首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium-dependent protein kinases (CDPKs) constitute a unique family of enzymes in plants that are characterized by a C-terminal calmodulin (CaM)-like domain. Through protein kinase assays, we have examined the levels of cucumber calcium-dependent kinase (CsCDPK) activity in various organs of cucumber seedlings and plants. The activity of CsCDPK was highest in cucumber plant leaves followed by seedling roots and hypocotyls; however, cucumber plant flowers, seedling cotyledons, and hooks had levels that were barely detectable. The CsCDPKs were immunolocalized using polyclonal antibodies that are highly specific against a part of the kinase domain of a calcium-dependent protein kinase (CsCDPKS) in the phloem sieve elements (SEs) in various organs of cucumber. In addition, this study indicates the presence of CsCDPKs in organelle-like bodies associated with the plasma membrane of sieve elements in mature stems and roots as well as in the storage bodies of immature seeds. These findings are discussed in terms of the likely roles played by CDPKs in the signal transduction pathways for Ca2+-regulated phloem transport of assimilates from leaves to various organs during growth and development of cucumber seedlings and plants.  相似文献   

2.
In yeast, eIF5A, in combination with eEF2, functions at the translation step, during the protein elongation cycle. This result is of significance with respect to functioning of the enucleate sieve tube system, as eIF5A was recently detected in Cucurbita maxima (pumpkin) phloem sap. In the present study, we further characterized four CmeIF5A isoforms, encoding three proteins, all of which were present in the phloem sap. Although hypusination of CmeIF5A was not necessary for entry into the sieve elements, this unique post‐translational modification was necessary for RNA binding. The two enzymes required for hypusination were detected in pumpkin phloem sap, where presumably this modification takes place. A combination of gel‐filtration chromatography and protein overlay assays demonstrated that, as in yeast, CmeIF5A interacts with phloem proteins, like eEF2, known to be involved in protein synthesis. These findings are discussed in terms of a potential role for eIF5A in regulating protein synthesis within the enucleate sieve tube system of the angiosperms.  相似文献   

3.
Hayashi  H.  Nakamura  S.  Ishiwatari  Y.  Mori  S.  Chino  M. 《Plant and Soil》1993,(1):171-174
Pure phloem sap was collected from insects feeding on rice (Oryza sativa L.) leaves by a laser technique similar to the aphid stylet technique. Rapid circulation of nitrogen in the sieve tubes was demonstrated directly using 15N as a tracer. Application to the roots of the metabolic inhibitors of amino acids, aminooxyacetate and methioninesulfoximine, changed the amino acid composition in the sieve tubes. Feeding methionine to leaf tips resulted in its bulk transfer into the sieve tubes. In vitro experiments confirmed the existence of protein kinases in the pure rice phloem sap. The phosphorylation status of the sieve tube sap proteins was affected by the light regime. The possibility that changes in chemical composition or protein modification such as phosphorylation in the sieve tubes might affect plant growth are discussed.Analysis of pure phloem sap collected from rice plants by insect laser technique has shown dynamic changes in the chemical composition and the quality of proteins in the sap.  相似文献   

4.
Detection and Characterization of Protein Kinases in Rice Phloem Sap   总被引:1,自引:0,他引:1  
Calcium-dependent protein kinases were detected and characterizedin the phloem sap of rice plants. Protein phosphorylation wasactivated in the presence of micromolar levels of free Ca2+ions but was not activated by a polyamine in vitro. Mg2+ ionswere essential for protein phosphorylation and K+ ions inhibitedthe protein phosphorylation. Analysis by two-dimensional polyacrylamideelectrophoresis revealed that 17-kDa protein with a pI of 5.0was the most highly phosphorylated protein in the phloem sapof rice plants. A protein of 65 kDa, which was autophosphorylated,had a Ca2+-dependent protein kinase activity and the mobilityof this band in SDS gel was changed in the presence of calcium.These results suggest that a signal-transport system may existin the sieve tubes of rice plants that operates via the phosphorylationof proteins by calcium dependent protein kinases. (Received December 20, 1993; Accepted October 8, 1994)  相似文献   

5.
Sieve tubes are comprised of sieve elements, enucleated cells that are incapable of RNA and protein synthesis. The proteins in sieve elements are supplied from the neighboring companion cells through plasmodesmata. In rice plants, it was unclear whether or not all proteins produced in companion cells had the same distribution pattern in the sieve element-companion cell complex. In this study, the distribution pattern of four proteins, beta-glucuronidase (GUS), green fluorescent protein (GFP), thioredoxin h (TRXh) and glutathione S-transferase (GST) were analyzed. The foreign proteins GUS and GFP were expressed in transgenic rice plants under the control of the TRXh gene promoter (PTRXh), a companion cell-specific promoter. Analysis of leaf cross-sections of PTRXh-GUS and PTRXh-GFP plants indicated high accumulation of GUS and GFP, respectively, in companion cells rather than in sieve elements. GUS and GFP were also detected in phloem sap collected from leaf sheaths of the transgenic rice plants, suggesting these proteins could enter sieve elements. Relative amounts of GFP and endogenous phloem proteins, TRXh and GST, in phloem sap and total leaf extracts were compared. Compared to TRXh and GST, GFP content was higher in total leaf extracts, but lower in phloem sap, suggesting that GFP accumulated mainly in companion cells rather than in sieve elements. On the other hand, TRXh and GST appeared to accumulate in sieve elements rather than in companion cells. These results indicate the evidence for differential distribution of proteins between sieve elements and companion cells in rice plants.  相似文献   

6.
This study investigated advantages and drawbacks of two sieve-tube sap sampling methods for comparison of phloem proteins in powdery mildew-infested vs. non-infested Hordeum vulgare plants. In one approach, sieve tube sap was collected by stylectomy. Aphid stylets were cut and immediately covered with silicon oil to prevent any contamination or modification of exudates. In this way, a maximum of 1muL pure phloem sap could be obtained per hour. Interestingly, after pathogen infection exudation from microcauterized stylets was reduced to less than 40% of control plants, suggesting that powdery mildew induced sieve tube-occlusion mechanisms. In contrast to the laborious stylectomy, facilitated exudation using EDTA to prevent calcium-mediated callose formation is quick and easy with a large volume yield. After two-dimensional (2D) electrophoresis, a digital overlay of the protein sets extracted from EDTA solutions and stylet exudates showed that some major spots were the same with both sampling techniques. However, EDTA exudates also contained large amounts of contaminative proteins of unknown origin. A combinatory approach may be most favourable for studies in which the protein composition of phloem sap is compared between control and pathogen-infected plants. Facilitated exudation may be applied for subtractive identification of differentially expressed proteins by 2D/mass spectrometry, which requires large amounts of protein. A reference gel loaded with pure phloem sap from stylectomy may be useful for confirmation of phloem origin of candidate spots by digital overlay. The method provides a novel opportunity to study differential expression of phloem proteins in monocotyledonous plant species.  相似文献   

7.
Successful phloem feeding requires overcoming a number of phloem-related plant properties and reactions. The most important hurdle is formed by the phloem wound responses, such as coagulating proteins in the phloem sieve elements of the plant and in the capillary food canal in the insect's mouth parts, i.e. the stylets. It seems that in order to prevent protein clogging inside a sieve element, ejection of watery saliva plays an important role. This ejection is detected in the electrical penetration graph (EPG) as E1 salivation and always precedes phloem sap ingestion. During this feeding from sieve elements, another regular and concurrent salivation also occurs, the watery E2 salivation. This E2 saliva is added to the ingested sap and, it probably prevents phloem proteins from clogging inside the capillary food canal. Whatever the biochemical mode of action of the inhibition of protein coagulation might be, in some plants aphids do not seem to be able to prevent clogging, which may explain the resistance to aphids in these plants. The relevance of this hypothesis is demonstrated by new experimental results and is related to new EPG results from plants with phloem-located resistance.  相似文献   

8.
Aphid activities during sieve element punctures   总被引:13,自引:0,他引:13  
Aphid salivation in sieve elements and phloem sap ingestion were linked to waveforms in the Electrical Penetration Graph (EPG). Non-viruliferousRhopalosiphum padi (L.) (Hemiptera, Aphididae) on barley yellow dwarf virus (BYDV) infected wheat could acquire the virus, which was used as an indication for phloem sap ingestion, whereas virus inoculation by viruliferous aphids on healthy plants was associated with salivation in sieve elements or other phloem cells. Probing was monitored and the waveforms recorded were related to ELISA results of test plants. The EPG patterns A, B, and C are indicative of the stylet pathway phase, whereas patterns E1 and E2 reflect the phloem (sieve element) phase with an unknown activity (E1) or with ingestion and concurrent salivation (E2). Aphids showing pathway and E1 rarely acquired virus, suggesting that little or no phloem sap ingestion can occur during these patterns, whereas those showing additionally pattern E2 did so substantially, indicating phloem sap ingestion. The main pattern related to virus inoculation was E1, although some aphids were able to inoculate plants during pathway. Pattern E1 clearly reflects the most important salivation into sieve elements. Pattern E2 had no clear contribution to virus inoculation, supporting the present hypothesis that during this pattern the saliva is mixed with the phloem sap in the single canal at the stylet tips and ingested immediately, without reaching the plant tissue. Sustained sap ingestion did not affect virus inoculation. So, BYDV inoculation mainly occurs during the first period of a sieve element puncture which is always formed by E1. Implications on persistent virus transmission are discussed.  相似文献   

9.
Proteomics of curcurbit phloem exudate reveals a network of defence proteins   总被引:11,自引:0,他引:11  
  相似文献   

10.
The conducting elements of phloem in angiosperms are a complex of two cell types, sieve elements and companion cells, that form a single developmental and functional unit. During ontogeny of the sieve element/companion cell complex, specific proteins accumulate forming unique structures within sieve elements. Synthesis of these proteins coincides with vascular development and was studied in Cucurbita seedlings by following accumulation of the phloem lectin (PP2) and its mRNA by RNA blot analysis, enzyme-linked immunosorbent assay, immunocytochemistry and in␣situ hybridization. Genes encoding PP2 were developmentally regulated during vascular differentiation in hypocotyls of Cucurbita maxima Duch. Accumulation of PP2 mRNA and protein paralleled one another during hypocotyl elongation, after which mRNA levels decreased, while the protein appeared to be stable. Both PP2 and its mRNA were initially detected during metaphloem differentiation. However, PP2 mRNA was detected in companion cells of both bundle and extrafascicular phloem, but never in differentiating sieve elements. At later stages of development, PP2 mRNA was most often observed in extrafascicular phloem. In developing stems of Cucurbita moschata L., PP2 was immunolocalized in companion cells but not to filamentous phloem protein (P-protein) bodies that characterize immature sieve elements of bundle phloem. In contrast, PP2 was immunolocalized to persistent ␣ P-protein bodies in sieve elements of the extrafascicular phloem. Immunolocalization of PP2 in mature wound sieve elements was similar to that in bundle phloem. It appears that PP2 is synthesized in companion cells, then transported into differentiated sieve elements where it is a component of P-protein filaments in bundle phloem and persistent P-protein bodies in extrafascicular phloem. This differential accumulation in bundle and extrafascicular elements may result from different functional roles of the two types of phloem. Received: 31 July 1996 / Accepted: 27 August 1996  相似文献   

11.
Phloem-specific expression of the pumpkin fruit trypsin inhibitor   总被引:6,自引:0,他引:6  
Dannenhoffer JM  Suhr RC  Thompson GA 《Planta》2001,212(2):155-162
  相似文献   

12.
The role of calcium-dependent protein kinases in the invasion of Toxoplasma gondii into its animal host cells was analyzed. KT5926, an inhibitor of calcium-dependent protein kinases in other systems, is known to block the motility of Toxoplasma tachyzoites and their attachment to host cells. In vivo, KT5926 blocks the phosphorylation of only three parasite proteins, and in parasite extracts only a single KT5926-sensitive protein kinase activity was detected. This activity was calcium-dependent but did not require calmodulin. In a search for calcium-dependent protein kinases in Toxoplasma, two members of the class of calmodulin-like domain protein kinases (CDPKs) were detected. TgCDPK2 was only expressed at the mRNA level in tachyzoites, but no protein was detected. TgCDPK1 protein was expressed in Toxoplasma tachyzoites and cofractionated precisely with the peak of KT5926-sensitive protein kinase activity. TgCDPK1 kinase activity was calcium-dependent but did not require calmodulin or phospholipids. TgCDPK1 was found to be inhibited effectively by KT5926 at concentrations that block parasite attachment to host cells. In vitro, TgCDPK1 phosphorylated three parasite proteins that migrated identical to the three KT5926-sensitive phosphoproteins detected in vivo. Based on these observations, a central role is suggested for TgCDPK1 in regulating Toxoplasma motility and host cell invasion.  相似文献   

13.
The phloem is a central actor in plant development and nutrition, providing nutrients and energy to sink organs and integrating interorgan communication. A comprehensive picture of the molecules trafficking in phloem sap is being made available, with recent surveys of proteins, RNAs, sugars, and other metabolites, some of which are potentially acting as signals. In this review, we focus on recent breakthroughs on phloem transport and signalling. A case study was phloem loading of sucrose, acting both as a nutrient and as a signal, whose activity was shown to be tightly regulated. Recent advances also described actors of macromolecular trafficking in sieve elements, including chaperones and RNA binding proteins, involved potentially in the formation of ribonucleoprotein complexes. Likewise, long distance signalling appeared to integrate electrical potential waves, calcium bursts and potentially the generation of reactive oxygen species. The ubiquitin–proteasome system was also proposed to be on action in sieve elements for signalling and protein turnover. Surprisingly, several basic processes of phloem physiology are still under debate. Hence, the absence in phloem sap of reducing sugar species, such as hexoses, was recently challenged with observations based on an analysis of the sap from Ranunculaceae and Papaveraceae. The possibility that protein synthesis might occur in sieve elements was again questioned with the identification of components of the translational machinery in Pumpkin phloem sap. Altogether, these new findings strengthen the idea that phloem is playing a central role in interorgan nutrient exchanges and communication and demonstrate that the ways by which this is achieved can obey various patterns among species.  相似文献   

14.
The aim of this work was to study the effect of Fe deficiency on the protein profile of phloem sap exudates from Brassica napus using 2DE (IEF‐SDS‐PAGE). The experiment was repeated thrice and two technical replicates per treatment were done. Phloem sap purity was assessed by measuring sugar concentrations. Two hundred sixty‐three spots were consistently detected and 15.6% (41) of them showed significant changes in relative abundance (22 decreasing and 19 increasing) as a result of Fe deficiency. Among them, 85% (35 spots), were unambiguously identified. Functional categories containing the largest number of protein species showing changes as a consequence of Fe deficiency were signaling and regulation (32%), and stress and redox homeostasis (17%). The Phloem sap showed a higher oxidative stress and significant changes in the hormonal profile as a result of Fe deficiency. Results indicate that Fe deficiency elicits major changes in signaling pathways involving Ca and hormones, which are generally associated with flowering and developmental processes, causes an alteration in ROS homeostasis processes, and induces decreases in the abundances of proteins involved in sieve element repair, suggesting that Fe‐deficient plants may have an impaired capacity to heal sieve elements upon injury.  相似文献   

15.
Phloem sieve elements have shut‐off mechanisms that prevent loss of nutrient‐rich phloem sap when the phloem is damaged. Some phloem proteins such as the proteins that form forisomes in legume sieve elements are one such mechanism and in response to damage, they instantly form occlusions that stop the flow of sap. It has long been hypothesized that one function of phloem proteins is defence against phloem sap‐feeding insects such as aphids. This study provides the first experimental evidence that aphid feeding can induce phloem protein occlusion and that the aphid‐induced occlusions inhibit phloem sap ingestion. The great majority of phloem penetrations in Vicia faba by the generalist aphids Myzus persicae and Macrosiphum euphorbiae triggered forisome occlusion and the aphids eventually withdrew their stylets without ingesting phloem sap. This contrasts starkly with a previous study on the legume‐specialist aphid, Acyrthosiphon pisum, where penetration of faba bean sieve elements did not trigger forisome occlusion and the aphids readily ingested phloem sap. Next, forisome occlusion was demonstrated to be the cause of failed phloem ingestion attempts by M. persicae: when occlusion was inhibited by the calcium channel blocker lanthanum, M. persicae readily ingested faba bean phloem sap.  相似文献   

16.
Zhang C  Yu X  Ayre BG  Turgeon R 《Plant physiology》2012,158(4):1873-1882
Cucurbits exude profusely when stems or petioles are cut. We conducted studies on pumpkin (Cucurbita maxima) and cucumber (Cucumis sativus) to determine the origin and composition of the exudate. Morphometric analysis indicated that the exudate is too voluminous to derive exclusively from the phloem. Cold, which inhibits phloem transport, did not interfere with exudation. However, ice water applied to the roots, which reduces root pressure, rapidly diminished exudation rate. Sap was seen by microscopic examination to flow primarily from the fascicular phloem in cucumber, and several other cucurbit species, but primarily from the extrafascicular phloem in pumpkin. Following exposure of leaves to 14CO2, radiolabeled stachyose and other sugars were detected in the exudate in proportions expected of authentic phloem sap. Most of this radiolabel was released during the first 20 s. Sugars in exudate were dilute. The sugar composition of exudate from extrafascicular phloem near the edge of the stem differed from that of other sources in that it was high in hexose and low in stachyose. We conclude that sap is released from cucurbit phloem upon wounding but contributes negligibly to total exudate volume. The sap is diluted by water from cut cells, the apoplast, and the xylem. Small amounts of dilute, mobile sap from sieve elements can be obtained, although there is evidence that it is contaminated by the contents of other cell types. The function of P-proteins may be to prevent water loss from the xylem as well as nutrient loss from the phloem.  相似文献   

17.
Immediately after their stylets penetrate a phloem sieve element, aphids inject saliva into the sieve element for approximately 30–60 s before they begin to ingest phloem sap. This salivation period is recorded as waveform E1 in electrical penetration graph (EPG) monitoring of aphid feeding behavior. It has been hypothesized that the function of this initial period of phloem salivation is to reverse or prevent plugging of the sieve element by one of the plant's phloem defenses: formation of P‐protein plugs or callose synthesis in the sieve pores that connect adjacent sieve elements. This hypothesis was tested using the pea aphid, Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae), and faba bean, Vicia faba L. (Fabaceae), as a model system, and the results do not support the hypothesis. In legumes, such as faba bean, P‐protein plugs in sieve elements are formed by dispersal of proteinaceous bodies called forisomes. Contrary to the hypothesis, the great majority of sieve element penetrations by pea aphid stylets do not trigger forisome dispersal. Thirteen sieve elements were cryofixed early in phloem phase before the aphids could complete their salivation period and the forisomes were not dispersed in any of the 13 samples. However, in these samples, the aphids completed on average a little over half of their normal E1 salivation period before they were cryofixed. Thus, it is possible that sieve element penetration triggered forisome dispersal in these samples but the abbreviated period of salivation was still sufficient to reverse dispersal. To rule out this possibility, 17 sieve elements were cryofixed during R‐pds, which are an EPG waveform associated with sieve element penetration but without the characteristic E1 salivation that occurs during phloem phase. In 16 of the 17 samples, the forisomes were not dispersed. Thus, faba bean sieve elements usually do not form P‐protein plugs in response to penetration by pea aphid stylets. Consequently, the characteristic E1 salivation that occurs at the start of each phloem phase does not seem to be necessary to prevent a plugging response because penetration of sieve elements during R‐pds does not trigger forisome dispersal despite the absence of E1 salivation. Furthermore, as P‐protein plugs do not normally form in response to sieve element penetration, E1 salivation that occurs at the start of each phloem phase is not a response to development of a P‐protein plug. Thus, the E1 salivation period at the beginning of the phloem phase appears to have function(s) unrelated to phloem sealing.  相似文献   

18.
19.
Destination-selective long-distance movement of phloem proteins   总被引:2,自引:0,他引:2       下载免费PDF全文
The phloem macromolecular transport system plays a pivotal role in plant growth and development. However, little information is available regarding whether the long-distance trafficking of macromolecules is a controlled process or passive movement. Here, we demonstrate the destination-selective long-distance trafficking of phloem proteins. Direct introduction, into rice (Oryza sativa), of phloem proteins from pumpkin (Cucurbita maxima) was used to screen for the capacity of specific proteins to move long distance in rice sieve tubes. In our system, shoot-ward translocation appeared to be passively carried by bulk flow. By contrast, root-ward movement of the phloem RNA binding proteins 16-kD C. maxima phloem protein 1 (CmPP16-1) and CmPP16-2 was selectively controlled. When CmPP16 proteins were purified, the root-ward movement of CmPP16-1 became inefficient, suggesting the presence of pumpkin phloem factors that are responsible for determining protein destination. Gel-filtration chromatography and immunoprecipitation showed that CmPP16-1 formed a complex with other phloem sap proteins. These interacting proteins positively regulated the root-ward movement of CmPP16-1. The same proteins interacted with CmPP16-2 as well and did not positively regulate its root-ward movement. Our data demonstrate that, in addition to passive bulk flow transport, a destination-selective process is involved in long-distance movement control, and the selective movement is regulated by protein-protein interaction in the phloem sap.  相似文献   

20.
Aphididae feed upon the plant sieve elements (SE), where they ingest sugars, nitrogen compounds and other nutrients. For ingestion, aphid stylets penetrate SE, and because of the high hydrostatic pressure in SE, phloem sap exudes out into the stylets. Severing stylets to sample phloem exudates (i.e. stylectomy) has been used extensively for the study of phloem contents. Alternative sampling techniques are spontaneous exudation upon wounding that only works in a few plant species, and the popular EDTA-facilitated exudation technique. These approaches have allowed fundamental advances on the understanding of phloem sap composition and sieve tube physiology, which are surveyed in this review. A more complete picture of metabolites, ions, proteins and RNAs present in phloem sap is now available, which has provided large evidence for the phloem role as a signalling network in addition to its primary role in partitioning of photo-assimilates. Thus, phloem sap sampling methods can have remarkable applications to analyse plant nutrition, physiology and defence responses. Since aphid behaviour is suspected to be affected by phloem sap quality, attempts to manipulate phloem sap content were recently undertaken based on deregulation in mutant plants of genes controlling amino acid or sugar content of phloem sap. This opens up new strategies to control aphid settlement on a plant host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号