首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Phytophthora cinnamomi is a soil-borne plant pathogen that has caused widespread damage to vulnerable native ecosystems and agriculture systems across the world and shows no sign of abating. Management of the pathogen in the natural environment is difficult and the options are limited. In order to discover more about how resistant plants are able to defend themselves against this generalist pathogen, a microarray study of plant gene expression following root inoculation with P. cinnamomi was undertaken. Zea mays was used as a resistant model plant, and microarray analysis was conducted using the Affymetrix GeneChip Maize Genome Array on root samples collected at 6- and 24-h post-inoculation. Over 300 genes were differentially expressed in inoculated roots compared with controls across the two time points. Following Gene Ontology enrichment analysis and REVIGO visualisation of the up-regulated genes, many were implicated in plant defence responses to biotic stress. Genes that were up-regulated included those involved in phytoalexin biosynthesis and jasmonic acid/ethylene biosynthesis and other defence-related genes including those encoding glutathione S-transferases and serine-protease inhibitors. Of particular interest was the identification of the two most highly up-regulated genes, terpene synthase11 (Tps11) and kaurene synthase2 (An2), which are both involved in production of terpenoid phytoalexins. This is the first study that has investigated gene expression at a global level in roots in response to P. cinnamomi in a model plant species and provides valuable insights into the mechanisms involved in defence.  相似文献   

3.
4.
Blocking histone deacetylation with trichostatin A (TSA) or blocking cytosine methylation using 5-aza-2'-deoxycytosine (aza-dC) can derepress silenced genes in multicellular eukaryotes, including animals and plants. We questioned whether DNA methylation and histone deacetylation overlap in the regulation of endogenous plant genes by monitoring changes in expression of approximately 7800 Arabidopsis thaliana genes following treatment with azadC, TSA, or both chemicals together. RNA levels for approximately 4% of the genes were reproducibly changed 3-fold or more by at least one treatment. Distinct subsets of genes are up-regulated or down-regulated in response to aza-dC, TSA, or simultaneous treatment with both chemicals, with little overlap among subsets. Surprisingly, the microarray data indicate that TSA and aza-dC are often antagonistic rather than synergistic in their effects. Analysis of green fluorescent protein transgenic plants confirmed this finding, showing that TSA can block the up-regulation of silenced green fluorescent protein transgenes in response to aza-dC or a ddm1 (decrease in DNA methylation 1) mutation. Our results indicate that global inhibition of DNA methylation or histone deacetylation has complex, nonredundant effects for the majority of responsive genes and suggest that activation of some genes requires one or more TSA-sensitive deacetylation events in addition to cytosine demethylation.  相似文献   

5.
Previous work has shown that microtubule (MT) reorientation follows the onset of growth inhibition on the lower side of graviresponding roots, indicating that growth reduction can occur independently of MT reorientation. To test this observation further, we examined whether the reduction in growth in response to osmotic stress is correlated with MT reorientation. The distribution and rate of growth in maize roots exposed to 350 mOsm sorbitol and KCl or 5 mM Mes/Tris buffer were measured with a digitizer. After various times roots were processed for indirect immunofluorescence microscopy. Application of sorbitol or KCl had no effect on the organization of MTs in the apical 2 mm of the root but resulted in striking and different effects in the basal region of the root. Sorbitol treatment caused rapid appearance of oval to circular holes in the microtubular array that persisted for at least 9 h. Between 30 min and 4 h of submersion in KCl, MTs in cortical cells 4 mm and farther from the quiescent center began to reorient oblique to the longitudinal axis. After 9 h, the alignment of MTs had shifted to parallel to the root axis but MTs of the epidermal cells remained transverse. In KCl-treated roots MT reorientation appeared to follow a pattern of development similar to that in controls but without elongation. Our data provide additional evidence that MT reorientation is not the cause but a consequence of growth inhibition.  相似文献   

6.
Summary Roots of 3.5-day-old seedlings of Zea mays cv. Giant White Horsetooth contain an extractable auxin which has chromatographic properties and reactions to chromogenic sprays identical with those of indole-3-acetic acid (IAA). By separating stele from cortex (and root tips) before extraction it was shown that the auxin is localized predominantly in the stele, with little being found in the cortex. Whole roots, isolated cortices and isolated steles accumulate and metabolize exogenously applied IAA-1-14C. The stelar tissue is distinguished from whole roots and cortical tissue in having a different pattern of IAA metabolism.  相似文献   

7.
The synthesis and metabolism of indole-3-acetic acid (IAA) was investigated in isolated roots of corn, Zea mays L. Roots were cultured aseptically in media supplemented with either 14C-tryptophan or 14C-IAA. Exogenously supplied IAA is rapidly and completely metabolized by root tissues. The main site in the root for the synthesis of IAA is in the apex. Removal of either the root cap or the quiescent center, or the root cap and the quiescent center from the apex has no effect on the IAA-synthesizing ability of the apex. Subdividing the terminal 2.1 cm of the root into various segments and culturing them separately stimulates IAA synthesis in these isolated root tissues. Roots in culture maintain relatively constant IAA levels, reflecting the precise controls of the level of this hormone.  相似文献   

8.
The relationship between ethylene production, 1-aminocyclopropane-l-carboxylic acid (ACC) concentration and aerenchyma formation (ethylene-promoted cavitation of the cortex) was studied using nodal roots of maize (Zea mays L. cv. LG11) subjected to various O2 treatments. Ethylene evolution was 7–8 fold faster in roots grown at 3 kPa O2 than in those from aerated solution (21 kPa O2), and transferring roots from aerated solution to 3 kPa O2 enhanced ethylene synthesis within less than 2 h. Ethylene production and ACC accumulation were closely correlated in different zones of hypoxic roots, regardless of whether O2 was furnished to the roots through aerenchyma or external solution. Both ethylene production and ACC concentrations (fresh weight basis) were more than 10-fold greater in the distal 0–10 mm than in the fully expanded zone of roots at 3 kPa O2. Aerenchyma formation occurred in the apical 20 mm of these roots. Roots transferred from air to anoxia accumulated less than 0. 1 nmol ACC (mg protein)-1 for the first 1.75 h; no ethylene was produced in this time. The subsequent rise in ACC levels shows that ACC can reach high concentrations even in the absence of O2, presumably due to a de-repression of ACC synthase. The hypothesis was therefore tested that anoxia in the apical region of the root caused enhanced synthesis of ACC, which was transported to more mature regions (10–20 mm behind the apex), where ethylene could be produced and aerenchyma formation stimulated. Surprisingly, exposure of intact root tips to anoxia inhibited aerenchyma formation in the mature root axis. High osmotic pressures around the growing region or excision of apices had the same effect, demonstrating that a growing apex is required for high rates of aerenchyma formation in the adjacent tissue.  相似文献   

9.
10.
Abstract Bacteria showing rapid growth on a nitrogenfree medium and acetylene-reducing activity were isolated from maize roots collected from agricultural soils in Spain. The isolates were Gram-negative motile rods and were identified as Azotobacter chroococcum . Acetylene-reducing activity and microbial counts were determined on root segments from 7- and 30-day-old plants. Rates obtained were in the range of 0.0053–0.848 nmol C2H2· g−1· h−1. Root populations were 1.4–6.0 × 104 micro-organisms · g−1. These results showed that there was an association between A. chroococcum strains and roots of maize planted in some Spanish soils.  相似文献   

11.
12.
Abstract. Seedlings of Zea mays L. were grown in the dark at 27°C. Four-day-old seedlings were then exposed for 3 days to solutions equilibrated with gas mixtures to give O2 concentrations between 0.02 and 0.25 mol m?3. Root growth was impaired just as severely at 0.06 as 0.02 mol O2 m?3 while growth at 0.16 mol O2 m?3 was about the same as in solutions in equilibrium with air (0.25 mol O2 m?3). Growth of young seedlings at low O2 concentrations was inhibited to the same extent in nutrient solution and 0.5 ml m?3 CaCl2, showing that the adverse effect of O2 deficits on growth was not due to less uptake of inorganic nutrients. Furthermore, at low O2 concentrations neither exposure of the shoots to a relative humidity of 100% (26.0 g H2O m?3) nor excision of the entire shoot enhanced root growth relative to that in plants with shoots at a relative humidity of 50% (13.0 g H2O m?3). Therefore, for these seedlings growing in the dark, impairment of root growth at low O2 concentrations was not a consequence of water deficits in the shoot or of other shoot-root interactions. Total soluble sugars and amino acid concentrations were generally greater at low (0.02–0.06 mol O2m?3) than at high O2 concentrations (0.16–0.25 mol O2 m ?3). This applied specifically to the root apices (0–2 mm) and expanding (2–15 mm) tissue except in some experiments where sugar concentrations in expanding tissue were slightly greater at high than at low O2 concentrations. Critical O2 pressures for respiration of excised root segments were approximately 0.117 and 0.065 mol O2 m?3 in the expanding and expanded zones of the roots, respectively. In contrast, the critical O2 pressure exceeded 0.20 mol O2 m?3 in the apex, suggesting that O2 supply for metabolic processes is most likely to be sub-optimal in this zone. Our results show clearly that the adverse effects of low O2 concentrations are unlikely to be a consequence of substrate shortage for either respiration or synthesis of macromolecules; low rates of ATP regeneration in growing root tissues are the logical cause for impaired growth in young seedlings while they are being sustained by seed reserves.  相似文献   

13.
Plant Molecular Biology - Evolutionary conserved defense mechanisms present in extant bryophytes and angiosperms, as well as moss-specific defenses are part of the immune response of Physcomitrium...  相似文献   

14.
Mitotic activity was investigated in the primary meristem of horizontally oriented excised root tips of Zea mays during the first six hours of their georeaction. The only statistically significant change that could be detected in the meristem was a decrease of the length of its upper half. No significant difference in mitotic activity was found between the upper and lower halves of roots kept continuously horizontal for 6 h. Cell proliferation thus seems relatively insensitive to changes in the redistribution of endogenous growth regulators that are believed to occur within the meristem during the onset of geotropism. In the zone of bending proximal to the meristem cell length was significantly greater in the upper half than in either the lower half or in the equivalent position in vertical control roots. Thus, cell elongation seems to be promoted in the upper half of the horizontal root. Thus, The differences in cell length were not accompanied by any change in the proportion of nuclei synthesising DNA in these elongating, non-meristematic cells.  相似文献   

15.
Henry Wilkins  R. L. Wain 《Planta》1975,126(1):19-23
Summary Exogeneous application of abscisic acid (ABA) to intact roots of LG 11 maize seedlings inhibits root elongation and induces bending of the root in response to gravity in darkness, even though the roots of these seedlings are not normally positively geotropic in the dark. ABA cannot, however, induce geotropic curvature in dark-exposed decapped roots, thus confirming that the root cap is the site of graviperception in the intact root.Abbreviation ABA abscissic acid  相似文献   

16.
When hypoxia is not too severe, root aerobic metabolism can be partly supported by oxygen delivery via aerenchymateous tissues. In terms of supplying energy, this adaptation is of special importance in plants with a high metabolic demand, such as maize (Zea mays L.). The ability of maize to respond to hypoxia by morphological changes is well documented; however, little is known on the potential for oxidative metabolism in different types of maize roots. In our study, we assessed the root respiratory potential in seminal and adventious nodal roots of maize exposed to mild short-term hypoxia. Plants responded to the treatment with an increased portion of nodal roots per total root length, while there were no changes in the biomass of shoots and roots. Thick nodal roots had much higher respiratory potential (Electron Transport System Activity – ETS) than nodal roots of smaller diameter or seminal roots, irrespective of the aeration rate. The only change in ETS under oxygen deficiency was found for seminal roots where oxygen consumption increased by 25%. Increased root porosity was observed in all roots, the increase was higher in nodal roots. On the basis of ETS data and taking into account changes of root morphology, it can be concluded that large changes of root respiratory potential are not involved in the response of maize to hypoxia. Obviously, maize can cover the respiratory needs with shifts in the growth of different root types which inherently differ in their potential aerobic respiration.  相似文献   

17.
Effects of shoot and root supplementation with silicon on the response of Zea mays L. plants to matric water potential (Ψm) and oxygen deficiency (waterlogging) stresses were studied. The soil water limitation (Ψm) and oxygen deprivation significantly reduced shoot dry weight, chlorophyll (Chl) content, ascorbic acid content, as well as leaf relative water content. Both soil drying and waterlogging caused a significant increase in the leaf membrane injury by heat (51°C) and dehydration (40% PEG) stresses. The levels of lipid peroxidation (POL) and hydrogen peroxide (H2O2) content were increased by excess soil drying and oxygen deficiency. Supplementary silicon at 1.0 mM significantly increased Chl content and improved water status. Concentrations of H2O2, MDA, and proline and leaf membrane injury were significantly reduced by Si application. The reverse helds true for ascorbic acid. The results of this study indicate that application of silicon might improve growth attributes, effectively mitigate the adverse effect of drought and waterlogging, and increase tolerance of maize plants. The silicon-induced improvement of drought and anoxia tolerance was associated with the increase in oxidative defense abilities.  相似文献   

18.
In response to osmotic step changes, three distinct phases have been noted in the growth response of Zea mays primary roots. They are cessation or slowing of growth over a period of 15–20 minutes, tissue contraction, and a damped oscillatory return to nearly normal growth rate, all within a period of about one hour. A system model of the tissue response is presented to explain such behavior and to serve in a predictive capacity to govern future experiments.It is supposed that for turgor pressure in excess of a cell wall yield threshold, plastic flow is the major component of wall deformation, and that when turgor falls below yield threshold, elastic deformation is dominant. The equations of the model describe growth rate as a function of time in terms of the following properties; plastic flow, elastic deformation, permeability to water, and solute uptake. They are derived from basic equations of feedback interactions between internal osmotic pressure and growth rate, and between wall softening, turgor and growth rate.The model predicts oscillatory growth rate regulation, and phase and amplitude relationships between turgor pressure and growth rate. The simplest model which accounts for all observations is that of biphasic deformation, two modes of wall softening, and a dual feedback system involving osmotic and yield threshold control of growth rate.It should be noted that to predict the time course of turgor pressure, osmotic pressure, yield pressure, and growth rate, two initial conditions and six system parameter values are sufficient. So far only the initial values of growth rate and its derivative can be obtained for Zea mays primary roots. However, values for wall softening and hardening coefficients (including the strain and turgor independent component), plastic extensibility, water permeability and dilution rate coefficients have not been obtained as yet for Zea roots. Values for some of these parameters have been obtained for other roots, coleoptiles, and giant algal cells.Lest the reader despair, it should be pointed out that experimental observations coupled with simulation studies will help establish restricted ranges of values that the system parameters might assume. These can then be compared with known values in the literature and values experimentally obtained in the future.  相似文献   

19.
20.
ABSTRACT

Raphidiopsis (Cylindrospermopsis) raciborskii is one of the most studied potentially harmful cyanobacteria. Single environmental factors such as increased temperature or light are reported to be promoters of R. raciborskii growth, but the interaction of two or more promoting factors is less understood. The performance of two strains of R. raciborskii (MVCC19, Uruguayan and LP1, Brazilian) were evaluated under acclimation and temperature shifts (25–32°C) in combination with two transitions from phosphorus (P) sufficiency to limiting growth conditions. When subjected to transition from high P sufficiency to a P-limiting state, strains were able to grow only at the warmer temperature if previously acclimated. The MVCC19 strain showed higher specific growth rates and a shorter growth phase than LP1. Morphological differences were also found: the MVCC19 strain produced shorter filaments, while the LP1 strain increased in length and the number of cells per filament. The results show the positive effect of high temperature on the ability of R. raciborskii to withstand P-limiting conditions, which may confer resilience of populations to periods of severe nutrient limitation in warm lakes. This finding contributes to the understanding of the success of this species in diverse environmental conditions. The effect of temperature on the tolerance of nutrient deficiency and the performance of strains under lake conditions suggests the need for a drastic reduction in nutrient loads to avoid R. raciborskii dominance in warmer lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号