首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influence of antimicrobial agents on the development of antimicrobial resistance (AMR) in Campylobacter isolates recovered from 300 beef cattle maintained in an experimental feedlot was monitored over a 315-day period (11 sample times). Groups of calves were assigned to one of the following antimicrobial treatments: chlortetracycline and sulfamethazine (CS), chlortetracycline alone (Ct), virginiamycin, monensin, tylosin phosphate, and no antimicrobial agent (i.e., control treatment). In total, 3,283 fecal samples were processed for campylobacters over the course of the experiment. Of the 2,052 bacterial isolates recovered, 92% were Campylobacter (1,518 were Campylobacter hyointestinalis and 380 were C. jejuni). None of the antimicrobial treatments decreased the isolation frequency of C. jejuni relative to the control treatment. In contrast, C. hyointestinalis was isolated less frequently from animals treated with CS and to a lesser extent from animals treated with Ct. The majority (> or =94%) of C. jejuni isolates were sensitive to ampicillin, erythromycin, and ciprofloxacin, but more isolates with resistance to tetracycline were recovered from animals fed Ct. All of the 1,500 isolates of C. hyointestinalis examined were sensitive to ciprofloxacin. In contrast, 11%, 10%, and 1% of these isolates were resistant to tetracycline, erythromycin, and ampicillin, respectively. The number of animals from which C. hyointestinalis isolates with resistance to erythromycin and tetracycline were recovered differed among the antimicrobial treatments. Only Ct administration increased the carriage rates of erythromycin-resistant isolates of C. hyointestinalis, and the inclusion of CS in the diet increased the number of animals from which tetracycline-resistant isolates were recovered. The majority of C. hyointestinalis isolates with resistance to tetracycline were obtained from cohorts within a single pen, and most of these isolates were recovered from cattle during feeding of a forage-based diet as opposed to a grain-based diet. The findings of this study show that the subtherapeutic administration of tetracycline, alone and in combination with sulfamethazine, to feedlot cattle can select for the carriage of resistant strains of Campylobacter species. Considering the widespread use of in-feed antimicrobial agents and the high frequency of beef cattle that shed campylobacters, the development of AMR should be monitored as part of an on-going surveillance program.  相似文献   

2.

Background  

Feedlot cattle in North America are routinely fed subtherapeutic levels of antimicrobials to prevent disease and improve the efficiency of growth. This practice has been shown to promote antimicrobial resistance (AMR) in subpopulations of intestinal microflora including Escherichia coli. To date, studies of AMR in feedlot production settings have rarely employed selective isolation, therefore yielding too few AMR isolates to enable characterization of the emergence and nature of AMR in E. coli as an indicator bacterium. E. coli isolates (n = 531) were recovered from 140 cattle that were housed (10 animals/pen) in 14 pens and received no dietary antimicrobials (control - 5 pens, CON), or were intermittently administered subtherapeutic levels of chlortetracycline (5 pens-T), chlortetracycline + sulfamethazine (4 pens-TS), or virginiamycin (5 pens-V) for two separate periods over a 9-month feeding period. Phenotype and genotype of the isolates were determined by susceptibility testing and pulsed field gel electrophoresis and distribution of characterized isolates among housed cattle reported. It was hypothesized that the feeding of subtherapeutic antibiotics would increase the isolation of distinct genotypes of AMR E. coli from cattle.  相似文献   

3.
The influence of antimicrobial agents on the development of antimicrobial resistance (AMR) in Campylobacter isolates recovered from 300 beef cattle maintained in an experimental feedlot was monitored over a 315-day period (11 sample times). Groups of calves were assigned to one of the following antimicrobial treatments: chlortetracycline and sulfamethazine (CS), chlortetracycline alone (Ct), virginiamycin, monensin, tylosin phosphate, and no antimicrobial agent (i.e., control treatment). In total, 3,283 fecal samples were processed for campylobacters over the course of the experiment. Of the 2,052 bacterial isolates recovered, 92% were Campylobacter (1,518 were Campylobacter hyointestinalis and 380 were C. jejuni). None of the antimicrobial treatments decreased the isolation frequency of C. jejuni relative to the control treatment. In contrast, C. hyointestinalis was isolated less frequently from animals treated with CS and to a lesser extent from animals treated with Ct. The majority (≥94%) of C. jejuni isolates were sensitive to ampicillin, erythromycin, and ciprofloxacin, but more isolates with resistance to tetracycline were recovered from animals fed Ct. All of the 1,500 isolates of C. hyointestinalis examined were sensitive to ciprofloxacin. In contrast, 11%, 10%, and 1% of these isolates were resistant to tetracycline, erythromycin, and ampicillin, respectively. The number of animals from which C. hyointestinalis isolates with resistance to erythromycin and tetracycline were recovered differed among the antimicrobial treatments. Only Ct administration increased the carriage rates of erythromycin-resistant isolates of C. hyointestinalis, and the inclusion of CS in the diet increased the number of animals from which tetracycline-resistant isolates were recovered. The majority of C. hyointestinalis isolates with resistance to tetracycline were obtained from cohorts within a single pen, and most of these isolates were recovered from cattle during feeding of a forage-based diet as opposed to a grain-based diet. The findings of this study show that the subtherapeutic administration of tetracycline, alone and in combination with sulfamethazine, to feedlot cattle can select for the carriage of resistant strains of Campylobacter species. Considering the widespread use of in-feed antimicrobial agents and the high frequency of beef cattle that shed campylobacters, the development of AMR should be monitored as part of an on-going surveillance program.  相似文献   

4.
Aims: To characterize class 1 integrons and resistance genes in tetracycline‐resistant Escherichia coli originating from beef cattle subtherapeutically administered chlortetracycline (A44), chlortetracycline and sulfamethazine (AS700), or no antimicrobials (control). Methods and Results: Tetracycline‐resistant E. coli (control, n = 111; AS700, n = 53; A44, n = 40) were studied. Class 1 integrons, inserted gene cassettes and the presence of other antimicrobial resistance genes, as well as phylogenetic analysis, were performed by PCR, restriction enzyme analysis and sequencing. Susceptibilities to 11 antimicrobials were conducted on all isolates. Prevalence of class 1 integrase was higher (P < 0·001) in isolates from AS700 (33%) and A44 (28%) steers as compared to control (7%). Most integron gene cassettes belonged to the aad or dfr families. Correlations were found between the tet(A) gene and the genetic elements sul1 (r = 0·44), aadA1 (r = 0·61), cat (r = 0·58) and intI1(r = 0·37). Both closely and distantly related isolates harboured integrons with identical gene cassette arrays. Conclusions: Subtherapeutic administration of chlorotetracycline alone or in combination with sulfamethazine may select for class 1 integrons in bovine tetracycline‐resistant E. coli isolates. Vertical spread and horizontal transfer are responsible for the dissemination of a particular type of class 1 integron, but this study could not differentiate if this phenomenon occurred within or outside of the feedlot. Tetracycline‐resistant E. coli strains with sul1 and tet(A) genes were more likely to harbour class 1 integrons. Significance and Impact of the Study: Subtherapeutic use of chlortetracycline and sulfamethazine may promote the presence of class 1 integrons in tetracycline‐resistant E. coli isolated from feedlot cattle.  相似文献   

5.
Prevalence, antibiotic susceptibility, and genetic diversity were determined for Escherichia coli O157:H7 isolated over 11 months from four beef cattle feedlots in southwest Kansas. From the fecal pat (17,050) and environmental (7,134) samples collected, 57 isolates of E. coli O157:H7 were identified by use of bacterial culture and latex agglutination (C/LA). PCR showed that 26 isolates were eaeA gene positive. Escherichia coli O157:H7 was identified in at least one of the four feedlots in 14 of the 16 collections by C/LA and in 9 of 16 collections by PCR, but consecutive positive collections at a single feedlot were rare. Overall prevalence in fecal pat samples was low (0.26% by C/LA, and 0.08% by PCR). No detectable differences in prevalence or antibiotic resistance were found between isolates collected from home pens and those from hospital pens, where antibiotic use is high. Resistant isolates were found for six of the eight antibiotics that could be used to treat E. coli infections in food animals, but few isolates were multidrug resistant. The high diversity of isolates as measured by random amplification of polymorphic DNA and other characteristics indicates that the majority of isolates were unique and did not persist at a feedlot, but probably originated from incoming cattle. The most surprising finding was the low frequency of virulence markers among E. coli isolates identified initially by C/LA as E. coli O157:H7. These results demonstrate that better ways of screening and confirming E. coli O157:H7 isolates are required for accurate determination of prevalence.  相似文献   

6.
Effect of cattle diet on Escherichia coli O157:H7 acid resistance.   总被引:1,自引:0,他引:1  
The duration of shedding of Escherichia coli O157 isolates by hay-fed and grain-fed steers experimentally inoculated with E. coli O157:H7 was compared, as well as the acid resistance of the bacteria. The hay-fed animals shed E. coli O157 longer than the grain-fed animals, and irrespective of diet, these bacteria were equally acid resistant. Feeding cattle hay may increase human infections with E. coli O157:H7.  相似文献   

7.
AIMS: To compare the prevalence of faecal shedding of Escherichia coli O157:H7 and Salmonella in growing beef cattle consuming various forages. METHODS AND RESULTS: In Experiment I, faecal samples were collected from steers grazing either endophyte-infected (E+) tall fescue or common bermudagrass (CB). Steers grazing E+ tall fescue were confined to a dry-lot pen and fed CB hay ad libitum for 10 days. In Exp. II, faecal samples were collected from steers grazing either E+ or novel endophyte-infected (NE) tall fescue and treated with one of two anthelmintics: ivermectin (I) or fenbendazole (F). In Exp. I, prevalence of E. coli O157:H7 was less in E+ tall fescue steers fed CB hay than steers grazing CB. More I-treated steers shed Salmonella than F-treated steers at 42-day postanthelmintic treatment but shedding of Salmonella was similar between anthelmintics at day 63 in Exp. II. CONCLUSIONS: Faecal shedding of pathogenic bacteria was not affected by grazing E+ tall fescue. Alterations of forage diets may influence the prevalence of E. coli O157:H7, and anthelmintic treatment could affect faecal shedding of Salmonella. SIGNIFICANCE AND IMPACT OF THE STUDY: Knowledge of factors that influence shedding of pathogenic bacteria in cattle is necessary to develop on-farm intervention strategies aimed at reducing pathogen shedding.  相似文献   

8.
Distillers' grains (DG), a by-product of ethanol production, are fed to cattle. Associations between Escherichia coli O157 prevalence and feeding of DG were investigated in feedlot cattle (n = 379) given one of three diets: steam-flaked corn (SFC) and 15% corn silage with 0 or 25% dried distillers' grains (DDG) or SFC with 5% corn silage and 25% DDG. Ten fecal samples were collected from each pen weekly for 12 weeks to isolate E. coli O157. Cattle fed 25% DDG with 5 or 15% silage had a higher (P = 0.01) prevalence of E. coli O157 than cattle fed a diet without DDG. Batch culture ruminal or fecal microbial fermentations were conducted to evaluate the effect of DDG on E. coli O157 growth. The first study utilized microbial inocula from steers fed SFC or dry-rolled corn with 0 or 25% DDG and included their diet as the substrate. Ruminal microbial fermentations from steers fed DDG had higher E. coli O157 contents than ruminal microbial fermentations from steers fed no DDG (P < 0.05) when no substrate was included. Fecal fermentations showed no DDG effect on E. coli O157 growth. In the second study with DDG as a substrate, ruminal fermentations with 0.5 g DDG had higher (P < 0.01) E. coli O157 concentrations at 24 h than ruminal fermentations with 0, 1, or 2 g DDG. In fecal fermentations, 2 g DDG resulted in a higher concentration (P < 0.05) at 24 h than 0, 0.5, or 1 g DDG. The results indicate that there is a positive association between DDG and E. coli O157 in cattle, and the findings should have important ramifications for food safety.  相似文献   

9.
AIMS: The aim of the study was to monitor the shedding and transmission of generic and Shiga toxin-producing Escherichia coli (STEC) in a consignment of cattle during lot feeding. METHODS AND RESULTS: Faecal and environmental samples were tested for total E. coli and screened with PCR specific for Shiga toxin and O157 rfb. STEC were isolated using colony hybridization and characterized by serology and genotyping. STEC prevalence initially decreased after the diet shift from pasture to grain, although there were intermittent peaks in numbers of cattle shedding STEC and E. coli O157. Water troughs and soil were intermittently contaminated. Common genotypes and serotypes were isolated from animals, water and soil in the feedlot, with additional types introduced at slaughter. CONCLUSION: STEC and E. coli O157 are endemic in cattle and intermittent peaks in shedding occur. Prevention of these peaks and/or reduction in transmission is required to reduce the risk of carcass contamination during slaughter. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings contribute to the understanding of the ecology of STEC and suggest control points for reducing STEC contamination in feedlot cattle production.  相似文献   

10.
AIMS: This study was conducted to evaluate the effect of supplementing barley- or corn-based diets with canola oil on faecal shedding of Escherichia coli O157:H7 by experimentally inoculated feedlot cattle. METHODS AND RESULTS: Four groups of yearling steers fed on barley- or corn-based feedlot diets containing 0% (BA; CO) or 6% canola oil (BA-O; CO-O) were inoculated with 10(10) CFU of a mixture of four nalidixic acid-resistant strains of E. coli O157:H7. The inoculated strains were tracked in oral (mouth swab) and environmental (water, water bowl interface, feed, faecal pat) samples by enrichment and immunomagnetic separation (IMS) for 12 weeks, and in rectally collected faecal samples for 23 weeks (enumeration by dilution plating for 12 weeks; detection by IMS for a further 11 weeks). Levels of E. coli O157:H7 shed in faecal samples over the course of the enumeration period were similar (P = 0.14) among treatments. Disappearance of the inoculated strains from faeces was more rapid (P = 0.009) with barley than with corn, but shedding levels at the end of the enumeration period were similar (P = 0.21) across grain types. Canola oil supplementation did not affect (P = 0.71) the rate of disappearance of E. coli O157:H7 from faeces. The numbers of steers culture positive for E. coli O157:H7 during the enumeration period were similar (P = 0.57) among treatments. During the 11-week detection period, however, more (P < 0.001) steers were E. coli O157:H7-positive in the BA group (15/64) than in BA-O (two of 64), CO (two of 56), or CO-O (one of 56). The organism was present in two of 48 water samples (both CO-O), one of 48 water bowl swabs (BA-O), four of 48 feed samples (two of 12 BA; two of 12 CO-O), 30 of 48 pen floor faecal pat samples, and 296 of 540 mouth swabs (81/144 BA, 80/144 BA-O, 74/126 CO and 61/126 CO-O). CONCLUSION: Supplementing corn or barley-based diets with canola oil did not affect shedding of E. coli O157:H7 by feedlot cattle. SIGNIFICANCE AND IMPACT OF THE STUDY: High-shedding individuals (i.e. 'super shedders') may be responsible for disseminating E. coli O157:H7 among penmates. Faeces on pen floors appears to be a more significant source of infection than are feed or drinking water.  相似文献   

11.
We compared fecal samples with samples collected with rectoanal mucosa swabs (RAMS) to determine the prevalence of Escherichia coli O157 in feedlot cattle (n = 747). Escherichia coli O157 was detected in 9.5% of samples collected with RAMS and 4.7% of samples tested by fecal culture. Pulsed-field gel electrophoresis analysis of isolates suggested that the strains colonizing the rectoanal junction were the same as those from the feces. Mucosal swab sampling was more sensitive than fecal sampling for determining the prevalence of E. coli O157 in feedlot cattle.  相似文献   

12.
To longitudinally assess fecal shedding and animal-to-animal transmission of Clostridium difficile among finishing feedlot cattle as a risk for beef carcass contamination, we tested 186 ± 12 steers (mean ± standard deviation; 1,369 samples) in an experimental feedlot facility during the finishing period and at harvest. Clostridium difficile was isolated from 12.9% of steers on arrival (24/186; 0 to 33% among five suppliers). Shedding decreased to undetectable levels a week later (0%; P < 0.001), and remained low (< 3.6%) until immediately prior to shipment for harvest (1.2%). Antimicrobial use did not increase fecal shedding, despite treatment of 53% of animals for signs of respiratory disease. Animals shedding C. difficile on arrival, however, had 4.6 times higher odds of receiving antimicrobials for respiratory signs than nonshedders (95% confidence interval for the odds ratio, 1.4 to 14.8; P = 0.01). Neither the toxin genes nor toxin A or B was detected in most (39/42) isolates based on two complementary multiplex PCRs and enzyme-linked immunosorbent assay testing, respectively. Two linezolid- and clindamycin-resistant PCR ribotype 078 (tcdA+/tcdB+/cdtB+/39-bp-type deletion in tcdC) isolates were identified from two steers (at arrival and week 20), but these ribotypes did not become endemic. The other toxigenic isolate (tcdA+/tcdB+/cdtB+/classic tcdC; PCR ribotype 078-like) was identified in the cecum of one steer at harvest. Spatio-temporal analysis indicated transient shedding with no evidence of animal-to-animal transmission. The association between C. difficile shedding upon arrival and the subsequent need for antimicrobials for respiratory disease might indicate common predisposing factors. The isolation of toxigenic C. difficile from bovine intestines at harvest highlights the potential for food contamination in meat processing plants.  相似文献   

13.
The prevalence of Escherichia coli O157 associated with feedlot cattle in Saskatchewan was determined in a 10-month longitudinal study (3 feedlots) and a point prevalence study (20 feedlots). The prevalence of E. coli O157 at the three different sites in the horizontal study varied from 2.5 to 45%. The point prevalence of E. coli O157 among Saskatchewan cattle from 20 different feedlots ranged from 0% to a high of 57%. A statistically significant (P = 0.003) positive correlation was determined to exist between the density of cattle and the E. coli O157 prevalence rate. A significant correlation (P = 0.006) was also found between the E. coli O157 percent prevalence and the number of cattle housed/capacity ratio. All 194 E. coli O157 isolates obtained were highly virulent, and random amplified polymorphic DNA PCR analysis revealed that the isolates grouped into 39 different E. coli O157 subtypes, most of which were indigenous to specific feedlots. Two of the most predominant subtypes were detected in 11 different feedlots and formed distinct clusters in two geographic regions in the province. Antimicrobial susceptibility testing of the E. coli O157 isolates revealed that 10 were multidrug resistant and that 73 and 5 were resistant to sulfisoxazole and tetracycline, respectively.  相似文献   

14.
Identification of the sources and methods of transmission of Escherichia coli O157:H7 in feedlot cattle may facilitate the development of on-farm control measures for this important food-borne pathogen. The prevalence of E. coli O157:H7 in fecal samples of commercial feedlot cattle in 20 feedlot pens between April and September 2000 was determined throughout the finishing feeding period prior to slaughter. Using immunomagnetic separation, E. coli O157:H7 was isolated from 636 of 4,790 (13%) fecal samples in this study, with highest prevalence earliest in the feeding period. No differences were observed in the fecal or water trough sediment prevalence values of E. coli O157:H7 in 10 pens supplied with chlorinated drinking water supplies compared with nonchlorinated water pens. Pulsed-field gel electrophoresis of XbaI-digested bacterial DNA of the 230 isolates obtained from eight of the pens revealed 56 unique restriction endonuclease digestion patterns (REDPs), although nearly 60% of the isolates belonged to a group of four closely related genetic subtypes that were present in each of the pens and throughout the sampling period. The other REDPs were typically transiently detected, often in single pens and on single sample dates, and in many cases were also closely related to the four predominant REDPs. The persistence and predominance of a few REDPs observed over the entire feeding period on this livestock operation highlight the importance of the farm environment, and not necessarily the incoming cattle, as a potential source or reservoir of E. coli O157:H7 on farms.  相似文献   

15.
One hundred eighty Escherichia coli strains isolated from raw and cooked dressed beef and from healthy humans were screened for resistance to each of nine antibiotics: chlortetracycline, ampicillin, chloramphenicol, kanamycin, neomycin, nalidixic acid, dihydrostreptomycin, oxytetracycline, and tetracycline. Nearly 80% of the 98 beef isolates and 54% of the 82 human isolates were resistant to one or more of the antibiotics tested. Ampicillin resistance was most frequent among beef isolates, and dihydrostreptomycin resistance was most frequent among isolates of human origin. About 74% of the multiply resistant beef strains and 85% of the multiply resistant human strains transferred all or part of their resistance to E. coli K-12 recipients.  相似文献   

16.
Antimicrobial resistance (AMR) was temporally assessed in campylobacters isolated from beef cattle (7,738 fecal samples from 2,622 animals) in four commercial feedlots in Alberta. All calves were administered chlortetracycline and oxytetracycline in feed, and a majority of the animals (93%) were injected with long-acting oxytetracycline upon arrival at the feedlot. Fecal samples from individual animals were collected upon arrival (i.e., entry sample), 69 days (standard deviation [SD] = 3 days) after arrival (i.e., interim sample), and 189 days (SD = 33 days) after arrival (i.e., exit sample) at the feedlot. In total, 1,586 Campylobacter isolates consisting of Campylobacter coli (n = 154), Campylobacter fetus (n = 994), Campylobacter jejuni (n = 431), Campylobacter hyointestinalis (n = 4), and Campylobacter lanienae (n = 3) were recovered and characterized. The administration of antimicrobials did not decrease carriage rates of campylobacters, and minimal resistance (< or =4%) to azithromycin, ciprofloxacin, enrofloxacin, gentamicin, and meropenem was observed. In contrast, substantive increases in the prevalence of isolates resistant to tetracycline and doxycycline (56 to 89%) for C. coli, C. fetus, and C. jejuni, as well as in the number of animals (7 to 42%) from which resistant isolates were recovered, were observed during the feedlot period. Increased resistance to erythromycin (total isolates and carriages rates) was also observed in isolates of C. coli over the three isolation times. The majority of C. fetus isolates recovered were resistant to nalidixic acid, but this was independent of when they were isolated. A relatively limited number of multidrug-resistant isolates were recovered and consisted primarily of C. coli resistant to tetracyclines and erythromycin (10% of isolates). Over the course of the feedlot period, considerable increases in antimicrobial resistance were observed in C. coli, C. fetus, and C. jejuni, but with the exception of erythromycin resistance in C. coli, the administration of antimicrobial agents to beef cattle was found to have a minimal impact on resistance to macrolides and fluoroquinolones, the two classes of antimicrobials used to treat campylobacteriosis in humans. However, the widespread use of antimicrobial agents in beef production and the possible horizontal transfer of mobile genetic elements with antimicrobial resistance determinants among Campylobacter and other bacterial taxa emphasize the need to monitor AMR development in bacteria from beef cattle.  相似文献   

17.

Background  

Environmental transmission of antimicrobial-resistant bacteria and resistance gene determinants originating from livestock is affected by their persistence in agricultural-related matrices. This study investigated the effects of administering subtherapeutic concentrations of antimicrobials to beef cattle on the abundance and persistence of resistance genes within the microbial community of fecal deposits. Cattle (three pens per treatment, 10 steers per pen) were administered chlortetracycline, chlortetracycline plus sulfamethazine, tylosin, or no antimicrobials (control). Model fecal deposits (n = 3) were prepared by mixing fresh feces from each pen into a single composite sample. Real-time PCR was used to measure concentrations of tet, sul and erm resistance genes in DNA extracted from composites over 175 days of environmental exposure in the field. The microbial communities were analyzed by quantification and denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S-rRNA.  相似文献   

18.
AIM: To study the diversity of commensal Escherichia coli populations shed in faeces of cattle fed on different diets. METHODS AND RESULTS: Thirty Brahman-cross steers were initially fed a high grain (80%) diet and then randomly allocated into three dietary treatment groups, fed 80% grain, roughage, or roughage + 50% molasses. Up to eight different E. coli isolates were selected from primary isolation plates of faecal samples from each animal. Fifty-two distinct serotypes, including nine different VTEC strains, were identified from a total of 474 E. coli isolates. Cattle fed a roughage + molasses diet had greater serotype diversity (30 serotypes identified) than cattle fed roughage or grain (21 and 17 serotypes identified respectively). Cluster analysis showed that serotypes isolated from cattle fed roughage and roughage + molasses diets were more closely associated than serotypes isolated from cattle fed grain. Resistance to one or more of 11 antimicrobial agents was detected among isolates from 20 different serotypes. Whilst only 2.3% of E. coli isolates produced enterohaemolysin, 25% were found to produce alpha-haemolysin. CONCLUSIONS: Diverse non-VTEC populations of E. coli serotypes are shed in cattle faeces and diet may affect population diversity. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides new information on the serotype diversity and phenotypic traits of predominant E. coli populations in cattle faeces, which could be sources of environmental contamination.  相似文献   

19.
This study investigated the shedding of Escherichia coli O26, O103, O111, O145, and O157 in a cohort of beef calves from birth over a 5-month period and assessed the relationship between shedding in calves and shedding in their dams, the relationship between shedding and scouring in calves, and the effect of housing on shedding in calves. Fecal samples were tested by immunomagnetic separation and by PCR and DNA hybridization assays. E. coli O26 was shed by 94% of calves. Over 90% of E. coli O26 isolates carried the vtx(1), eae, and ehl genes, 6.5% carried vtx(1) and vtx(2), and one isolate carried vtx(2) only. Serogroup O26 isolates comprised seven pulsed-field gel electrophoresis (PFGE) patterns but were dominated by one pattern which represented 85.7% of isolates. E. coli O103 was shed by 51% of calves. Forty-eight percent of E. coli O103 isolates carried eae and ehl, 2% carried vtx(2), and none carried vtx(1). Serogroup O103 isolates comprised 10 PFGE patterns and were dominated by two patterns representing 62.5% of isolates. Shedding of E. coli O145 and O157 was rare. All serogroup O145 isolates carried eae, but none carried vtx(1) or vtx(2). All but one serogroup O157 isolate carried vtx(2), eae, and ehl. E. coli O111 was not detected. In most calves, the temporal pattern of E. coli O26 and O103 shedding was random. E. coli O26 was detected in three times as many samples as E. coli O103, and the rate at which calves began shedding E. coli O26 for the first time was five times greater than that for E. coli O103. For E. coli O26, O103, and O157, there was no association between shedding by calves and shedding by dams within 1 week of birth. For E. coli O26 and O103, there was no association between shedding and scouring, and there was no significant change in shedding following housing.  相似文献   

20.
AIMS: To examine factors affecting faecal shedding of the foodborne pathogens Escherichia coli O157:H7 and Salmonella in dairy cattle and evaluate antimicrobial susceptibility of these isolates. METHODS: Faecal samples were obtained in replicate from lactating (LAC; n = 60) and non-lactating (NLAC; n = 60) Holstein cattle to determine influence of heat stress, parity, lactation status (LAC vs NLAC) and stage of lactation [60 days in milk (DIM)] and cultured for E. coli O157:H7 and Salmonella. A portion of the recovered isolates were examined for antimicrobial susceptibility using the broth microdilution technique. RESULTS: No effects of heat stress were observed. Lactating cows shed more (P < 0.01) E. coli O157:H7 than NLAC cows (43% vs 32%, respectively). Multiparous LAC cows tended to shed more (P = 0.06) Salmonella than primiparous LAC cows (39% vs 27%, respectively). Parity did not influence (P > 0.10) bacterial shedding in NLAC cows. Cows 60 DIM. Seventeen Salmonella serotypes were identified with the most prevalent being Senftenberg (18%), Newport (17%) and Anatum (15%). Seventy-nine of the Salmonella isolates were resistant to at least one of the seven antibiotics. Escherichia coli O157:H7 isolates were resistant to 11 different antibiotics with multiple resistance to nine or more antibiotics observed in five isolates. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrated differences in the shedding patterns of foodborne pathogens due to the stage of the milk production cycle and may help identify times when on-farm pathogen control would be the most effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号