首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Autoreactive T cells mediate NK cell degeneration in autoimmune disease   总被引:3,自引:0,他引:3  
Emerging evidence indicates that NK cells play an important and complex role in autoimmune disease. Humans with autoimmune diseases often have reduced NK cell numbers and compromised NK cell functions. Mechanisms underlying this NK cell degeneration and its biological significance are not known. In this study we show that, in an experimental model of human autoimmune myasthenia gravis induced by a self-Ag, the acetylcholine receptor, NK cells undergo proliferation during the initiation of autoimmunity, followed by significant degeneration associated with the establishment of the autoreactive T cell response. We show that NK cell degeneration was mediated by IL-21 derived from autoreactive CD4(+) T cells, and that acetylcholine receptor-immunized IL-21R-deficient mice, with competent NK cells, developed exacerbated autoimmunity. Thus, NK cell degeneration may serve as a means evolved by the immune system to control excessive autoimmunity.  相似文献   

2.
Evidence has been presented to show that CD4+ autoreactive T cell lines (ATs)2 in the rat require periodic stimulation with syngeneic spleen cells for in vitro proliferation. This proliferation can be blocked by treatment of the stimulator (spleen) cells with mAb to Ia antigens. Although ATs are Ia+ and can activate the allogeneic MLR, they fail to be autostimulatory. Fractionation of the spleen cells revealed that ATs can be stimulated with B cells and not by macrophages, although the latter were efficient in several accessory cell functions, including antigen presentation, lectin-dependent T cell activation and allogenic MLR response. Moreover, B cells proliferated and differentiated in response to AT cells. These data are compatible with a model in which ATs respond to hitherto undetermined B cell membrane antigen(s) in association with MHC class II antigens. These results may have important implications in understanding autoimmune responses.  相似文献   

3.
BACKGROUND: The degree of post-injury inflammation of the damaged area of a spinal cord is the main difference between the natural successful repair in inferior vertebrates and failure in superior vertebrates. The treatment of rats with anti-myelin lymphocytes after experimental spinal cord injury induces their functional recovery. On the other hand, mesenchymal stem cells (MSC) from adult BM implanted in injured areas recover the morphology and function of spinal cord in mammals. The purpose of this study was to determine whether there is a direct relationship between anti-nervous tissue T cells and MSC reparatory properties. METHODS: Circulating autoreactive lymphocytes of patients with spinal cord injuries and amyotrophic lateral sclerosis were isolated and activated in vitro. These cells were cocultured with autologous MSC for 2-15 days. Cocultures of non-selected lymphocytes were used as controls. RESULTS: After 48 h of coculture, MSC adopted a spindle shape with polarization of the cytoplasm that resembled bipolar neurons. Their nuclei diminished the nucleolus number and the chromatin lost its granular appearance. After 15 days of culture the cells developed the typical structure of a neural network. No morphologic changes were observed in control cultures. The differentiated cells reacted positively to tubuline III, GFAP and nestin. No differences were observed between the different patient cell sources. DISCUSSION: We observed that autoreactive cells may induce the transdifferentiation of MSC to neural stem cells. This T-cell-MSC interaction may be a common phenomenon during physiologic nerve tissue repair.  相似文献   

4.
It has been previously shown that autoreactive T cells appear during mercury-induced autoimmunity in Brown-Norway (BN) rats. In the present work, it is shown that: 1) T cells and T helper cells from HgCl2-injected BN rats are able to actively transfer autoimmunity in normal BN rats; the disease transferred is exacerbated when recipients are treated with the antisuppressor/cytotoxic T cell monoclonal antibody (OX8); 2) normal T cells preincubated with HgCl2 are also able to transfer the disease in OX8-treated but not in T cell-depleted rats; and 3) T cells from HgCl2-injected BN rats also transferred the disease in both normal and T cell depleted rats. It is concluded that: 1) autoreactive T cells, and presumably anti-Ia T cells are involved in the pathogenesis of mercury-induced autoimmunity; 2) these autoreactive T cells induce suppressor/cytotoxic T cells to proliferate in normal syngeneic recipients; the fact that this T cell subset did not proliferate in HgCl2-injected BN rats suggests that HgCl2 also affects T suppressor cells; and 3) mercury-induced autoimmunity could result from the additive effect of the emergence of autoreactive T cells and of a defect at the T suppressor level.  相似文献   

5.
The polyomavirus JC (JCV) infects 85% of healthy individuals, and its reactivation in a limited number of immunosuppressed people causes progressive multifocal leukoencephalopathy (PML), a severe demyelinating disease of the central nervous system. We hypothesized that JCV-specific cytotoxic T lymphocytes (CTLs) might control JCV replication in healthy individuals, blocking the evolution of PML. Using 51Cr release and tetramer staining assays, we show that 8 of 11 HLA-A*0201+ healthy subjects (73%) harbor detectable JCV-specific CD8+ CTLs that recognize one or two epitopes of JCV VP1 protein, the HLA-A*0201-restricted VP1p36 and VPp1100 epitopes. We determined that the frequency of JCV VP1 epitope-specific CTLs varied from less than 1/100,000 to 1/2,494 peripheral blood mononuclear cells. More individuals had JCV VP1-specific than cytomegalovirus-specific CTLs (8 of 11 subjects [73%] versus 2 of 10 subjects [20%], respectively). These results show that a CD8+-T-cell response against JCV is commonly found in immunocompetent people and suggest that these cells might protect against the development of PML.  相似文献   

6.
7.
We have used computer-assisted cytokine ELISA spot analysis to measure the frequencies, the type of cytokine, and the amount of cytokine produced by individual recall Ag-specific CD4 memory cells in freshly isolated blood. We studied the memory cells specific for tetanus toxoid and purified protein derivative in 18 healthy individuals and in 22 HIV-infected patients on highly active antiretroviral therapy (HAART). In healthy individuals, the frequency, cytokine signature, and cytokine production per cell of these memory cells were stable over time. Although it is presently unclear whether the maintenance of the memory T cell pool depends upon Ag persistence, cross-reactive Ag stimulation, or cytokine-driven bystander stimulations and expansions, our data strongly argue for a stable memory cell pool in healthy individuals. In HIV patients, however, the frequency of these memory cells was a function of the viral load. The decreased numbers of functional memory cells in patients with high viral loads might provide one mechanism behind the immunodeficient state. Although the cytokine output per cell was unaffected in most patients (20 of 24), in some patients (4 of 24) it was >100-fold reduced, which might provide an additional mechanism to account for the reduced immunocompetence of these patients. The ability to visualize directly and quantify the cytokine produced by the low frequency memory cells in freshly isolated blood that have been physiologically stimulated by Ag should aid comprehensive studies of the Ag-specific memory cell pool in vivo, in health and disease.  相似文献   

8.
We investigated the capacity of CD25(+) T regulatory cells (Treg) to modulate T cell responses to nickel, a common cause of allergic contact dermatitis. CD4(+) T cells isolated from the peripheral blood of six healthy, nonallergic individuals showed a limited capacity to proliferate in response to nickel in vitro, but responsiveness was strongly augmented (mean increment +/- SD, 240 +/- 60%) when cells were depleted of CD25(+) Treg. Although CD25(+) Treg were anergic to nickel, a small percentage up-regulated membrane CTLA-4 upon nickel exposure. CD25(+) Treg strongly and dose-dependently inhibited nickel-specific activation of CD25(-) T lymphocytes in coculture experiments in a cytokine-independent, but cell-to-cell contact-dependent, manner. Approximately 30% of circulating CD25(+) Treg expressed the cutaneous lymphocyte-associated Ag (CLA), and CLA(+)CD25(+) Treg were more efficient than CLA(-)CD25(+) cells in suppressing nickel responsiveness of CD25(-) T cells. The site of a negative patch test in response to nickel showed an infiltrate of CD4(+)CLA(+) cells and CD25(+) cells, which accounted for approximately 20% of the total T cells isolated from the tissue. Skin-derived T cells suppressed nickel-specific responses of peripheral blood CD25(-) T cells. In addition, 60 +/- 14% of peripheral blood CD25(+) Treg expressed the chemokine receptor CCR7 and strongly inhibited naive T cell activation in response to nickel. Finally, CD25(+) T cells isolated from peripheral blood of nickel-allergic patients showed a limited or absent capacity to suppress metal-specific CD4(+) and CD8(+) T cell responses. The results indicates that in healthy individuals CD25(+) Treg can control the activation of both naive and effector nickel-specific T cells.  相似文献   

9.
Despite negative selection in the thymus, significant numbers of autoreactive T cells still escape to the periphery and cause autoimmune diseases when immune regulation goes awry. It is largely unknown how these T cells escape clonal deletion. In this study, we report that CD24 deficiency caused deletion of autoreactive T cells that normally escape negative selection. Restoration of CD24 expression on T cells alone did not prevent autoreactive T cells from deletion; bone marrow chimera experiments suggest that CD24 on radio-resistant stromal cells is necessary for preventing deletion of autoreactive T cells. CD24 deficiency abrogated the development of experimental autoimmune encephalomyelitis in transgenic mice with a TCR specific for a pathogenic autoantigen. The role of CD24 in negative selection provides a novel explanation for its control of genetic susceptibility to autoimmune diseases in mice and humans.  相似文献   

10.
11.
Self-reactive T cells are known to be eliminated by negative selection in the thymus or by the induction of tolerance in the periphery. However, developmental pathways that allow self-reactive T cells to inhabit the normal repertoire are not well-characterized. In this investigation, we made use of anti-small nuclear ribonucleoprotein particle (snRNP) Ig transgenic (Tg) mice (2-12 Tg) to demonstrate that autoreactive T cells can be detected and activated in both normal naive mice and autoimmune-prone MRL lpr/lpr mice. In contrast, autoreactive T cells of nonautoimmune Tg mice are tolerized by Tg B cells in the periphery. In adoptive transfer studies, autoreactive T cells from MRL lpr/lpr mice can stimulate autoantibody synthesis in nonautoimmune anti-snRNP Tg mice. Transferred CD4 T cells migrate to regions of the spleen proximal to the B cell follicles, suggesting that cognate B cell-T cell interactions are critical to the autoimmune response. Taken together, our studies suggest that anti-snRNP B cells are important APCs for T cell activation in autoimmune-prone mice. Additionally, we have demonstrated that anti-snRNP B cell anergy in nonautoimmune mice may be reversed by appropriate T cell help.  相似文献   

12.
13.
Dendritic cells (DC) are highly specialized for initiating adaptive immune responses and are capable of producing a wide variety of cytokines. However, cytokine profiles of the DC naturally present in human blood have received relatively little attention. The objective of this study was to investigate expression of surface markers and cytokines by blood DC not subjected to prolonged culture and/or polyclonal activation, to identify surface phenotypes of cytokine-expressing DC and to evaluate sex and age differences in cytokine profiles of DC. For this purpose, DC were enriched from blood of healthy donors by the use of the adherence method, and expression of surface molecules and intracellular IFN-g, IL-10, IL-12 and IL-15 was studied by flow cytometry. Enriched blood DC expressed higher levels of IFN-g, IL-12 and IL-15, compared to whole mononuclear cells (MNC) incubated for the same time. Expression of IFN-g and IL-12 was confined to the mature CD83+CD11c+ DC subset. Enriched DC from females' blood displayed higher levels of CD80, IL-10 and IL-15. Taken together, enriched blood DC spontaneously express larger amounts of IFN-g, IL-12 and IL-15 than MNC. Sex differences in expression of CD80, IL-10 and IL-15 may have a modulatory influence on immune responses in males and females.  相似文献   

14.
Pemphigus vulgaris (PV) is a severe autoimmune bullous skin disorder and is primarily associated with circulating autoantibodies against desmoglein 3 (Dsg3) that are presumably regulated by Th cells. The aim of this study was to identify Dsg3-specific T regulatory (Tr) cells that may help to maintain and restore natural tolerance against Dsg3. Dsg3-responsive IL-10-secreting Tr1 cells were isolated by MACS cytokine secretion assay from healthy carriers of the PV-associated HLA class II alleles, DRB1*0402 and DQB1*0503, but were only rarely detected in PV patients. The Dsg3-specific Tr1 cells secreted IL-10, TGF-beta, and IL-5 upon Ag stimulation, proliferated in response to IL-2 but not to Dsg3 or mitogenic stimuli, and inhibited the proliferative response of Dsg3- and tetanus toxoid-responsive Th clones in an Ag-specific (Dsg3) and cell number-dependent manner. Moreover, their inhibitory effect was blocked by Ab against IL-10, TGF-beta, and by paraformaldehyde fixation. These observations strongly suggest that 1) Dsg3-responsive Tr1 cells predominate in healthy individuals, 2) their growth requires the presence of IL-2, and 3) they exert their Dsg3-dependent inhibitory function by the secretion of IL-10 and TGF-beta. Because autoaggressive T cells responsive to identical epitopes of Dsg3 were recently found both in PV patients and healthy individuals, the identified Tr1 cells may be critically involved in the maintenance and restoration of tolerance against Dsg3.  相似文献   

15.
The present study examines the extent of spinal cerebrospinal fluid (CSF) absorption in healthy individuals in relation to physical activity, CSF production, intracranial pressure (ICP), and spinal CSF movement. Thirty-four healthy individuals aged 21-35 yr were examined by lumbar puncture and radionuclide cisternography with repeated imaging. ICP was registered before and after CSF drainage, and CSF production was calculated. Spinal CSF absorption was calculated as reduction in spinal radionuclide activity. The radionuclide activity in the spinal subarachnoidal space was gradually decreased by 20 +/- 13% (mean +/- SD) during 1 h. The reduction was higher in active than in resting individuals (27 +/- 12% vs. 13 +/- 9%). The mean ICP in 19 of the individuals was 13.6 +/- 3.1 cm H(2)O. B-waves were found in 79% of the individuals, with a mean frequency of 0.6 +/- 0.3 min(-1). The mean CSF production rate was 0.34 +/- 0.13 ml/min. There were no correlations between radionuclide reduction, spinal movement of the radionuclide, and CSF production rate. The spinal radionuclide reduction found in this study indicates a spinal CSF absorption of 0.11-0.23 ml/min, more pronounced in active than in resting individuals.  相似文献   

16.
Lymph node cells from 4-wk-old MRL/Mp-lpr/lpr mice, but not from MRL/Mp-+/+ mice, when cultured in vitro for 5 to 7 days, will spontaneously proliferate and produce IL-2. We examined the expression of several cell surface Ag on lymph node cells from MRL/Mp-lpr/lpr mice before and after in vitro culture. There is an increase in the expression of Thy-1, L3T4, IL-2R, T cell activating protein, T cell receptor, and T3 complex on the surface of cultured cells. Cultured cells produced IL-3, IFN-gamma, and small but detectable amounts of IL-1 in addition to IL-2. Gamma irradiation of APC from young MRL/Mp-lpr/lpr mice or treatment of APC with a mAb (J11D) and C, completely abrogated their stimulatory capacity. These experiments suggest that B cells are the predominant APC responsible in the activation of autoreactive T cells in MRL/Mp-lpr/lpr mice. Lymph node cells from C57BL/6-lpr/lpr or C3H-lpr/lpr mice were unable to spontaneously proliferate or produce IL-2. Lymph node cells from (MRL/Mp-lpr/lpr x C57BL/6-lpr/lpr) F1 mice or (C3H-lpr/lpr x MRL/Mp-lpr/lpr) F1 mice did proliferate and produced IL-2 after in vitro culture. Using T cells from these F1 animals and APC from each parental haplotype, we found that APC from MRL/Mp-lpr/lpr mice induced more proliferation and greater amounts of IL-2, when compared to APC from F1 animals. APC from C57BL6-lpr/lpr mice or C3H-lpr/lpr were unable to induce spontaneous proliferation and IL-2 production. Therefore, B cells from MRL/Mp-lpr/lpr mice appear to possess unique features that enable them to activate autoreactive T cells more effectively than B cells from other mice bearing the lpr/lpr gene.  相似文献   

17.
Pemphigus vulgaris is a severe autoimmune disease caused by autoantibodies against the cutaneous adhesion molecule, desmoglein 3 (Dsg3). The aim of this study was to characterize the specificity of autoreactive Th cells, which presumably regulate Dsg3-specific autoantibody production. Ninety-seven Th1 and Th2 clones isolated from 16 pemphigus patients and 12 HLA-matched healthy donors recognized the Dsg3 peptides, DG3(78-94), DG3(96-112), DG3(189-205), DG3(205-221), and DG3(250-266). Peptide DG3(96-112), and to a lesser extent DG3(250-266), was recognized by the majority of T cells from patients and healthy donors in association with HLA-DRB1*0402 and DQB1*0503 which were prevalent in the pemphigus patients and Dsg3-responsive healthy donors. Analyzing the Vbeta-chain of the TCR of the DG3(96-112)-specific T cells showed no restricted TCR usage. Peptides DG3(342-358) and DG3(376-392) were exclusively recognized by T cell clones (n=13) from patients while DG3(483-499) was only recognized by T cell clones (n=3) from a healthy donor. All Dsg3 peptides contained conserved amino acids at relative positions 1, 4, and 6; amino acids with a positive charge at position 4 presumably represent anchor motifs for DRB1*0402. These findings demonstrate that T cell recognition of distinct Dsg3 peptides is restricted by distinct HLA class II molecules and is independent from the development of pemphigus vulgaris.  相似文献   

18.
19.
Urine steroid profiles of healthy individuals can be divided into two groups according to greatly different excretion rates of dehydroepiandrosterone (DHEA). About 80% of the population show an excretion of DHEA in urine of just above the detection limit or less of the main androgens androsterone (A) and etiocholanolone (E). This excretion is only enhanced in psychological stress situations. The remaining 20% excrete DHEA in roughly equal amounts as A and E.While the relation of excreted steroids is rather constant, the absolute amounts may vary greatly. In contrast to the behaviour of all other steroids DHEA excretion is not in relation to other steroids. The group of “high DHEA” producing individuals in particular shows drastic changes in the excretion during a day: the DHEA excretion rapidly rises from morning until afternoon and then drops to rather low values in the resting period during the night. A recognizable DHEA production seems to be closely related to the waking period.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号