematin. Circular dichroism (CD) and NMR spectral analysis, however, show little secondary structure in the modified dematin. The lack of secondary structure is also observed in native dematin purified from human red blood cells. 15N‐HSQC NMR spectra of modified dematin indicate that the headpiece domain is fully folded whereas the core region is primarily unfolded. Our finding suggests that the core is natively unfolded and may serve as a scaffold to organize the components of the junctional complex.  相似文献   

12.
The folding of large, multidomain proteins involves the hierarchical assembly of individual domains. It remains unclear whether the stability and folding of small, single-domain proteins occurs through a comparable assembly of small, autonomous folding units. We have investigated the relationship between two subdomains of the protein T4 lysozyme. Thermodynamically, T4 lysozyme behaves as a cooperative unit and the unfolding transition fits a two-state model. The structure of the protein, however, resembles a dumbbell with two potential subdomains: an N-terminal subdomain (residues 13-75), and a C-terminal subdomain (residues 76-164 and 1-12). To investigate the effect of uncoupling these two subdomains within the context of the native protein, we created two circular permutations, both at the subdomain interface (residues 13 and 75). Both variants adopt an active wild-type T4 lysozyme fold. The protein starting with residue 13 is 3 kcal/mol less stable than wild type, whereas the protein beginning at residue 75 is 9 kcal/mol less stable, suggesting that the placement of the termini has a major effect on protein stability while minimally affecting the fold. When isolated as protein fragments, the C-terminal subdomain folds into a marginally stable helical structure, whereas the N-terminal subdomain is predominantly unfolded. ANS fluorescence studies indicate that, at low pH, the C-terminal subdomain adopts a loosely packed acid state. An acid state intermediate is also seen for all of the full-length variants. We propose that this acid state is comprised of an unfolded N-terminal subdomain and a loosely folded C-terminal subdomain.  相似文献   

13.
Quenching of the triplet state of tryptophan by contact with cysteine can be used to measure the kinetics of loop formation in unfolded proteins. Here we show that cysteine quenching dynamics also provide a novel method for measuring folding rates when the exchange between folded and unfolded states is faster than the unquenched triplet lifetime (approximately 100 micros). We use this technique to investigate folding/unfolding kinetics of the 35 residue headpiece subdomain of the protein villin, which contains a single tryptophan residue and was engineered to contain a cysteine residue at the N terminus. At intermediate concentrations of denaturant the time-course of the triplet decay consists of two relaxations, the rates and amplitudes of which reveal the fast kinetics for folding and unfolding of this protein. The folding rates extracted using a simple kinetic model are close to those reported previously from laser-induced temperature-jump experiments that employ the change in tryptophan fluorescence as a probe. However, the results differ significantly from those reported from dynamic NMR line shape analysis on a variant with methionine at the N terminus, an issue that remains to be resolved. The analysis of the triplet quenching kinetics also shows that the quenching rates in the unfolded state increase with decreasing denaturant concentration, indicating a compaction of the unfolded protein.  相似文献   

14.
Eric Johnson 《Proteins》2012,80(12):2645-2651
The separability between overall and internal motions is evaluated over multiple folding trajectories of the villin headpiece subdomain. The analysis, which relies on the Prompers‐Brüschweiler separability index, offers a potentially useful perspective on protein folding. The protein is considered folded in this study, not when it reaches some static target, but rather when it tumbles as a dynamically constrained object. The analysis also demonstrates how the separability index, when applied to protein folding simulations, can facilitate the analysis of NMR relaxation data. Proteins 2012;. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Bi Y  Cho JH  Kim EY  Shan B  Schindelin H  Raleigh DP 《Biochemistry》2007,46(25):7497-7505
A hyperstable variant of the small independently folded helical subdomain (HP36) derived from the F-actin binding villin headpiece was designed by targeting surface electrostatic interactions and helical propensity. A double mutant N68A, K70M was significantly more stable than wild type. The Tm of wild type in aqueous buffer is 73.0 degrees C, whereas the double mutant did not display a complete unfolding transition. The double mutant could not be completely unfolded even by 10 M urea. In 3 M urea, the Tm of wild type is 54.8 degrees C while that of the N68AK70M double mutant is 73.9 degrees C. Amide H/2H exchange studies show that the pattern of exchange is very similar for wild type and the double mutant. The structures of a K70M single mutant and the double mutant were determined by X-ray crystallography and are identical to that of the wild type. Analytical ultracentrifugation demonstrates that the proteins are monomeric. The hyperstable mutant described here is expected to be useful for folding studies of HP36 because studies of the wild type domain have sometimes been limited by its marginal stability. The results provide direct evidence that naturally occurring miniature protein domains have not been evolutionarily optimized for global stability. The stabilizing effect of this double mutant could not be predicted by sequence analysis because K70 is conserved in the larger intact headpiece for functional reasons.  相似文献   

16.
Molecular dynamics simulations of protein folding can provide very high-resolution data on the folding process; however, due to computational challenges most studies of protein folding have been limited to small peptides, or made use of approximations such as Gō potentials or implicit solvent models. We have performed a set of molecular dynamics simulations totaling >50 μs on the villin headpiece subdomain, one of the most stable and fastest-folding naturally occurring proteins, in explicit solvent. We find that the wild-type villin headpiece reliably folds to a native conformation on timescales similar to experimentally observed folding, but that a fast folding double-norleucine mutant shows significantly more heterogeneous behavior. Along with other recent simulation studies, we note the occurrence of nonnative structures intermediates, which may yield a nativelike signal in the fluorescence measurements typically used to study villin folding. Based on the wild-type simulations, we propose alternative approaches to measure the formation of the native state.  相似文献   

17.
Villin is an F-actin regulating, modular protein with a gelsolin-like core and a distinct C-terminal "headpiece" domain. Localized in the microvilli of the absorptive epithelium, villin can bundle F-actin and, at higher calcium concentrations, is capable of a gelsolin-like F-actin severing. The headpiece domain can, in isolation, bind F-actin and is crucial for F-actin bundling by villin. While the three-dimensional structure of the isolated headpiece is known, its conformation in the context of attachment to the villin core remains unexplored. Furthermore, the dynamics of the linkage of the headpiece to the core has not been determined. To address these issues, we employ a 208-residue modular fragment of villin, D6-HP, which consists of the sixth gelsolin-like domain of villin (D6) and the headpiece (HP). We demonstrate that this protein fragment requires calcium for structural stability and, surprisingly, is capable of Ca2+-dependent F-actin bundling, suggesting that D6 contains a cryptic F-actin binding site. NMR resonance assignments and 15N relaxation measurements of D6-HP in 5 mM Ca2+ demonstrate that D6-HP consists of two independent structural domains (D6 and HP) connected by an unfolded 40-residue linker sequence. The headpiece domain in D6-HP retains its structure and interacts with D6 only through the linker sequence without engaging in other interactions. Chemical shift values indicate essentially the same secondary structure elements for D6 in D6-HP as in the highly homologous gelsolin domain 6. Thus, the headpiece domain of villin is structurally and functionally independent of the core domain.  相似文献   

18.
The third domain of the periplasmic protein TolA from Escherichia coli (TolAIII) was used as a fusion partner in the expression of various proteins from bacteria and eukaryotes. TolAIII is small domain, expressed in high yields as a soluble protein in the cytoplasm of E. coli. Proteins were linked to the C-terminus of TolAIII by a short flexible linker containing sites for endopeptidases. Three different vectors were prepared, containing sites for enterokinase, thrombin or factor Xa. Fusion proteins also contain a His(6)-Ser(2) tag at their N-terminus for easier purification. Up to 90 mg fusion protein per liter bacterial culture was obtained using these vectors. Colicin N R-domain was expressed with this system as a fusion and processed further for functional studies. The yield of final pure R-domain was doubled as compared to the direct expression. The system may prove to be useful in the preparation of other peptides and proteins.  相似文献   

19.
The HeadPiece (HP) domain, present in several F-actin-binding multi-domain proteins, features a well-conserved, solvent-exposed PXWK motif in its C-terminal subdomain. The latter is an autonomously folding subunit comprised of three alpha-helices organised around a hydrophobic core, with the sequence motif preceding the last helix. We report the contributions of each conserved residue in the PXWK motif to human villin HP function and structure, as well as the structural implications of the naturally occurring Pro to Ala mutation in dematin HP. NMR shift perturbation mapping reveals that substitution of each residue by Ala induces only minor, local perturbations in the full villin HP structure. CD spectroscopic thermal analysis, however, shows that the Pro and Trp residues in the PXWK motif afford stabilising interactions. This indicates that, in addition to the residues in the hydrophobic core, the Trp-Pro stacking within the motif contributes to HP stability. This is reinforced by our data on isolated C-terminal HP subdomains where the Pro is also essential for structure formation, since the villin, but not the dematin, C-terminal subdomain is structured. Proper folding can be induced in the dematin C-terminal subdomain by exchanging the Ala for Pro. Conversely, the reverse substitution in the villin C-terminal subdomain leads to loss of structure. Thus, we demonstrate a crucial role for this proline residue in structural stability and folding potential of HP (sub)domains consistent with Pro-Trp stacking as a more general determinant of protein stability.  相似文献   

20.
The villin-type "headpiece" domain is a modular motif found at the extreme C-terminus of larger "core" domains in over 25 cytoskeletal proteins in plants and animals. Although headpiece is classified as an F-actin-binding domain, it has been suggested that some expressed fusion-proteins containing headpiece may lack F-actin-binding in vivo. To determine the intrinsic F-actin affinity of headpiece domains, we quantified the F-actin affinity of seven headpiece domains and three N-terminal truncations, under identical in vitro conditions. The constructs are folded and adopt the native headpiece structure. However, they show a wide range of affinities that can be grouped into high, low, and nonspecific-binding categories. Computer models of the structure and charged surface potential of these headpiece domains suggest features important for high F-actin affinity. We conclude that not all headpiece domains are intrinsically F-actin-binding motifs, and suggest that the surface charge distribution may be an important element for F-actin recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号