首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study reveals that the annual Harderian gland weight cycle of P. asiatica has a direct relationship with the testicular cycle and an inverse relationship with the pineal gland cycle. Pinealectomy resulted in a significant decrease of the Harderian gland weight during the recurdescence (March-May) and active (April-June) phases. Subcutaneous implantation of melatonin (aMT) and 5-methoxytryptamine (MT) brought about a significant reduction during the recrudescence and active phases whereas subcutaneous injections of aMT, MT and 5-methoxytryptophol (ML) reduced Harderian gland weight effectively during the morning as well as in the evening hours in the active and inactive phases.  相似文献   

2.
Male rose-ringed parakeets (Psittacula krameri) were transferred to a long photoperiod (LP; LD 16:8) or a short photoperiod (SP; LD 8:16) for 45 or 90 days on four dates corresponding to the beginnings of different reproductive phases in an annual testicular cycle, and testicular responsiveness was evaluated by comparison with the testicular volume, weight, seminiferous tubular diameter, and germ cell profiles of birds in a natural photoperiod (NP). Exposure of birds to LP during the progressive phase (November) led to precocious maturation of testes after 45 days, but induced regression at 90 days. After showing retarded gametogenic functions at 45 days, parallel (November) SP birds exhibited an accelerated rate of germ cell formation at day 90. During the prebreeding phase (January), there were no remarkable differences in any features of testes among NP. LP, and SP birds at 45 days, but gonadal involution in LP parakeets and active spermatogenesis in SP birds occurred after 90 days. The testes did not show any response to LP or SP for 45 and 90 days when the birds were transferred to altered photoperiods during the breeding (March) and preparatory (June) phases, indicating that the parakeets were photorefractory for at least 6 months (March through September). The results also suggest that initiation and termination of seasonal gametogenic activity in parakeets are possibly functions of endogenous rhythmicity or extraphotoperiodic environmental factors. Duration of light may have certain influences on the attainment of annual peak in spermatogenesis, but in all probability the species has a low photoperiod threshold for induction of testicular growth.  相似文献   

3.
We studied the effects of photoperiod on metabolic profiles, adiposity, and gene expression of hypothalamic appetite-regulating peptides in gonad-intact and castrated Soay rams. Groups of five to six animals were studied 6, 18, or 30 wk after switching from long photoperiod (LP: 16 h of light) to short photoperiod (SP: 8 h of light). Reproductive and metabolic indexes were measured in blood plasma. Expression of neuropeptide Y (NPY), proopiomelanocortin (POMC), and leptin receptor (ObRb) in the arcuate nucleus was measured using in situ hybridization. Testosterone levels of intact animals were low under LP, increased to a peak at 16 wk under SP, and then declined. Voluntary food intake (VFI) was high under LP in both intact and castrated animals, decreased to a nadir at 12-16 wk under SP, and then recovered, but only in intact rams as the reproductive axis became photorefractory to SP. NPY gene expression varied positively and POMC expression varied negatively with the cycle in VFI, with differences between intact and castrate rams in the refractory phase. ObRb expression decreased under SP, unrelated to changes in VFI. Visceral fat weight also varied between the intact and castrated animals across the cycle. We conclude that 1) photoperiodic changes in VFI reflect changes in NPY and POMC gene expression, 2) changes in ObRb gene expression are not necessarily determinants of changes in VFI, 3) gonadal status affects the pattern of VFI that changes with photoperiod, and 4) in the absence of gonadal factors, animals can eat less but gain adiposity.  相似文献   

4.
本文研究了处于性休止期的雄性高原鼠兔在不同光周期饲养后体重和性腺重量的变化,同时 对其血浆睾酮水平和松果腺褪黑激素含量的变化进行分析:1)无论在长日照、自然光照、或是短 日照条件,高原鼠兔的体重无明显差异(P>0. 05);2)长日照组鼠兔的睾丸、附睾、输精管和精 囊腺远重于自然光照组(P<0.001)和短日照组(P<0.001);3)长日照组鼠兔血浆睾酮的含量 明显高于自然光照组(P<0.001)和短日照组(P<0.001);4)长日照组鼠兔松果腺褪黑激素含 量远低于自然光照组(P<0.001)和短日照组(P<0.001)。结果表明:高原鼠兔是长日照动物。  相似文献   

5.
A group of sexually active male European hamsters were raised either in short-photoperiod conditions (SP; LD 8:16) or in long-photoperiod conditions (LP; LD 16:8) from their capture at the end of the hibernation period. Another group of hamsters was castrated in April and gonadectomized animals were maintained in SP and cold (7 degrees C) or in a succession of SP and LP plus cold. Another group, castrated in May or in September and raised in LP conditions, was transferred in September to SP conditions and cold. 1. Normal hamsters raised in continuous SP or LP apparently did not show signs of rhythmic behavior, except possibly in gonadal activity. 2. Body weight increased continuously, plasma testosterone levels oscillated between 1.5 and 2.5 ng/ml, and animals raised in SP and in cold did not enter hibernation. 3. Similar results were also found in castrated animals kept in SP conditions and cold. 4. The sequence LP-SP induced a decrease in food intake and body weight and a decrease in plasma testosterone levels and triggered entry into hibernation in both intact and castrated animals. 5. After 6 months continuously in SP and with exposure to cold spontaneous recrudescence in food intake and body weight occurred and hibernation ended in both intact and castrated animals. 6. In normal animals a spontaneous increase in plasma testosterone levels was observed. 7. In both normal and gonadectomized animals the phase of refractoriness could be broken by exposure to LP conditions. 8. The critical photoperiod lies between 15 and 15.5 h. These results demonstrate that the European hamster is a photoperiodic species.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Exposure of male Syrian hamsters (Mesocricetus auratus) for 10 weeks to short photoperiod (SP) providing 10 hr light: 14 hr darkness (10:14 LD) produced a significant reduction in the weights of the reproductive organs, plasma thyroxine (T4) levels and free T4 index (FT4I) compared to the values of animals exposed to long photoperiod (LP, 14:10 LD). C57bl male house mice (Mus musculus) kept in SP (10:14 LD) had reproductive organ weights equivalent to those of mice kept in long days (14:10 LD) and lower T3 uptake (T3U) values. Male gerbils (Meriones unguiculatus) exposed to 13 weeks of SP (10:14 LD) had lower body weights, testes and seminal vesicle weights and higher T3U values compared to LP (14:10 LD) controls. However, no effect was seen on plasma T4 and triiodothyronine (T3) values nor the FT4I and free T3 index (FT3I). White-footed male mice (Peromyscus leucopus) exposed to SP (8:16 LD) had significantly lower testes and seminal vesicle weights while plasma T4 and T3 levels were unaffected. Snell strain house mice (Mus musculus) exposed to SP (8:16 LD) had normal reproductive organ weights compared to the values of LP-exposed (16:8 LD) control animals. However, there was a significant depression in T3 and in the FT3I in the SP animals.  相似文献   

7.
The grey mouse lemur (Microcebus murinus) is a small nocturnal primate exhibiting daily torpor. In constant ambient temperature (22-24 degrees C), body temperature (Tb) and locomotor activity were monitored by telemetry in animals exposed to short (SP: 10 h light/day) or long (LP: 14 light/day) photoperiods. They were first fed ad libitum for 8 days and then subjected to 80% restricted feeding for 8 more days. During ad libitum feeding, locomotor activity was significantly lower in SP-exposed animals than in LP-exposed animals. Whatever the photoperiod, animals entered daily hypothermia within the first hours following the light onset. Depth of daily hypothermia increased irregularly under SP exposure, whereas minimal daily Tb was constantly above 35 degrees C under LP exposure. After the transfer from long photoperiod to short photoperiod corresponding to the induction of seasonal fattening, locomotor activity and depth of controlled daily hypothermia did not change significantly. In contrast, food restriction led to a significant increase in locomotor activity and in frequency of daily torpor (Tb<33 degrees C) and body temperature reached minimum values averaging 25 degrees C. However, SP-exposed animals exhibited lower minimal daily Tb and higher torpor duration than LP exposed animals. Therefore, daily torpor appears as a rapid response to food restriction occurring whatever the photoperiod, although enhanced by short photoperiod.  相似文献   

8.
Seasonal changes in lipid droplet size and lipid peroxidation in the brown adipose tissue (BAT) of wild bank voles were examined. In addition, a role of photoperiod in these changes was studied; bank voles were held from the birth under long photoperiod (LP) for 12 weeks, and then half of them was transferred to short photoperiod (SP) for 6 weeks and another one remained under LP. In the wild bank voles the absolute BAT weight was seasonally constant, while the significant differences in the lipid droplet size were observed. The smallest lipid droplets (mean, 11 μm2) were seen in winter; they increased by 30 % in spring and reached the highest size (24 μm2) in summer. Lipid peroxidation in the BAT did not differ significantly between the seasons, although high intraseason variation of this process was noted. The laboratory experiment revealed that the size of lipid droplets was determined by photoperiod; SP induced 13-fold decrease, and continuous exposure to LP brought about a further 2.5-fold increase in the size of lipid droplets. Conversely, a significant decrease in lipid peroxidation was seen in LP bank voles in comparison with the SP animals. The data indicate that short photoperiod is responsible for the small size of lipid droplets in the BAT of bank voles during winter, which may be a necessary requirement for high thermogenic capacity of the tissue. Photoperiod appears also to affect lipid peroxidation in the BAT of these animals.  相似文献   

9.
Adult white-footed mice were maintained under either a long photoperiod (LP, LD 16:8, lights out at 2100) or a short photoperiod (SP, LD 8:16, lights out at 1700) for six weeks. Subgroups from each lighting regime were killed at specific times over a 24 hour period. Pineal radioimmunoassayable melatonin levels were significantly elevated at night compared to daytime values. Pineal melatonin content appears to be elevated for a longer period of time in the SP mice than in the LP animals. The apparent increased melatonin production observed in white-footed mice maintained under short and reproductively repressive daylengths may help to explain the ability of chronically available exogenous melatonin to cause gonadal atrophy in this species.  相似文献   

10.
Male Syrian hamsters exposed to short photoperiods of 6 h light/day (6L:18D) show regression of the testes within 12 weeks. Chromosome preparations of the meiotic stages (pachytene, metaphase I (MI) and metaphase II (MII)), testicular weights relative to body weights, sperm counts, seminiferous tubule diameter and histological appearance were examined at intervals during regression and subsequent recovery in a long photoperiod (14L:10D). The fall of testicular weight was associated with the decrease in tubule diameter. Spermatogenesis and sperm count were reduced rapidly and finally ceased after 10 weeks in short days. The numbers of MI and MII cells relative to 100 pachytene cells progressively decreased during the short-day treatment, although the ratio of MI:MII stayed constant whenever there was meiotic activity (except in the first week of the recovery phase). This suggests that an increasing proportion of pachytene cells did not progress to MI with increased time in short days, but cells which did reach MI progressed to MII in the same proportions as in the control testes. Meiosis ceased after 10 weeks in short days. Recovery in the long days was marked by a peak in the number of MI and MII cells/100 pachytene cells soon after the return to long days. This preceded the return (to control values) of the sperm count by 10 weeks. Initial recovery in the first 3 weeks was very rapid in all the determined values.  相似文献   

11.
Light regulates a variety of behavioral and physiological processes, including activity rhythms and hormone secretory patterns. Seasonal changes in the proportion of light in a day (photoperiod) further modulate those functions. Recently, short (SP) versus long days (LP) were found to markedly increase light sensitivity for phase shifting in Syrian hamsters. To our knowledge, photoperiod effects on light sensitivity have not been studied in other rodents, nor is it known if they generalize to other circadian responses. We tested whether photic phase shifting and melatonin suppression vary in Siberian hamsters maintained under LP or SP. Select irradiances of light were administered, and shifts in activity were determined. Photic sensitivity for melatonin suppression was examined in a separate group of animals via pulses of light across a 4 log-unit photon density range, with post-pulse plasma melatonin levels determined via RIA. Phase shifting and melatonin suppression were greater at higher irradiances for both LP and SP. The lower irradiance condition was below threshold for phase shifts in LP but not SP. Melatonin suppression did not vary by photoperiod, and the half saturation constant for fitted sigmoid curves was similar under LP and SP. Thus, the photoperiodic modulation of light sensitivity for phase shifting is conserved across two hamster genera. The dissociation of photoperiod effects on photic phase shifting and melatonin suppression suggests that the modulation of sensitivity occurs downstream of the common retinal input pathway. Understanding the mechanistic basis for this plasticity may yield therapeutic targets for optimizing light therapy practices.  相似文献   

12.
This study examined the effects of transfer from long photoperiod (LP) to short photoperiod (SP) on the cessation of ovarian cyclicity and the castration response in inbred LSH/SsLak golden Syrian hamsters. Forty-six 8 to 10-wk-old female hamsters were acclimatized in LP (14L:10D; lights on at 0600 h) during which time animals were monitored for regular ovarian cyclicity. Twenty-six animals were transferred to SP (8L:16D; lights on at 0600 h) and examined daily for vaginal discharges. One day after the day of the first missed ovulation, individual SP-exposed animals were bilaterally ovariectomized; concomitantly, an LP control animal in diestrus I underwent the same procedure. Thirty days after ovariectomy, the hamsters were fitted with intra-atrial silastic cannulae. On the following two postoperative days, 0.6 ml blood samples were collected at 0700, 1200, 1400, and 1600 h for SP animals and at 0700, 1400, 1600 and 1800 h for LP controls. On the third day, the animals were decapitated and sera and pituitaries saved for determination of luteinizing hormone (LH), follicle-stimulating hormone (FSH) and prolactin (PRL) by radioimmunoassay (RIA). All SP-exposed animals displayed their last estrous discharge 14-34 days after transfer to SP (mean = 23.0 +/- 0.8 days). Their ovaries were characterized by the absence of corpora lutea, the presence of large atretic antral follicles, few growing follicles, and interstitium that was stimulated to varying degrees. Total and adjusted pituitary weights were decreased by SP exposure (p less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We determined whether seasonal differences exist in the amount of time meadow voles, Microtus pennsylvanicus, self-groom when they encounter the scents of conspecifics. To do so, we used voles that were born and reared under long photoperiod (LP) and short photoperiod (SP). LP voles represent those found in free-living populations during the spring and summer breeding season, whereas SP voles characterize those found in free-living populations during the fall and winter nonbreeding season. Experiment 1 showed that LP male and female voles self-groomed more in response to odors of LP opposite-sex conspecifics as compared to those of other LP and SP conspecifics, suggesting that they may be self-grooming to signal sexual interest or excitement to potential mates. Experiment 2 demonstrated that SP males self-groomed more in response to scents of LP female voles and those of SP males as compared to scents of LP males and SP females, whereas SP females spent similar amounts of time self-grooming in response to scents of LP males, LP females, SP females, and SP males. These seasonal differences in self-grooming may reflect differences in the messages produced by groomers when they broadcast their odors as well as differences in the meaning of such odors to opposite-sex conspecifics. Alternatively, these data may be associated with seasonal differences in sexual motivation of the groomers when exposed to scents of particular conspecifics.  相似文献   

14.
Cane mice (Zygodontomys brevicauda) are year-round breeders in Venezuela. As shown previously, these animals are not reproductively responsive to variation in photoperiod. In the present experiments, male cane mice were maintained on long or short day lengths (16L:8D or 8L:16D, respectively) and challenged with each of three experimental treatments known to "unmask" reproductive photoresponsiveness in laboratory rats: olfactory bulbectomy, prolonged food restriction, and exposure as neonates to a single injection of testosterone. Variation in photoperiod had no inhibitory effect on the responses of cane mice to any of these three treatments, as assessed by the weight of their testes and seminal vesicles. A fourth experiment demonstrated that cane mice are insensitive to 10 wk of continuous exposure to pharmacological levels of melatonin, again as assessed by reproductive organ weight. Likewise, a fifth experiment documented a lack of response to 10 wk of late-afternoon injections of massive amounts of melatonin. The cane mouse apparently is unique among the animals challenged so far in these ways in that it seems to have no vestige of reproductive photoresponsiveness.  相似文献   

15.
Effects of short-day photoperiod, pinealectomy, and melatonin on sexual maturation were tested in Peromyscus leucopus from either Connecticut (CT) or Georgia (GA). Laboratory reared-stocks from CT and GA were exposed to short daylength (photoperiod) from birth or 25 days of age. At 12 wk of age, delay in sexual maturation was indicated in most CT mice by decreased testis length, combined testes weight, and seminal vesicle weight. Conversely, GA animals did not delay sexual maturation when exposed to short-day photoperiod from either birth or 25 days of age. These results indicate that responses to short daylengths differ for juvenile CT and GA populations. In a second experiment, pinealectomized or sham-operated CT males were exposed to short-day (9L:15D) or long-day (16L:8D) photoperiod from birth. Pinealectomy blocked the effect of short daylength on reproduction. Therefore, the pineal must be involved in the delay of sexual maturation observed for short-day CT mice. The effects of melatonin, a pineal gland hormone, were tested with chronic s.c. implants or daily injections. In CT mice given either melatonin implants or afternoon injections, sexual maturation was delayed. GA mice were insensitive to all melatonin treatments. Further, no differences in circadian organization (phase angle, duration of activity, period under constant dark) between GA and CT animals were apparent. Collectively, these studies indicate that melatonin is involved in the mechanism responsible for delay of sexual maturation in CT mice. Short-day insensitivity of GA Peromyscus leucopus probably results from a deficiency in the melatonin effector pathway and is not due to a disruption of circadian organization.  相似文献   

16.
The present study attempted for the first time to explore the importance of photoperiod in the regulation of seasonal ovarian functions in any subtropical major carp. Adult Indian major carp Catla catla were transferred to a long photoperiod (LP; LD 16:8) or a short photoperiod (SP; LD 8:16) for 30 days on 4 dates corresponding to the beginnings of 4 reproductive phases in an annual cycle, and responsiveness of the ovary was evaluated by comparison with the gonadal weight (I(G)), relative number of developing oocytes, serum levels of vitellogenin, and the activity of 2 important steroidogenic enzymes, that is, Delta(5)3beta-hydroxysteroid dehydrogenase and 17.beta-hydroxysteroid dehydrogenase, in the ovary of fish in a natural photoperiod. Exposure of fish to LP during the preparatory phase (February-March) resulted in a significant (p < 0.001) increase in the values of vitellogenin and in the activity of both the steroidogenic enzymes but not in the ovarian weight and in the relative number of different stages of oocytes. A more stimulatory influence of LP was noted during the prespawning phase (April-May), when precocious maturation of ovary was evident from a significant (p < 0.001) rise in the values of each studied features of ovarian functions. However, no ovarian response was found when the fish were transferred to LP during the spawning (July-August) and the postspawning (September-October) phases. On the other hand, the SP was found to have an inhibitory influence on ovarian growth and maturation during the prespawning and the spawning phases or to have no influences on ovarian functions during the preparatory and the postspawning phases of an annual cycle. The results of our study provide the first evidence that photoperiod per se plays an important role in the seasonal maturation of ovary in a subtropical freshwater major carp.  相似文献   

17.
Harderian gland (HG) weight and lysosomal enzyme activity were evaluated after 21-day-old female rats were singly caged in a long (LP; 14:10 LD) or short (SP; 8:16 LD) photoperiod and fed on one of two dietary regimens (fed ad libitum or 50% underfed) for 50 days; an additional fed and an underfed group of animals in LP were injected every afternoon with 100 micrograms melatonin. Absolute HG weights were significantly lower in all underfed groups compared to their respective fed controls or to the LP fed control group. Absolute HG weights of underfed rats in SP were significantly lower than the underfed rats in LP. Relative HG weights (mg/100 g body wt) were significantly higher in the underfed saline or melatonin-treated groups compared to their respective fed controls; however, HG of the underfed SP group were not different from SP-fed controls. No significant differences in HG acid phosphatase, hexosaminidase, and beta-glucuronidase activities were observed in any of the treatment groups maintained in LP. Acid phosphatase, hexosaminidase, and beta-glucuronidase activities were significantly elevated in HG of underfed animals maintained in SP compared to their respective fed controls or to the LP-underfed group. Both the underfed control and the underfed-melatonin treated groups had lower pineal protein values than their respective fed groups; underfed animals in 8:16 LD had similar pineal protein values compared to those of the fed control group in SP. Significant effects of photoperiod and underfeeding with no interaction between these variables were observed on pineal acid phosphatase. The fed group maintained in 8:16 LD had significantly higher acid phosphatase activity than the fed group kept in 14:10 LD. In conclusion, underfeeding resulted in severely reduced body weights and absolute Harderian gland weights. Increased activity in certain lysosomal enzymes occurred in both the pineal and Harderian gland and in some instances this was dependent upon the light cycle and dietary regimen to which the animals were exposed.  相似文献   

18.
In the present study, we asked the question whether physiological responses to day length of migratory redheaded bunting (Emberiza bruniceps) and nonmigratory Indian weaver bird (Ploceus philippinus) are mediated by the daily rhythm of melatonin. Melatonin was given either by injection at certain times of the day or as an implant. In series I experiments on the redheaded bunting, melatonin was administered by subcutaneous injections daily at zeitgeber time (ZT) 4 (morning) or ZT10 (evening) and by silastic capsules in photosensitive unstimulated buntings that were held in natural day lengths (NDL) at 27 degrees N beginning from mid February, and in artificial day lengths (ADL, 12L:12D and 14L:10D). Melatonin did not affect the photoperiod-induced cycles of gain and loss in body mass and testicular growth-involution, but there was an effect on temporal phasing of the growth-involution cycle of testes in some groups. For example, the rate of testicular growth and development was faster in birds that received melatonin injection at ZT4 in NDL, and was slower in birds that carried melatonin implants both in NDL and ADL. In series II experiments on Indian weaver birds, melatonin was given in silastic capsules in the first week of September when they still had large gonads. Birds were exposed for 12 weeks to short day length (8L:16D; group 1), to long day length (eight weeks of 16L:8D and four weeks of 18L:6D; group 2), or to both short and long day lengths (four weeks each of 8L:16D, 16L:8D, and 18L:6D; groups 3 and 4). Whereas groups 1 to 3 carried melatonin or empty implant from the beginning, group 4 received one after four weeks. All birds underwent testicular regression during the first four weeks irrespective of the photoperiod they were exposed to or the implant they carried in, and there was a slight re-initiation of testis growth in some birds during the next eight weeks of long day lengths. However, with the exception of group 2, there was no difference in mean testis volume during the period of experiment between the melatonin- and empty-implant birds. The data on androgen-dependent beak color also supported the observations on testes. Together, these results do not support the idea that the daily rhythm of melatonin is involved in the photoperiodic time measurement in birds. However, there may still be a role of melatonin in temporal phasing of the annual reproductive cycle in birds.  相似文献   

19.
The aim of the study was to investigate the effects of acute leptin treatment of adult Syrian hamsters exposed to a long (LP, eugonadal males) and short photoperiod (SP, hypogonadal males). Animals were exposed to LP (L:D 14:10) or SP (L:D 10:14) for 10 weeks. Afterwards, both LP and SP hamsters were allocated to a control (SP-C, LP-C) or leptin-treated group (SP 3, SP 10, SP 30 or LP3, LP 10, LP 30). One hour before sacrifice, a single dose of leptin (3, 10 or 30 μg/kg) or vehicle was administered (i.p.) to the males. Testis weight, serum and pituitary luteinizing hormone (LH) concentrations, as well as the hypothalamic concentration of gonadotropin-releasing hormone (GnRH) were recorded. Histological analysis of the testis was performed and GnRH concentration in the culture medium of hypothalamic explants was examined. A dramatic regression of testicular weight and histological atrophy of seminiferous tubules, as well as a decrease in serum and pituitary LH concentrations were found in SP males. All doses of leptin significantly reduced serum LH levels and medium GnRH concentrations in both photoperiod groups. Pituitary LH and hypothalamic GnRH concentrations were not affected by leptin. In conclusion, we demonstrated that leptin inhibited the reproductive axis of Syrian male hamsters exposed to LP and SP and fed ad libitum.  相似文献   

20.
We investigated the role of the hypothalamic melanocortin system in the regulation of food intake in the Siberian hamster, which shows a profound seasonal decrease in food intake and body weight in short photoperiod (SP). In male hamsters maintained in long photoperiod (LP), intracerebroventricular injection of melanotan II (MTII) just before lights off significantly decreased food intake relative to vehicle treatment over the 6-h observation period. Similar effects were observed in age-matched hamsters after exposure to a short daylength for 9 wk, when body weight had significantly decreased. There was no clear difference in either the magnitude of response or the dose required for half-maximal inhibition of food intake in hamsters in SP compared with those in LP. MTII significantly increased grooming in both LP and SP. Our results indicate that the melanocortin system is a potent short-term regulator of food intake. However, the lack of differential response or sensitivity to MTII treatment in the obese (LP) vs. lean (SP) states does not support the hypothesis that changes in this melanocortin pathway underlie the long-term decrease in food intake that occurs in this seasonal model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号