首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Aims: The main aims of this study were to clone and express flagellin flaA gene from Vibrio alginolyticus strain HY9901, also to prepare mouse anti‐FlaA polyclonal antibody for future pathogen or vaccine study. Methods and Results: The full‐length flaA gene was amplified by PCR with designed primers. The open reading frame of flaA gene contains 1131 bp, and its putative protein consists of 376 amino acid residues. Alignment analysis indicated that the FlaA protein was highly conserved. SDS–PAGE indicated that the FlaA protein was successfully expressed in Escherichia coli BL21 (DE3). Then, the recombinant FlaA protein was purified by affinity chromatography, and the mouse anti‐FlaA serum was produced. The expression of flaA gene was verified by various immunological methods, including western blotting, enzyme‐linked immunosorbent assay (ELISA) and immunogold electron microscopy (IEM). Conclusions: Flagellin flaA gene was cloned and identified from V. alginolyticus HY9901, the recombinant FlaA protein was expressed and purified, and high‐titre FlaA protein‐specific antibody was produced. Western blot analysis revealed that the prepared antiserum not only specifically react to FlaA fusion protein, but also to natural FlaA protein of V. alginolyticus. The expressed FlaA protein was demonstrated, for the first time, as the component of flagella from V. alginolyticus by IEM. Significance and Impact of the Study: This study may offer important insights into the pathogenesis of V. alginolyticus, provide a base for further studies on the diagnosis and evaluation that whether the FlaA protein could be used as an effective vaccine candidate against infection by V. alginolyticus and other Vibrio species. Additionally, the purified FlaA protein and polyclonal antibody can be used for further functional and structural studies.  相似文献   

2.
Aquifex pyrophilus is a flagellated hyperthermophilic eubacterial species that grows optimally at 85°C. The thermostable A. pyrophilus flagellar filament is primarily composed of a single protein called flagellin (FlaA). The N- and C-terminal sequence regions of FlaA are important for self-assembly and share high sequence similarity with mesophilic bacterial flagellins. We have developed a predictive 3D-structure of FlaA, using the published structure of mesophilic Salmonella typhimurium flagellin (FliC) as a template and analyzed it with respect to possible determinants of thermostability. A sequence comparison of FlaA and FliC revealed a +7.0% increase in FlaA hydrophobic residues, a +0.6% increase in charged residues and a corresponding decrease of −6.0% in polar residues. The FlaA N- and C-termini also have higher proportions of hydrophobic and charged residues at the expense of polar residues and higher non-polar surface areas. Thus, a predominant stabilizing factor in FlaA appears to be increased hydrophobicity, which often confers greater rigidity to proteins. Fewer intramolecular ion pairs were observed in FlaA than FliC, although an increase in the positive charge potential of the FlaA D0 and D1 domains was also observed; increased intermolecular salt bridges may also contribute to the thermal stability of the oligomeric flagellar fiber. Figure a Model 3D structure of thermostable A. pyrophilus FlaA flagellin. b 3D structure of mesophilic S. typhimurium FliC flagellin. α-helices are shown in red, β-sheets are shown in yellow, turns are shown in blue and coils are shown in green. Both the structures show domains D0, D1, D2 and D3. c, d Stereo view of surface charge distribution of FlaA. e, f Stereo view of surface charge distribution of FliC. The legend shows the scale for coloring of the charge spectrum. Blue represents positive charge, red represents negative charge and white represents neutral  相似文献   

3.
Bacillus thuringiensis is a soil‐dwelling Gram positive bacterium that has been utilized as a biopesticide for well over 60 years. It is known to contain flagella that are important for motility. One of the proteins found in flagella is flagellin, which is post‐translationally modified by O‐glycosylation with derivatives of pseudaminic acid. The biosynthetic pathway for the production of CMP‐pseudaminic acid in B. thuringiensis, starting with UDP‐N‐acetyl‐d ‐glucosamine (UDP‐GlcNAc), requires seven enzymes. Here, we report the three‐dimensional structures of Pen and Pal, which catalyze the first and second steps, respectively. Pen contains a tightly bound NADP(H) cofactor whereas Pal is isolated with bound NAD(H). For the X‐ray analysis of Pen, the site‐directed D128N/K129A mutant variant was prepared in order to trap its substrate, UDP‐GlcNAc, into the active site. Pen adopts a hexameric quaternary structure with each subunit showing the bilobal architecture observed for members of the short‐chain dehydrogenase/reductase superfamily. The hexameric quaternary structure is atypical for most members of the superfamily. The structure of Pal was determined in the presence of UDP. Pal adopts the more typical dimeric quaternary structure. Taken together, Pen and Pal catalyze the conversion of UDP‐GlcNAc to UDP‐4‐keto‐6‐deoxy‐l ‐N‐acetylaltrosamine. Strikingly, in Gram negative bacteria such as Campylobacter jejuni and Helicobacter pylori, only a single enzyme (FlaA1) is required for the production of UDP‐4‐keto‐6‐deoxy‐l ‐N‐acetylaltrosamine. A comparison of Pen and Pal with FlaA1 reveals differences that may explain why FlaA1 is a bifunctional enzyme whereas Pen and Pal catalyze the individual steps leading to the formation of the UDP‐sugar product. This investigation represents the first structural analysis of the enzymes in B. thuringiensis that are required for CMP‐pseudaminic acid formation.  相似文献   

4.
The genome of haloarchaeon Haloarcula marismortui contains two archaellin genes—flaA2 and flaB. Earlier we isolated and characterized two H. marismortui strains in that archaella consisting of FlaA2 archaellin (with a minor FlaB fraction) or of FlaB only. Both the FlaA2 and FlaB strains were motile and produced functional helical archaella. Thus, it may seem that the FlaA2 archaellin is redundant. In this study we investigated the biological roles of archaellin redundancy and demonstrated that FlaA2 archaellin is better adapted to more severe conditions of high temperature/low salinity, while FlaB has an advantage with increasing salinity. We used the thermodynamic data and bioinformatics sequence analysis to demonstrate that archaella formed by FlaA2 are more stable than those formed by FlaB. Our combined data indicate that the monomer FlaA2 archaellin is more flexible and leads to more compact and stable formation of filamentous structures. The difference in response to environmental stress indicates that FlaA2 and FlaB replace each other under different environmental conditions and can be considered as ecoparalogs.  相似文献   

5.
Two subfamilies of UDP-GlcNAc C6 dehydratases were recently identified. FlaA1, a short soluble protein that exhibits a typical SYK catalytic triad, characterizes one of these subfamilies, and WbpM, a large membrane protein that harbors an altered SMK triad that was not predicted to sustain activity, represents the other subfamily. This study focuses on investigating the structure and function of these C6 dehydratases and the role of the altered triad as well as additional amino acid residues involved in catalysis. The significant activity retained by the FlaA1 Y141M triad mutant and the low activity of the WbpM M438Y mutant indicated that the methionine residue was involved in catalysis. A Glu(589) residue, which is conserved only within the large homologues, was shown to be essential for activity in WbpM. Introduction of this residue in FlaA1 enhanced the activity of the corresponding V266E mutant. Hence, this glutamate residue might be responsible for the retention of catalytic efficiency in the large homologues despite alteration of their catalytic triad. Mutations of residues specific for the short homologues (Asp(70), Asp(149)-Lys(150), Cys(103)) abolished the activity of FlaA1. Among them, C103M prevented dimerization but did not significantly affect the secondary structure. The fact that we could identify subfamily-specific residues that are essential for catalysis suggested an independent evolution for each subfamily of C6 dehydratases. Finally, the loss of activity of the FlaA1 G20A mutant provided evidence that a cofactor is involved in catalysis, and kinetic study of the FlaA1 H86A mutant revealed that this conserved histidine is involved in substrate binding. None of the mutations investigated altered the substrate, product, and function specificity of these enzymes.  相似文献   

6.
7.
FlaA1 is a small soluble protein of unknown function in Helicobacter pylori. It has homologues that are essential for the virulence of numerous medically relevant bacteria. FlaA1 was overexpressed as a histidine-tagged protein and purified to homogeneity by nickel chelation and cation exchange chromatography. Spectrophotometric assays, capillary electrophoresis, and mass spectrometry analyses showed that FlaA1 is a novel bifunctional C(6) dehydratase/C(4) reductase specific for UDP-GlcNAc. It converts UDP-GlcNAc into a UDP-4-keto-6-methyl-GlcNAc intermediate, which is stereospecifically reduced into UDP-QuiNAc. Substrate conversions as high as 80% were obtained at equilibrium. The K(m) and V(max) for UDP-GlcNAc were 159 microm and 65 pmol/min, respectively. No exogenous cofactor was required to obtain full activity of FlaA1. Additional NADH was only used with poor efficiency for the reduction step. The biochemical characterization of FlaA1 is important for the elucidation of biosynthetic pathways that lead to the formation of 2,6-deoxysugars in medically relevant bacteria. It establishes unambiguously the first step of the pathway and provides the means of preparing the substrate UDP-QuiNAc, which is necessary for the study of downstream enzymes.  相似文献   

8.
9.
10.
Helicobacter pylori is a human gastric pathogen associated with gastric and duodenal ulcers as well as gastric cancer. Mounting evidence suggests this pathogen's motility is prerequisite for successful colonization of human gastric tissues. Here, we isolated an H. pylori G27 HP0518 mutant exhibiting altered motility in comparison to its parental strain. We show that the mutant's modulated motility is linked to increased levels of O-linked glycosylation on flagellin A (FlaA) protein. Recombinant HP0518 protein decreased glycosylation levels of H. pylori flagellin in vitro, indicating that HP0518 functions in deglycosylation of FlaA protein. Furthermore, mass spectrometric analysis revealed increased glycosylation of HP0518 FlaA was due to a change in pseudaminic acid (Pse) levels on FlaA; HP0518 mutant-derived flagellin contained approximately threefold more Pse than the parental strain. Further phenotypic and molecular characterization demonstrated that the hyper-motile HP0518 mutant exhibits superior colonization capabilities and subsequently triggers enhanced CagA phosphorylation and NF-κB activation in AGS cells. Our study shows that HP0518 is involved in the deglycosylation of flagellin, thereby regulating pathogen motility. These findings corroborate the prominent function of H. pylori flagella in pathogen-host cell interactions and modulation of host cell responses, likely influencing the pathogenesis process.  相似文献   

11.
The organization of the flagellin gene locus in Campylobacter jejuni strain IN1 (Lior 7) was determined using the polymerase chain (PCR) reaction and a series of oligonucleotide primers. Two tandemly arranged flagellin genes of approximately 1.7 kb were found to be joined by an intervening segment of c.0.2kb, similar to that reported for Campylobacter coli. The 5' flagellin gene, flaA, was generated by PCR and both strands sequenced. Comparison of the deduced amino acid sequence for C. jejuni FlaA with the published sequence for C. jejuni FlaA with the published sequence for C. coli FlaA showed 77% identical amino acids between the proteins. Two common regions, C1 and C2, comprising the N-terminal 170 amino acids and C-terminal 100 amino acids, exhibit amino acids 94% and 96% identical to those of C. coli, respectively. The variable region, V1, comprising the middle of the protein, shows 61% identical residues with C. coli. Comparison of these regions with other bacterial flagellins reveals a similar pattern but with much less identity. Several areas within the V1 region correspond to predicted surface-exposed regions and may represent areas in which surface epitopes are located.  相似文献   

12.
The polar flagellar filament of Campylobacter coli VC167 is composed of two highly related (98%) flagellin subunit proteins, FlaA and FlaB, whose antigenic specificities result from posttranslational modification. FlaA is the predominant flagellin species, and mutants expressing only FlaA form a full-length flagellar filament. Although the deduced M(r) of type 2 (T2) FlaA is 58,884 and the apparent M(r) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis is 59,500, the solution weight-average M(r) by sedimentation analysis was 63,000. Circular dichroism studies in the presence or absence of 0.1% sodium dodecyl sulfate or 50% trifluorethanol showed that the secondary structure of T2 FlaA flagellin was altered, with alpha-helix structure being increased to 25% in the nonpolar environment. The molecule also contained 35 to 48% beta-sheet and 11 to 29% beta-turn structure. Mimeotope analysis of octapeptides representing the sequence of FlaA together with immunoelectron microscopy and enzyme-linked immunosorbent assay with a panel of antisera indicated that many residues in presumed linear epitopes were inaccessible or nonepitopic in the assembled filament, with the majority being in the N-terminal 337 residues of the 572-residue flagellin. Residues at the carboxy-terminal end of the T2 FlaA subunit also become inaccessible upon assembly. Digestion with trypsin, chymotrypsin, and endoproteinase Glu-C revealed a protease-resistant domain with an approximate M(r) of 18,700 between residues 193 and 375. Digestion with endoproteinase Arg-C and endoproteinase Lys-C allowed the mapping of a segment of surface-exposed FlaA sequence which contributes serospecificity to the VC167 T2 flagellar filament at residues between 421 and 480.  相似文献   

13.
14.
空肠弯曲菌FlaA单克隆抗体的制备与鉴定   总被引:1,自引:0,他引:1  
【目的】原核表达空肠弯曲菌鞭毛蛋白FlaA,并制备其单克隆抗体。【方法】克隆目的基因并将其构建到pET30a(+)和pGEX-6p-1表达载体,分别以变复性纯化后的rHis-FlaA、rGST-FlaA蛋白为免疫原和检测原进行杂交瘤细胞的筛选。采用间接ELISA法测定细胞上清和单抗腹水效价,Dot-ELISA、Western blot分析单抗特异性。【结果】成功构建pET30a(+)-flaA和pGEX-6p-1-flaA重组原核表达质粒,并融合表达rHis-FlaA和rGST-FlaA蛋白,Western blot试验显示天然蛋白多抗血清能与体外表达的蛋白呈现特异性反应,表明表达蛋白具有免疫原性。筛选获得3株稳定分泌抗FlaA的单克隆杂交瘤细胞株,分别命名为2D12、5E12、6A9,其Ig亚类分别为IgG2a、IgG1、IgG1,腹水效价分别为1∶102400,1∶102400和1∶51200;Western blot试验显示,3株单抗均能与表达rHis-FlaA重组蛋白的细菌发生特异性反应;Dot-ELISA试验表明,3株单抗均能与不同来源的空肠弯曲菌分离株发生特异性反应。【结论】本研究制备的单克隆抗体有较高特异性,具有良好的应用价值。为进一步研究空肠弯曲菌鞭毛蛋白的生物学特性、致病机理,以及建立快速检测技术奠定基础。  相似文献   

15.
Sanghani PC  Robinson H  Bosron WF  Hurley TD 《Biochemistry》2002,41(35):10778-10786
The human glutathione-dependent formaldehyde dehydrogenase is unique among the structurally studied members of the alcohol dehydrogenase family in that it follows a random bi bi kinetic mechanism. The structures of an apo form of the enzyme, a binary complex with substrate 12-hydroxydodecanoic acid, and a ternary complex with NAD+ and the inhibitor dodecanoic acid were determined at 2.0, 2.3, and 2.3 A resolution by X-ray crystallography using the anomalous diffraction signal of zinc. The structures of the enzyme and its binary complex with the primary alcohol substrate, 12-hydroxydodecanoic acid, and the previously reported binary complex with the coenzyme show that the binding of the first substrate (alcohol or coenzyme) causes only minor changes to the overall structure of the enzyme. This is consistent with the random mechanism of the enzyme where either of the substrates binds to the free enzyme. The catalytic-domain position in these structures is intermediate to the "closed" and "open" conformations observed in class I alcohol dehydrogenases. More importantly, two different tetrahedral coordination environments of the active site zinc are observed in these structures. In the apoenzyme, the active site zinc is coordinated to Cys44, His66 and Cys173, and a water molecule. In the inhibitor complex, the coordination environment involves Glu67 instead of the solvent water molecule. The coordination environment involving Glu67 as the fourth ligand likely represents an intermediate step during ligand exchange at the active site zinc. These observations provide new insight into metal-assisted catalysis and substrate binding in glutathione-dependent formaldehyde dehydrogenase.  相似文献   

16.
Many Archaea use rotation of helical flagellar filaments for swimming motility. We isolated and characterized the flagellar filaments of Haloarcula marismortui, an archaeal species previously considered to be nonmotile. Two Haloarcula marismortui phenotypes were discriminated--their filaments are composed predominantly of either FlaB or FlaA2 flagellin, and the corresponding genes are located on different replicons. FlaB and FlaA2 filaments differ in antigenicity and thermostability. FlaA2 filaments are distinctly thicker (20-22 nm) than FlaB filaments (16-18 nm). The observed filaments are nearly twice as thick as those of other characterized euryarchaeal filaments. The results suggest that the helicity of Haloarcula marismortui filaments is provided by a mechanism different from that in the related haloarchaeon Halobacterium salinarum, where 2 different flagellin molecules present in comparable quantities are required to form a helical filament.  相似文献   

17.
Campylobacter jejuni, a flagellated, spiral-rod Gram-negative bacterium, is the leading etiologic agent of human acute bacterial gastroenteritis worldwide. The source of this microorganism for human infection has been implicated as consumption and handling of poultry meat where this microorganism is a commensal in the gut. Because the genomes of many C. jejuni isolates have been sequenced, our ultimate goal is to develop protein arrays for exploring this microorganism and host interactions. In this communication, we report cloning, expression and purification of C. jejuni flagellar proteins in a bacterial expression system. Twelve recombinant proteins were purified, which were confirmed by SDS–PAGE analysis and a His tag detection kit. The FlgE1, FlgG, FlgK, FliE, FlgH/FliH and FlaA recombinant proteins were further confirmed by LC–ESI-MS/MS. The purified recombinant proteins were tested whether they were immunogenic using antibodies from several sources. BacTrace anti-Campylobacter species antibody reacted to the FlaA recombinant protein, but not others. Rabbit anti-MOMP1 peptide antibody reacted strongly to FliE and weakly to FlaA, but not others. Rabbit anti-MOMP2 peptide antibody reacted strongly to the FlaA, FliG, FliE, FlhF, FlgG, FlgE1 and FliD recombinant proteins, less to FlgK and FlgH/FliH, and did not react to the FliY, FliS and FliH recombinant proteins. These antibody studies suggest that these recombinant flagellar proteins have potential for novel targets for vaccine development. It is also anticipated that these recombinant proteins provide us a very useful tool for investigating host immune response to C. jejuni.  相似文献   

18.
We report crystal structures of the citrate and sn-glycerol-1-phosphate (G1P) complexes of (S)-3-O-geranylgeranylglyceryl phosphate synthase from Archaeoglobus fulgidus (AfGGGPS) at 1.55 and 2.0 A resolution, respectively. AfGGGPS is an enzyme that performs the committed step in archaeal lipid biosynthesis, and it presents the first triose phosphate isomerase (TIM)-barrel structure with a prenyltransferase function. Our studies provide insight into the catalytic mechanism of AfGGGPS and demonstrate how it selects for the sn-G1P isomer. The replacement of "Helix 3" by a "strand" in AfGGGPS, a novel modification to the canonical TIM-barrel fold, suggests a model of enzyme adaptation that involves a "greasy slide" and a "swinging door." We propose functions for the homologous PcrB proteins, which are conserved in a subset of pathogenic bacteria, as either prenyltransferases or being involved in lipoteichoic acid biosynthesis. Sequence and structural comparisons lead us to postulate an early evolutionary history for AfGGGPS, which may highlight its role in the emergence of Archaea.  相似文献   

19.
Strains of Clostridium botulinum are traditionally identified by botulinum neurotoxin type; however, identification of an additional target for typing would improve differentiation. Isolation of flagellar filaments and analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that C. botulinum produced multiple flagellin proteins. Nano-liquid chromatography-tandem mass spectrometry (nLC-MS/MS) analysis of in-gel tryptic digests identified peptides in all flagellin bands that matched two homologous tandem flagellin genes identified in the C. botulinum Hall A genome. Designated flaA1 and flaA2, these open reading frames encode the major structural flagellins of C. botulinum. Colony PCR and sequencing of flaA1/A2 variable regions classified 80 environmental and clinical strains into group I or group II and clustered isolates into 12 flagellar types. Flagellar type was distinct from neurotoxin type, and epidemiologically related isolates clustered together. Sequencing a larger PCR product, obtained during amplification of flaA1/A2 from type E strain Bennett identified a second flagellin gene, flaB. LC-MS analysis confirmed that flaB encoded a large type E-specific flagellin protein, and the predicted molecular mass for FlaB matched that observed by SDS-PAGE. In contrast, the molecular mass of FlaA was 2 to 12 kDa larger than the mass predicted by the flaA1/A2 sequence of a given strain, suggesting that FlaA is posttranslationally modified. While identification of FlaB, and the observation by SDS-PAGE of different masses of the FlaA proteins, showed the flagellin proteins of C. botulinum to be diverse, the presence of the flaA1/A2 gene in all strains examined facilitates single locus sequence typing of C. botulinum using the flagellin variable region.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号