首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aluminium is neurotoxic and is considered a possible etiologic factor in Alzheimer's disease, dialysis syndrome and other neurological disorders. The molecular mechanism of aluminium-induced impairment of neurological functions remains unclear. We showed that aluminium impairs the glutamate-nitric oxide-cGMP pathway in cultured neurons. The aim of this work was to assess by in vivo brain microdialysis whether chronic administration of aluminium in the drinking water (2.5% aluminium sulfate) also impairs the glutamate-nitric oxide-cGMP pathway in the cerebellum of rats in vivo. Chronic exposure to aluminium reduced NMDA-induced increase of extracellular cGMP by ca 50%. The increase in extracellular cGMP induced by the nitric oxide generating agent S-nitroso-N-acetylpenicillamine was higher (240%) in rats treated with aluminium than in controls. Immunoblotting experiments showed that aluminium reduced the cerebellar content of calmodulin and nitric oxide synthase by 34 and 15%, respectively. Basal activity of soluble guanylate cyclase was decreased by 66% in aluminium-treated rats, while the activity after stimulation with S-nitroso-N-acetylpenicillamine was similar to controls. Basal cGMP in the cerebellar extracellular space was decreased by 50% in aluminium-treated rats. These results indicate that chronic exposure to aluminium reduces the basal activity of guanylate cyclase and impairs the glutamate-nitric oxide-cGMP pathway in the animal in vivo.  相似文献   

2.
Exposure to aluminum (Al) produces neurotoxic effects in humans. However, the molecular mechanism of Al neurotoxicity remains unknown. Al interferes with glutamatergic neurotransmission and impairs the neuronal glutamate-nitric oxide-cyclic GMP (cGMP) pathway, especially in rats prenatally exposed to Al. The aim of this work was to assess whether Al interferes with processes associated with activation of NMDA receptors and to study the molecular basis for the Al-induced impairment of the glutamate-nitric oxide-cGMP pathway. We used primary cultures of cerebellar neurons prepared from control rats or from rats prenatally exposed to Al. Prenatal exposure to Al prevented glutamate-induced proteolysis of the microtubule-associated protein-2, disaggregation of microtubules, and neuronal death, indicating an impairment of NMDA receptor-associated signal transduction pathways. Prenatal exposure to Al reduced significantly the content of nitric oxide synthase and guanylate cyclase and increased the content of calmodulin both in cultured neurons and in the whole cerebellum. This effect was selective for proteins of the glutamate-nitric oxide-cGMP pathway as the content of mitogen-activated protein kinase and the synthesis of most proteins were not affected by prenatal exposure to Al. The alterations in the expression of proteins of the glutamate-nitric oxide-cGMP pathway could be responsible for some of the neurotoxic effects of Al.  相似文献   

3.
Chronic hyperammonemia impairs the glutamate-nitric oxide-cGMP pathway in rat brain in vivo. The aims of this work were to assess whether hyperammonemia impairs modulation of soluble guanylate cyclase, and to look for a peripheral marker for impairment of this pathway in brain. We activated the pathway at different steps using glutamate, SNAP, or YC-1. In control neurons these compounds increased cGMP by 7.4-, 9.7- and 7.2-fold, respectively. In ammonia-treated neurons formation of cGMP induced by glutamate, SNAP, and YC-1 was reduced by 50%, 56%, and 52%, respectively, indicating that hyperammonemia impairs activation of guanylate cyclase. This enzyme is also present in lymphocytes. Activation of guanylate cyclase by SNAP or YC-1 was impaired in lymphocytes from hyperammonemic rats. These results suggest that determination of the activation of soluble guanylate cyclase in lymphocytes could serve as a peripheral marker for impairment of the neuronal glutamate-nitric oxide-cGMP pathway in brain.  相似文献   

4.
Hepatic encephalopathy is a complex neuropsychiatric syndrome present in patients with liver disease that includes impaired intellectual function and alterations in personality and neuromuscular coordination. Hyperammonemia and liver failure result in altered glutamatergic neurotransmission, which contributes to hepatic encephalopathy. Alterations in the function of the glutamate-nitric oxide-cGMP pathway may be responsible for some of the neurological alterations found in hepatic encephalopathy. The function of this pathway is altered in brain from patients died with liver cirrhosis and one altered step of the pathway is the activation of soluble guanylate cyclase by nitric oxide, which is increased in cerebral cortex and reduced in cerebellum from these patients. Portacaval anastomosis and bile duct ligation plus hyperammonemia in rats reproduce the alterations in the activation of soluble guanylate cyclase by NO both in cerebellum and cerebral cortex. We assessed whether hyperammonemia is responsible for the region-selective alterations in guanylate cyclase modulation in liver cirrhosis and whether the alteration occurs in neurons or in astrocytes. Activation of guanylate cyclase by nitric oxide is lower in cerebellar neurons exposed to ammonia (1.5-fold) than in control neurons (3.3-fold). The activation of guanylate cyclase by nitric oxide is higher in cortical neurons exposed to ammonia (8.7-fold) than in control neurons (5.5-fold). The activation is not affected in cerebellar or cortical astrocytes. These findings indicate that hyperammonemia is responsible for the differential alterations in the modulation of soluble guanylate cyclase by nitric oxide in cerebellum and cerebral cortex of cirrhotic patients. Moreover, under the conditions used, the alterations occur selectively in neurons and not in astrocytes.  相似文献   

5.
Aluminium (Al) is a neurotoxicant and appears as a possible etiological factor in Alzheimer's disease and other neurological disorders. The mechanisms of Al neurotoxicity are presently unclear but evidence has emerged suggesting that Al accumulation in the brain can alter neuronal signal transduction pathways associated with glutamate receptors. In cerebellar neurons in culture, long term-exposure to Al added 'in vitro' impaired the glutamate-nitric oxide (NO)-cyclic GMP (cGMP) pathway, reducing glutamate-induced activation of NO synthase and NO-induced activation of the cGMP generating enzyme, guanylate cyclase. Prenatal exposure to Al also affected strongly the function of the glutamate-NO-cGMP pathway. In cultured neurons from rats prenatally exposed to Al, we found reduced content of NO synthase and of guanylate cyclase, and a dramatic decrease in the ability of glutamate to increase cGMP formation. Activation of the glutamate-NO-cGMP pathway was also strongly impaired in cerebellum of rats chronically treated with Al, as assessed by in vivo brain microdialysis in freely moving rats. These findings suggest that the impairment of the Glu-NO-cGMP pathway in the brain may be responsible for some of the neurological alterations induced by Al.  相似文献   

6.
Abstract: Humans are exposed to aluminum from environmental sources and therapeutic treatments. However, aluminum is neurotoxic and is considered a possible etiologic factor in Alzheimer's disease and other neurological disorders. The molecular mechanism of aluminum neurotoxicity is not understood. We tested the effects of aluminum on the glutamate-nitric oxide-cyclic GMP pathway in cultured neurons. Neurons were exposed to 50 µ M aluminum in culture medium for short-term (4 h) or long-term (8–14 days) periods, or rats were prenatally exposed, i.e., 3.7% aluminum sulfate in the drinking water, during gestation. Chronic (but not short-term) exposure of neurons to aluminum decreased glutamate-induced activation of nitric oxide synthase by 38% and the formation of cyclic GMP by 77%. The formation of cyclic GMP induced by the nitric oxide-generating agent S -nitroso- N -acetylpenicillamine was reduced by 33%. In neurons from rats prenatally exposed to aluminum but not exposed to it during culture, glutamate-induced formation of cyclic GMP was inhibited by 81%, and activation of nitric oxide synthase was decreased by 85%. The formation of cyclic GMP induced by S -nitroso- N -acetylpenicillamine was not affected. These results indicate that chronic exposure to aluminum impairs glutamate-induced activation of nitric oxide synthase and nitric oxide-induced activation of guanylate cyclase. Impairment of the glutamate-nitric oxide-cyclic GMP pathway in neurons may contribute to aluminum neurotoxicity.  相似文献   

7.
Carbon monoxide induces delayed neurological and neuropathological alterations, including memory loss and cognitive impairment. The bases for the delay remain unknown. Activation of soluble guanylate cyclase by nitric oxide modulates some forms of learning and memory. Carbon monoxide binds to soluble guanylate cyclase, activating it but interfering with its activation by nitric oxide. The aim of this work was to assess whether exposure of rats to carbon monoxide alters the activity of soluble guanylate cyclase or its modulation by nitric oxide in cerebellum or cerebral cortex. Rats exposed chronically or acutely to carbon monoxide were killed 24 h or 7 days later. Acute carbon monoxide exposure decreased cyclic guanosine monophosphate (cGMP) content and reduced activation of soluble guanylate cyclase by nitric oxide. Cortex was more sensitive than cerebellum to chronic exposure, which reduced activation of soluble guanylate cyclase by nitric oxide in cortex. In cerebellum, chronic exposure induced delayed impairment of soluble guanylate cyclase activation by nitric oxide. Acute exposure effects were also stronger at 7 days than at 24 h after exposure. This delayed impaired modulation of soluble guanylate cyclase by nitric oxide may contribute to delayed memory loss and cognitive impairment in humans exposed to carbon monoxide.  相似文献   

8.
It has been proposed that impairment of the glutamate-nitric oxide-cyclic guanosine monophosphate (cGMP) pathway in brain contributes to cognitive impairment in hepatic encephalopathy. The aims of this work were to assess whether the function of this pathway and of nitric oxide synthase (NOS) are altered in cerebral cortex in vivo in rats with chronic liver failure due to portacaval shunt (PCS) and whether these alterations are due to hyperammonemia. The glutamate-nitric oxide-cGMP pathway function and NOS activation by NMDA was analysed by in vivo microdialysis in cerebral cortex of PCS and control rats and in rats with hyperammonemia without liver failure. Similar studies were done in cortical slices from these rats and in cultured cortical neurons exposed to ammonia. Basal NOS activity, nitrites and cGMP are increased in cortex of rats with hyperammonemia or liver failure. These increases seem due to increased inducible nitric oxide synthase expression. NOS activation by NMDA is impaired in cerebral cortex in both animal models and in neurons exposed to ammonia. Chronic liver failure increases basal NOS activity, nitric oxide and cGMP but reduces activation of NOS induced by NMDA receptors activation. Hyperammonemia is responsible for both effects which will lead, independently, to alterations contributing to neurological alterations in hepatic encephalopathy.  相似文献   

9.

Background

A potential role for coagulation factors in pulmonary arterial hypertension has been recently described, but the mechanism of action is currently not known. Here, we investigated the interactions between thrombin and the nitric oxide-cGMP pathway in pulmonary endothelial cells and experimental pulmonary hypertension.

Principal Findings

Chronic treatment with the selective thrombin inhibitor melagatran (0.9 mg/kg daily via implanted minipumps) reduced right ventricular hypertrophy in the rat monocrotaline model of experimental pulmonary hypertension. In vitro, thrombin was found to have biphasic effects on key regulators of the nitric oxide-cGMP pathway in endothelial cells (HUVECs). Acute thrombin stimulation led to increased expression of the cGMP-elevating factors endothelial nitric oxide synthase (eNOS) and soluble guanylate cyclase (sGC) subunits, leading to increased cGMP levels. By contrast, prolonged exposition of pulmonary endothelial cells to thrombin revealed a characteristic pattern of differential expression of the key regulators of the nitric oxide-cGMP pathway, in which specifically the factors contributing to cGMP elevation (eNOS and sGC) were reduced and the cGMP-hydrolyzing PDE5 was elevated (qPCR and Western blot). In line with the differential expression of key regulators of the nitric oxide-cGMP pathway, a reduction of cGMP by prolonged thrombin stimulation was found. The effects of prolonged thrombin exposure were confirmed in endothelial cells of pulmonary origin (HPAECs and HPMECs). Similar effects could be induced by activation of protease-activated receptor-1 (PAR-1).

Conclusion

These findings suggest a link between thrombin generation and cGMP depletion in lung endothelial cells through negative regulation of the nitric oxide-cGMP pathway, possibly mediated via PAR-1, which could be of relevance in pulmonary arterial hypertension.  相似文献   

10.
Hepatic encephalopathy is a complex neuropsychiatric syndrome present in patients with chronic or acute liver disease. We review here some recent advances in the study, in animal models, of the mechanisms involved in the impairment in intellectual function in hepatic encephalopathy. These studies show that the function of the glutamate-nitric oxide-cGMP pathway is impaired in brain in vivo in rats with chronic hyperammonemia or liver failure and from patients died in hepatic encephalopathy. This impairment leads to a reduced extracellular concentration of cGMP in the cerebellum and is associated with reduced learning ability in these animal models. Moreover, learning ability of hyperammonemic rats was restored by increasing cGMP by: (1) continuous intracerebral administration of zaprinast, an inhibitor of the cGMP-degrading phosphodiesterase, (2) chronic oral administration of sildenafil, an inhibitor of the phosphodiesterase that crosses the blood-brain barrier and (3) continuous intracerebral administration of cGMP. The data summarized indicate that impairment of learning ability in rats with chronic liver failure or hyperammonemia is due to impairment of the glutamate-nitric oxide-cGMP pathway. Moreover, increasing extracellular cGMP by pharmacological means may be a new therapeutic approach to improve cognitive function in patients with hepatic encephalopathy.  相似文献   

11.
Hyperammonemia is the main responsible for the neurological alterations in hepatic encephalopathy in patients with liver failure. We studied the function of the glutamate-nitric oxide (NO)-cGMP pathway in brain in animal models of hyperammonemia and liver failure and in patients died with liver cirrhosis. Activation of glutamate receptors increases intracellular calcium that binds to calmodulin and activates neuronal nitric oxide synthase, increasing nitric oxide, which activates soluble guanylate cyclase (sGC), increasing cGMP. This glutamate-NO-cGMP pathway modulates cerebral processes such as circadian rhythms, the sleep-waking cycle, and some forms of learning and memory. These processes are impaired in patients with hepatic encephalopathy. Activation of sGC by NO is significantly increased in cerebral cortex and significantly reduced in cerebellum from cirrhotic patients died in hepatic coma. Portacaval anastomosis in rats, an animal model of liver failure, reproduces the effects of liver failure on modulation of sGC by NO both in cerebral cortex and cerebellum. In vivo brain microdialisis studies showed that sGC activation by NO is also reduced in vivo in cerebellum in hyperammonemic rats with or without liver failure. The content of alpha but not beta subunits of sGC are increased both in frontal cortex and cerebellum from patients died due to liver disease and from rats with portacaval anastomosis. We assessed whether determination of activation of sGC by NO-generating agent SNAP in lymphocytes could serve as a peripheral marker for the impairment of sGC activation by NO in brain. Chronic hyperammonemia and liver failure also alter sGC activation by NO in lymphocytes from rats or patients. These findings show that the content and modulation by NO of sGC are strongly altered in brain of patients with liver disease. These alterations could be responsible for some of the neurological alterations in hepatic encephalopathy such as sleep disturbances and cognitive impairment.  相似文献   

12.
13.
Changes in cerebral cytochrome oxidase (COX) activity, nitric oxide (NO)-cyclic GMP (cGMP) pathway and cholinergic muscarinic receptors (MRs) have been reported in rodents acutely exposed to carbon monoxide (CO). These endpoints measurable in lymphocytes may serve as peripheral markers of CO neurotoxicity. The early and delayed effects of repeated and acute in vivo CO inhalation were investigated on COX activity, cGMP formation and MR binding in rat brain and lymphocytes to assess whether each endpoint was similarly affected both centrally and peripherally. Male Wistar rats either inhaled 500 ppm CO, 6 h/day, 5 days/week, 4 weeks (repeated exposure) or 2,400 ppm, 1 h (single exposure). Neither treatment altered brain or lymphocyte COX activity 1 and 7 days post-treatment. Also ineffective were repeated and acute CO treatments towards (3)H-quinuclidinyl benzilate (QNB) binding to MRs in cerebral cortex, hippocampus, striatum, cerebellum (respective controls, mean+/-S.D.: 171 +/- 45, 245 +/- 53, 263 +/- 14 and 77 +/- 7 fmol/mg protein) and lymphocytes (24 +/- 10 fmol/million cells) at the same time points. In lymphocytes control cGMP levels averaged 1.98 +/- 0.99 pmol/mg protein under basal conditions, and 3.94 +/- 0.55 pmol/mg protein after NO-stimulation. One day after chronic treatment cessation, the CO-treated group displayed about a 50% decrease in both basal and NO-stimulated cGMP values, which persisted up to 7 days after, compared to air-exposed rats. Acutely, CO caused a delayed enhancement (+140%) of NO-induced activation of soluble guanylate cyclase. The finding that the NO-cGMP pathway is a target for the delayed effects of CO in peripheral blood cells is in accordance with our data in brain [Hernández-Viadel, M., Castoldi, A.F., Coccini, T., Manzo, L., Erceg, S., Felipo, V., 2004. In vivo exposure to carbon monoxide causes delayed impairment of activation of soluble guanylate cyclase by nitric oxide in rat brain cortex and cerebellum. Journal of Neurochemistry 89, 1,157-1,165], and supports the use of this peripheral endpoint as a biomarker of CO central effects.  相似文献   

14.
We investigated the effects of adrenomedullin (ADM) on cGMP production in cultured SV-40 transformed cat iris sphincter smooth muscle (SV-CISM-2) cells. ADM increased cGMP accumulation in a time- and concentration- dependent manner. The peptide increased cGMP formation in the transformed cells by 405-fold as compared to 1. 6-fold in primary cultured CISM cells. The basal cGMP concentrations in both cell types were comparable. In addition, ADM increased cAMP accumulation in SV-CISM-2 cells and in primary cultured cells by 18. 9- and 5.8-fold, respectively. The ADM receptor antagonist, ADM(26-52), but not the atrial natriuretic peptide (ANP) receptor antagonist, anantin, inhibited ADM-induced cGMP formation. The phorbol ester, phorbol 12, 13-dibutyrate (PDBu), which inhibits particulate guanylate cyclases in smooth muscle, blocked ADM-stimulated cGMP accumulation. In contrast, inhibitors of the soluble guanylate cyclases, such as LY83583 and ODQ, and inhibitors of the nitric oxide cascade had little effect on ADM-stimulated cGMP production. The stimulatory effect of ADM on cGMP formation is due to activation of the guanylate cyclase system and not to a much reduced phosphodiesterase activity. ADM stimulated guanylate cyclase activity in membrane fractions isolated from SV-CISM-2 cells in a concentration-dependent manner with EC(50) value of 72 nM. Pertussis toxin, an activator of the G-protein, Gi, inhibited ADM-stimulated cGMP accumulation, whereas cholera toxin, a stimulator of the Gs G-protein and subsequently cAMP accumulation, had little effect. Pretreatment of the plasma membrane fraction with Gialpha antibody attenuated ADM-stimulated guanylate cyclase activity by 75%. We conclude that ADM increases intracellular cGMP levels in SV-CISM-2 cells through activation of the ADM receptor and subsequent stimulation of a Gi-mediated membrane-bound guanylate cyclase.  相似文献   

15.
Metabotropic glutamate receptors (mGluRs) modulate important processes in cerebellum including long-term depression, which also requires formation of nitric oxide (NO) and cGMP. Some reports suggest that mGluRs could modulate the NO-cGMP pathway in cerebellum. However this modulation has not been studied in detail. The aim of this work was to assess by microdialysis in freely moving rats whether activation of mGluR5 modulates the NO-cGMP pathway in cerebellum in vivo and to analyze the underlying mechanisms. We show that mGluR5 activation increases extracellular glutamate, citrulline and cGMP in cerebellum. Blocking NMDA receptors with MK-801 does not prevent any of these effects, indicating that NMDA receptors activation is not required. However in the presence of MK-801 the effects are more transient, returning faster to basal levels. Blocking AMPA receptors prevents the increase in citrulline and cGMP induced by mGluR5 activation, but not the increase in glutamate. The release of glutamate is prevented by tetrodotoxin but not by fluoroacetate, indicating that glutamate is released from neurons and not from astrocytes. Activation of AMPA receptors increases citrulline and cGMP. These data indicate that activation of mGluR5 induces an increase of extracellular glutamate which activates AMPA receptors, leading to activation of nitric oxide synthase and increased NO, which activates guanylate cyclase, increasing cGMP. The response mediated by AMPA receptors desensitize rapidly. Activation of AMPA receptors also induces a mild depolarization, allowing activation of NMDA receptors which prolongs the duration of the effect initiated by activation of AMPA receptors. These data support that the three types of glutamate receptors: mGluR5, AMPA and NMDA cooperate in the modulation of the grade and duration of activation of the NO-cGMP pathway in cerebellum in vivo. This pathway would modulate cerebellar processes such as long-term depression.  相似文献   

16.
The synthesis of nitric oxide by brain slices has been demonstrated in several laboratories. In addition, in vitro studies have demonstrated stimulation of nitric oxide synthesis by excitatory amino acid receptor agonists. These data have led to the hypothesis that this readily diffusible "intercellular messenger molecule" acts to generate a cascade effect by activating guanylate cyclase in several cell types and thereby augment levels of the second messenger cyclic GMP (cGMP). Therefore, we evaluated this hypothesis in vivo, by testing the actions of the nitric oxide synthase inhibitor N-mono-methyl-L-arginine (NMMA) on elevations in level of mouse cerebellar cGMP generated by excitatory amino acid receptor agonists. The stimulatory effects of D-serine, quisqualate, and kainate were all found to be antagonized by this enzyme inhibitor. In addition, NMMA antagonized the increases in cerebellar cGMP level elicited by harmaline and pentylenetetrazole, pharmacological agents that augment endogenous excitatory amino acid transmission. Our data are, therefore, the first in vivo demonstration that nitric oxide is an important "messenger molecule" in the cerebellum, mediating the actions of kainate, quisqualate, and N-methyl-D-aspartate receptor agonists on guanylate cyclase. These data are consistent with previous in vitro findings with kainate and N-methyl-D-aspartate.  相似文献   

17.
The ubiquitous second messenger cyclic GMP (cGMP) is synthesized by soluble guanylate cyclases in response to nitric oxide (NO) and degraded by phosphodiesterases (PDE). We studied the homeostasis of cGMP in living thalamic neurons by using the genetically encoded fluorescence resonance energy transfer sensor Cygnet, expressed in brain slices through viral gene transfer. Natriuretic peptides had no effect on cGMP. Basal cGMP levels decreased upon inhibition of NO synthases or soluble guanylate cyclases and increased when PDEs were inhibited. Single cell RT-PCR analysis showed that thalamic neurons express PDE1, PDE2, PDE9, and PDE10. Basal cGMP levels were increased by the PDE2 inhibitors erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA) and BAY60-7550 but were unaffected by PDE1 or PDE10 inhibitors. We conclude that PDE2 regulates the basal cGMP concentration in thalamic neurons. In addition, in the presence of 3-isobutyl-1-methylxanthine (IBMX), cGMP still decreased after application of a NO donor. Probenecid, a blocker of cGMP transporters, had no effect on this decrease, leaving PDE9 as a possible candidate for decreasing cGMP concentration. Basal cGMP level is poised at an intermediate level from which it can be up or down-regulated according to the cyclase and PDE activities.  相似文献   

18.
Abstract: We studied the effect of cultured endothelial cells on the secretion of catecholamines by cultured bovine chromaffin cells. Chromaffin cell catecholamine secretion was stimulated by either boluses of potassium (K+) or the nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium (DMPP). Endothelial cells inhibited the catecholamine release and stimulatory effects of K+ and DMPP. This inhibition increased with time, and in 25 min the initial stimulated secretory response (100%) to 30 m M K+ or 25 μ M DMPP dropped to 45 ± 3% and 53.5 ± 2.3%, respectively. This endothelial cell-induced inhibition was blocked by the nitric oxide synthase inhibitors N -nitro- l -arginine methyl ester ( l -NAME) and N -monoethyl- l -arginine ( l -NMMA), and by the guanylate cyclase inhibitor methylene blue, indicating that the l -arginine/nitric oxide/ cyclic GMP pathway is involved in this endothelial cell-chromaffin cell interaction. In the absence of endothelial cells, incubation of chromaffin cells with l -NAME, l -NMMA, or methylene blue also augmented the secretagogue-induced catecholamine secretion, indicating that nitric oxide from chromaffin cells could be implicated in an autoinhibitory process of catecholamine release. These results provide indirect evidence for the presence of nitric oxide synthase in bovine adrenomedullary chromaffin cells. Our results show that there is an autoinhibitory mechanism of catecholamine release in chromaffin cells and that an additional level of inhibition is observed when cultured vascular endothelial cells are present. These two inhibitory processes may have different origins, but they appear to converge into a common pathway, the l -arginine/nitric oxide synthase/guanylate cyclase pathway.  相似文献   

19.
Abstract: Cyclic GMP (cGMP) formation in rat pinealocytes is regulated through a synergistic dual receptor mechanism involving β-and α1-adrenergic receptors. The effects of N -monomethyl- l -arginine (NMMA), which inhibits nitric oxide (NO) synthase and NO-mediated activation of cytosolic guanylate cyclase, and methylene blue (MB), which inhibits cytosolic guanylate cyclase, were investigated in an attempt to understand the role of NO in adrenergic cGMP formation. Both NMMA and MB inhibited β-adrenergic stimulation of cGMP formation as well as α1-adrenergic potentiation of β-adrenergic stimulation of cGMP formation, whereas they had no effect in unstimulated pinealocytes. The inhibitory action of NMMA was antagonized by addition of l -arginine. On the basis of these findings it can be concluded that the adrenergic stimulation of cGMP formation involves NO synthesis followed by activation of cytosolic guanylate cyclase.  相似文献   

20.
The vasodilator action of organic nitrates is thought to be mediated by an increase in the level of cGMP following stimulation of the cytosolic enzyme guanylate cyclase in the vascular smooth muscle cell. However, direct evidence for the formation of the putative active metabolite, nitric oxide (NO) within the different compartments of the vascular wall is still missing. We here demonstrate for the first time that cultured vascular smooth muscle cells as well as endothelial cells from different species actively metabolize organic nitrates to NO. We furthermore present evidence for an outward transport of cGMP from both cell types following stimulation of soluble guanylate cyclase. The rate of NO release closely correlated with the rate of cGMP egression. Biotransformation of organic nitrates to NO appeared to comprise at least two different components, a heat-sensitive enzymatic pathway which is short-lived and prone to rapid desensitization and a second non-enzymatic component which is apparently unsaturable and longer lasting. The marked decrease in the release of NO and cGMP upon the repeated administration of organic nitrates suggests that the phenomenon of "nitrate tolerance" is mainly due to an impaired biotransformation. We propose that the metabolism of nitrates to NO may have important implications for the prevention of atherosclerosis and the therapeutic modulation of blood cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号