首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cysteamine and beta-mercaptoethanol supplementation of in vitro maturation (IVM) medium has been found to increase intracellular glutathione (GSH) content in oocytes and to improve embryo development and quality in several species. The objective of this experiment was to study the effect of cysteamine and beta-mercaptoethanol added during IVM of sheep oocytes on GSH synthesis and embryo development. Furthermore, we examined if cysteamine addition (hence GSH production) had an effect on the reduction of the intracellular peroxide content. We matured oocytes obtained from ovaries collected at a slaughterhouse in vitro in the presence of 0, 50, 100, and 200 microM cysteamine (Experiment 1) or with 0, 50, 100, and 200 microM beta-mercaptoethanol (Experiment 2). Following fertilization and embryo development, there was a increasing level of morula and blastocyst development in the presence of cysteamine, reaching significance in the presence of 200 microM (P < 0.05). However, beta-mercaptoethanol did not influence on the rate of embryo development. GSH levels were measured in oocytes matured in the presence or absence of 200 microM cysteamine (Experiment 3) or 50 microM beta-mercaptoethanol (Experiment 4), with or without buthionine sulfoximide (BSO), an inhibitor of GSH synthesis. Results demonstrated that for both cysteamine and beta-mercaptoethanol, intracellular GSH levels increased against control values (P < 0.01), which was abolished in the presence of BSO. Finally, we reduced intracellular peroxide levels, as measured by the relative fluorescence of the intracellular peroxide probe, carboxy-H2DCFDA, in the presence of either 200 microM cysteamine or 50 microM beta-mercaptoethanol (Experiment 5). These results demonstrate that cysteamine, but not beta-mercaptoethanol, when present during IVM, stimulates sheep embryo development; both cysteamine and beta-mercaptoethanol stimulate GSH synthesis; the increase in intracellular GSH is associated with a decrease in peroxide levels within oocytes.  相似文献   

2.
Glutathione (GSH) has been shown to play an important role in embryo development. In a previous study, we demonstrated that cysteamine supplementation of in vitro maturation (IVM) medium increased the intracellular GSH content in bovine oocytes and improved subsequent embryo development to the blastocyst stage. The present study was carried out to evaluate the effect of inhibition by buthionine sulfoximide (BSO) of GSH synthesis during IVM in the presence of cysteamine, on subsequent embryo development, and the effect of cysteamine during IVM on the survival of blastocysts following freezing. The effect of β-mercaptoethanol and cysteine added to the maturation medium on GSH levels in bovine oocytes, as well as the effect of these compounds on de novo GSH synthesis by oocytes during in vitro maturation, was also studied. The inhibitory effect of BSO during in vitro maturation on GSH synthesis was also evaluated. Evidence was found confirming that GSH synthesis occurs intracellularly during IVM of oocytes and is stimulated by cysteamine, β-mercaptoethanol and cysteine. Moreover, the present results suggest that the increase in the rate of embryo development exerted by cysteamine, when present during IVM, was due to its stimulatory effect on GSH synthesis. This increase in GSH levels during IVM improves embryo development and quality, producing more embryos reaching the blastocyst stage on day 6, those most suitable for freezing. © 1996 Wiley-Liss, Inc.  相似文献   

3.
The present study was carried out to study de novo glutathione (GSH) synthesis and to evaluate the effect of stimulating GSH synthesis during in vitro maturation (IVM) of adult and prepubertal mouse oocytes on the embryo developmental rate. Adult (8 weeks old) and prepubertal mice (24-26 days old) were primed with 5 IU of PMSG and oocytes were retrieved from the ovary 48 hr later for IVM. After IVM (18 hr) Cumulus oocyte complexes (COC) were in vitro fertilized (IVF) and in vitro culture (IVC) in order to observe embryo development. The IVM medium was supplemented with: 0, 25, 50, 100, or 200 microM of cysteamine. To study the novo GSH synthesis, 5 mM BSO was added during IVM of adult or prepubertal oocyte. Developmental rates up to blastocyst were recorded for each group. Experiments also included a group of ovulated oocytes (in vivo matured) after priming with PMSG and HCG. After IVM of adult mice oocytes, an improvement was observed on embryo development in all the supplemented groups when compared with the untreated group (P < 0.05). No differences were observed in blastocyst rate among IVM oocytes with cysteamine and ovulated oocytes. Prepubertal IVM mouse oocytes had a lower cleavage rate compared with ovulated oocytes (P < 0.05). Cysteamine failed to improve prepubertal oocytes developmental rates (P > 0,05). 2-cell embryos, coming from IVM prepubertal oocytes and ovulated oocytes had the same preimplantation developmental rate up to the blastocyst stage. In prepubertal, and adult oocytes an inhibition of embryo development was observed when buthionine sulfoximide (BSO), a specific inhibitor of the gamma-glutamylcysteine synthetase, was added during oocyte maturation (P < 0.01). In conclusion, an improvement in mouse embryo development was observed when cysteamine was added to the IVM medium of adult mice oocytes. In prepubertal oocytes cysteamine addition during oocyte maturation failed to improve embryo developmental rates. The presence of BSO lowered or completely blocked blastocyst development. This proves that, de novo GSH synthesis during oocyte maturation of adult and prepubertal oocytes undoubtedly plays an important role in embryo development. The improvement on oocyte competence observed in adult mice oocytes is probably related to intracellular GSH synthesis stimulated by cysteamine. Nevertheless the reason why cysteamine failed to improve prepubertal oocytes competence remains as an open question.  相似文献   

4.
The purpose of this study was to evaluate whether enriching the oocyte in vitro maturation medium with cystine, in the presence of cysteamine, would improve the in vitro embryo production efficiency in buffalo by further increasing the GSH reservoir created by the oocyte during maturation. Cumulus-oocytes complexes were matured in vitro in TCM 199 + 10% FCS, 0.5 microg/ml FSH, 5 microg/ml LH and 1 microg/ml 17beta-estradiol in the absence or presence of cysteamine (50 microM), with or without 0.3mM cystine. In Experiment 1, glutathione content was measured by high-performance liquid chromatography and fluorimetric analysis in representative samples of oocytes matured in the four different experimental conditions. In Experiment 2, oocytes were fixed and stained to assess nuclear maturation and normal pronuclear development following IVM and IVF respectively. In Experiment 3, mature oocytes were in vitro fertilized and cultured to assess development to blastocysts. In all supplemented groups the intracytoplasmic GSH concentration was significantly higher than the control, with the highest GSH levels in oocytes matured in the presence of both thiol compounds (3.6, 4.7, 5.4 and 6.9 picomol/oocyte in the control, cysteamine, cystine and cystine+cysteamine groups, respectively; P < 0.05). Cystine supplementation of IVM medium, both in the presence or absence of cysteamine, significantly increased the proportion of oocytes showing two normal synchronous pronuclei following fertilization. In all supplemented groups, cleavage rate was significantly improved compared to the control (55, 66.1, 73.5 and 78.4% in the control, cysteamine, cystine and cystine+cysteamine groups, respectively; P < 0.05). Similarly, blastocyst yield was also increased in the three enriched groups compared to the control (17.1, 23.8, 29.3, 30.9% in the control, cysteamine, cystine and cystine+cysteamine groups, respectively; P < 0.05). Overall, the addition of cystine to a cysteamine-enriched medium resulted in a significant increase of cleavage rate and transferable embryo yield compared to the medium supplemented with only cysteamine.  相似文献   

5.
The present study was carried out to evaluate if the addition of cysteamine to the culture medium during in vitro maturation of bovine oocytes increased the glutathione (GSH) levels in the mature oocytes, and if these changes may promote an improvement on in vitro development to the blastocyst stage. Follicular oocytes from slaughterhouse ovaries were matured in TCM 199 supplemented with 10% (v/v) fetal calf serum, hormones, and 0 (control), 25, 50, or 100 μM of cysteamine for 24 hr. After in vitro maturation the oocytes were fertilized and cultured for 8 days. The percentage of embryos that developed to the blastocyst stage was significantly higher (P < 0.01) for oocytes matured in medium containing 100 μM of cysteamine than for those matured in control medium. Moreover, the intracellular GSH levels were increased (P < 0.05) in oocytes matured with 100 μM of cysteamine with respect to control. No differences were observed in maturation and cleavage rates, and in the mean cell numbers per blastocyst among treatments (P > 0.05). These results indicate that the addition of thiol compounds such as cysteamine to maturation medium increases the efficiency of in vitro blastocyst production from immature bovine oocytes. The higher levels of GSH in oocytes matured in the presence of cysteamine suggest that the beneficial effects of cysteamine on in vitro maturation and subsequent development after in vitro fertilization are mediated by GSH. © 1995 wiley-Liss, Inc.  相似文献   

6.
The present study examined, by treatment of buthionine sulfoximine (BSO), which is a specific inhibitor of glutathione (GSH) synthesis, the role of GSH in the maturation and fertilization of pig oocytes in vitro. Follicular oocytes collected from prepubertal gilts at a local slaughterhouse were cultured for 36 h in Waymouth MB 752/1 with or without BSO (1 mM), fertilized in vitro, and assessed for GSH concentration (before insemination), maturation, and fertilization. The addition of BSO to maturation medium immediately after culture (Group I), 12 h after culture (Group II), or 24 h after culture (Group III) significantly decreased the GSH concentration in pig oocytes compared with the control (P < 0.01), whereas the rate of cumulus mass expansion at 36 h of culture and the rates of nuclear maturation and sperm penetration following in vitro insemination did not differ. However, the rate of pig oocytes having condensed sperm heads was significantly lower and the rate of male pronucleus formation of pig oocytes was significantly higher in oocytes matured in the control and Group III than in oocytes matured in Groups I and II (P < 0.01). In experiment 2, when BSO was added to maturation media 15, 18, 21, or 24 h after culture, the rate of pig oocytes having condensed sperm heads was significantly lower and the rate of male pronucleus formation of pig oocytes was significantly higher in oocytes matured in the medium supplemented with BSO at 21 or 24 h of culture than in oocytes matured in other groups (P < 0.05 or P < 0.01). The results indicate that GSH synthesis occurs throughout in vitro maturation of pig oocytes and GSH is an important cytoplasmic factor for regulating sperm nuclear decondensation and male pronucleus formation following sperm penetration in pig oocytes. © 1993 Wiley-Liss, Inc.  相似文献   

7.
The purpose of this study was to evaluate whether the addition of cysteamine during in vitro maturation (IVM) of buffalo oocytes enhances embryo development. Cumulus-oocyte complexes (COC) from slaughterhouse ovaries were matured in vitro in TCM 199 supplemented with 10% fetal calf serum (FCS), 0.5 microg mL(-1) FSH, 5 microg mL(-1) LH, 1 microg mL(-1) 17 beta estradiol and 0 (control), 50, 100 or 200 micromol L(-1) of cysteamine for 24 hours. The matured oocytes then were fertilized and cultured for 7 days. No beneficial effect on maturation and cleavage rate was related to the addition of cysteamine. However, the percentage of embryos that developed to compact morula and blastocyst stage was significantly higher (P < or = 0.01) for oocytes matured in medium containing 50 micromol L(-1) of cysteamine than it was for oocytes matured with 0, 100 and 200 micromol L(-1) cysteamine (22.6% vs 14.9%, 15.7% and 13% respectively); moreover, the addition of 50 micromol L(-1) of cysteamine during IVM significantly (P < or = 0.01) increased the proportion of transferable quality (Grades 1 and 2) embryos (19.3% vs 11.3%, 11.6% and 11.2% respectively). The present study showed that adding a thiol compound (such as cysteamine) to the IVM medium improves buffalo in vitro embryo production (IVEP) efficiency, which so far has been unsatisfactory.  相似文献   

8.
Glutamine (GLN) is a metabolic precursor for hexosamine synthesis and its inclusion in culture medium has been reported to improve cumulus expansion. Glutamine and cysteine share the same transport system. Excess external GLN may act as a competitive inhibitor for the uptake of cysteine and stimulate loss of cellular cysteine, interfering this with GSH synthesis. Experiments were designed to evaluate the effect of 1–3 mM GLN during in vitro maturation (IVM) on bovine-cumulus expansion, intracellular GSH levels in both oocytes and cumulus cells, and subsequent embryo development up to blastocyst stage. Also, GSH content was measured in 6- to 8-cell embryos and a possible relationship between cumulus expansion and GSH synthesis was studied. Intact cumulus cell-oocyte complexes were incubated for 24 hr and cumulus expansion was measured by a computerized image-digitizing system either before or after IVM. IVM/IVF bovine oocytes were cultured up to 6- to 8-cell stage embryos for assessment of GSH content or for 8 days up to blastocyst stage for embryo development. The measurement of total GSH content was performed by an enzymatic method in oocytes, cumulus cells and 6- to 8-cell embryos. The maximal expansion was achieved by addition of 2 mM GLN without affecting GSH levels, in both oocytes and cumulus cells. At 3 mM, the degree of cumulus expansion was lower and the GSH levels decreased. The addition of 2 mM GLN improves cleavage and blastocyst rates, whereas no differences were found between 0, 1, and 3 mM GLN. Moreover, the GSH content in 6- to 8-cell embryos was similar at any GLN concentrations. In order to study the relationship between GSH and cumulus expansion: 6-diazo-5-oxo-1-norleucine (DON), an inhibitor of hexosamine synthesis, or buthionine sulfoximide (BSO), an inhibitor of GSH synthesis, either alone or with GLN was added to IVM medium. GSH level was not affected by the presence of DON. However, the degree of cumulus expansion was reduced in the presence of BSO. In conclusion, bovine oocytes matured in the presence of 2 mM GLN improve their capacity for subsequent embryo development. Nevertheless, GSH level was altered when GLN was added to IVM medium at a high concentration with a reduction in the degree of cumulus expansion. This study provides evidence that optimal cumulus expansion in vitro is partially dependent on hexosamine production and intracellular GSH content. Mol. Reprod. Dev. 51:76–83, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
Cysteamine when added during in vitro maturation (IVM) or in vitro embryo culture (IVC) stimulates glutathione (GSH) synthesis and improves embryo developmental rates. This suggests that GSH synthesis is decreased in the in vitro produced embryo. The present study was carried out to evaluate if addition of cysteamine to culture medium at the same time, during IVM and IVC of bovine oocytes, may promote an overall improvement on the developmental rate and embryo quality. Oocytes were matured in TCM 199 supplemented with 10% (v/v) fetal calf serum, hormones, and 0 or 100 microM of cysteamine for 24 hr. After IVM, the oocytes were fertilized (day 0). Day 2 embryos (2-8 cell) were washed and transferred to fresh IVC medium supplemented with 0, 25, 50, or 100 microM of cysteamine and cultured for 48 hr. After this, embryos were cultured in IVC medium without cysteamine until day 8 of IVC. In the present study, we confirmed our previous results by demonstrating that the percentage of embryos that developed to the blastocyst stage was significantly higher (P < 0.05) when 100 microM of cysteamine was added during IVM, and this was further improved when 100 and 50 microM of cysteamine where present during IVM and IVC, respectively (P < 0.05). After cryopreservation, no differences were observed on embryo development, but a significant increase on embryo hatching was found between unsupplemented and supplemented oocytes with 100 and 50 microM of cysteamine during IVM and IVC, respectively (P < 0.05). We can conclude that GSH synthesis stimulation during bovine IVM with cysteamine, concomitant with GSH stimulation during IVC, will be a useful and simple tool for increasing the efficiency of in vitro bovine embryo production.  相似文献   

10.
11.
The low number of embryos produced from in vitro matured, fertilized, and cultured (IVM-IVF-IVC) oocytes of prepubertal goat is mainly due to a low incidence of sperm head decondensation at fertilization (Martino et al., 1995: Theriogenology 43:473-485; Mogas et al., 1997: Theriogenology 48:815-829). Thiol compounds stimulate glutathione (GSH) synthesis and improve the rates of male pronucleus (MPN) formation and embryo development. The present study was carried out to determine whether supplementation of the IVM medium with 100 microM of cysteamine, 100 microM of beta-mercaptoethanol, 0.57 mM of cysteine, and 0.57 mM cystine might improve the embryo development and intracellular GSH level of prepubertal goat oocytes. After 27 hr post IVM, a sample of oocytes was frozen and the intracytoplasmic GSH content was evaluated by spectrophotometry. IVM-oocytes were inseminated with fresh semen and cultured in SOF medium. Only the addition of cysteamine to IVM media significantly improved the percentage of the morula plus blastocyst yield compared to the control group (oocytes matured in absence of thiol compounds) (22.2 vs. 6.4%, respectively; P < 0.05). The percentage of expanded blastocysts in cysteamine and control groups was 13.0 and 2.6%, respectively, and the mean cell number per blastocyst was 86.8 and 60.5, respectively. None of the other thiol compounds studied significantly improved the percentage of embryos obtained. It has been demonstrated that prepubertal goat oocytes synthesize GSH during IVM and that thiol compounds increase this GSH synthesis. In conclusion, only the addition of 100 microM of cysteamine to the maturation medium improves embryo development from prepubertal goat oocytes although all the thiol compounds used in this study increased intracellular GSH content.  相似文献   

12.
Supplementation of IVM medium with cysteamine, beta-mercaptoethanol, cysteine and cystine induced bovine oocyte glutathione (GSH) synthesis, but only the effect of cysteamine on the developmental competence of these oocytes was tested. During IVM of sheep oocytes, cysteamine but not beta-mercaptoethanol increased embryo development. However, it is not known how long the high intracellular oocyte GSH levels obtained after IVM with thiol compounds, can be maintained. Thus, the present study was carried out to evaluate the effects of supplementing maturation medium with 100 microM beta-mercaptoethanol, 0.6 mM cysteine and 0.6 mM cystine on 1) intracellular GSH level after IVM, 2) after IVF, 3) in 6 to 8-cell embryos and 4) on embryo development. In oocytes after IVM and in presumptive zygotes after IVF, intracellular GSH levels were significantly higher in the treated groups (P < 0.05). While, GSH content in 6 to 8-cell embryos was similar among treatment groups (P > 0.05). Differences in cleavage rates and the percentage of embryos that developed to morula and blastocyst stages were significantly higher (P < 0.05) for treated oocytes than for those matured in the control medium. We conclude from the results that the high intracellular GSH levels after induction of GSH synthesis in bovine IVM by thiol compounds remain during IVF and are still present at the beginning of IVC, improving developmental rates. Moreover, the results indicate that this metabolic pathway is an important component of the cytoplasmic maturation process that affects the subsequent steps of in vitro embryo production.  相似文献   

13.
The aim of this study was to improve in vitro embryo development of prepubertal goat oocytes by studying the effect of adding cysteamine to in vitro maturation medium, glutathione (GSH) to in vitro fertilization medium and ionomycin to the sperm capacitation medium. In experiment 1, we analysed the effect of 1 mM GSH added to fertilization medium of oocytes matured with 400 microM cysteamine. The control group were oocytes without cysteamine and GSH. In experiment 2, oocytes matured and fertilized in the presence of 400 microM cysteamine and 1 mM GSH, respectively, were inseminated with spermatozoa treated with ionomycin or heparin. In experiment 1, the percentages of total and normal fertilized oocytes were significantly higher for oocytes supplemented with cysteamine and GSH (40.26% and 30.20%, respectively) than for oocytes from the control group (16.66%, and 10.61%, respectively). The percentage of total embryos obtained after 7 days of culture was significantly higher in the group supplemented with cysteamine and GSH (30.62%) than in the control group (8.09%). In experiment 2, percentages of total and normal fertilized oocytes were significantly higher for the group of spermatozoa capacitated with ionomycin (52.21% and 37.17%, respectively) than with heparin (38.62% and 28.35%, respectively). After 7 days of culture, total embryo rate was significantly higher in the group of sperm capacitated with ionomycin (44.91%) than with heparin (38.69%). However, the percentage of embryos developed to the blastocyst stage was not affected by any of the treatments studied.  相似文献   

14.
We investigated the hypothesis that glutathione (GSH) in reproductive tract secretions (RTS) protects the preimplantation embryo from endogenous reactive oxygen species and is important for normal development during the embryo's sensitive period when it is incapable of synthesizing GSH de novo. Mice were administered buthionine sulfoximine (BSO) to inhibit GSH synthesis and decrease GSH concentration in RTS. Embryos were then allowed to develop either in vivo or in vitro in the presence of RTS and the GSH concentration of the embryos was quantified by HPLC and embryonic development was recorded. GSH concentration in RTS did not differ over the phases of the estrous cycle, but there were significant decreases in GSH concentration on Day 2 of gestation and due to BSO treatment. Embryos allowed to develop in vivo and in vitro in RTS with decreased GSH concentration did not exhibit decreased development or GSH concentration. Oocytes exposed to BSO during maturation in vivo experienced a significant decrease in GSH concentration and an increase in percent of degenerate embryos when compared with control. These data suggest that most of the GSH in RTS does not play a critical role in normal preimplantation embryo development but that GSH stored in the oocyte during maturation has an important role in subsequent embryo development. Our studies do not exclude the possibility that GSH in RTS plays an important role in protection of the preimplantation embryo during exposure to some toxicants.  相似文献   

15.
Glutathione (GSH) concentration increases in bovine oocytes during in vitro maturation (IVM). The constitutive amino acids involved in GSH synthesis are glycine (Gly), glutamate (Glu) and cysteine (Cys). The present study was conducted to investigate the effect of the availability of glucose, Cys, Gly and Glu on GSH synthesis during IVM. The effect of the amino acid serine (Ser) on intracellular reduced/oxidized glutathione (GSH/GSSG) content in both oocytes and cumulus cells was also studied. Cumulus-oocyte complexes (COC) of cattle obtained from ovaries collected from an abattoir were matured in synthetic oviduct fluid (SOF) medium containing 8 mg/ml bovine serum albumin-fatty acid-free (BSA-FAF), 10 microg/ml LH, 1 microg/ml porcine FSH (pFSH) and 1 microg/ml 17 beta-estradiol (17beta-E2). GSH/GSSG content was measured using a double-beam spectrophotometer. The COC were cultured in SOF supplemented with 1.5mM or 5.6mM glucose (Exp. 1); with or without Cys+Glu+Gly (Exp. 2); with the omission of one constitutive GSH amino acid (Exp. 3); with 0.6mM Cys or Cys+Ser (Exp. 4). The developmental capacity of oocytes matured in IVM medium supplemented with Cys and the cell number per blastocyst were determined (Exp. 5). The results reported here indicate (1) no differences in the intracellular GSH/GSSG content at any glucose concentrations. Also, cumulus cell number per COC did not differ either before or after IVM (Exp. 1). (2) Glutathione content in oocytes matured in SOF alone were significantly different from oocytes incubated with SOF supplemented with Cys+Glu+Gly (Exp. 2). (3) Addition of Cys to maturation medium, either with or without Gly and Glu supplementation resulted in an increase of GSH/GSSG content. However, when Cys was omitted from the IVM medium intracellular GSH in oocytes or cumulus cells was less but not significantly altered compared to SOF alone (Exp. 3). (4) Glutathione content in both oocytes and cumulus cells was significantly reduced by incubation with 5mM Ser (Exp.4). (5) There was a significant increase in cleavage and blastocyst rates when Cys was added to maturation medium. In contrast, the cleavage, morula and blastocyst rates were significantly different when 5mM Ser was added to maturation media. There was also a significant difference in mean cell number per blastocyst, obtained from oocytes matured with 5mM Ser (Exp. 5). This study provides evidence that optimal embryo development in vitro is partially dependent on the presence of precursor amino acids for intracellular GSH production. Moreover, the availability of Cys might be a critical factor for GSH synthesis during IVM in cattle oocytes. Greater Ser concentration in IVM medium altered "normal" intracellular GSH in both oocytes and cumulus cells with negative consequences for subsequent developmental capacity.  相似文献   

16.
This study examined the effect of including one of two growth factors (100 ng/ml IGF-1 or 20 ng/ml EGF) in combination with one of two antioxidants (50 microM cysteamine or 50 microM beta-mercaptoethanol) in maturation, fertilization and subsequent development of buffalo oocytes. The oocytes were recovered by in vivo ovum pick-up technique from six Murrah buffalo heifers twice a week over a period of 16 weeks. Immediately after ovum pick-up oocytes recovered from six donors were allocated randomly to five different maturation treatments. The control treatment was the basic maturation medium (MM; TCM-199 supplemented with 10% FBS, 10 IU/ml LH, 0.5 microg/ml FSH, 1 microg/ml estradiol-17beta and 50 microg/ml gentamicin). The other four treatments consisted of the control maturation medium (MM) plus one combination of a growth factor and an antioxidant viz. IGF-1+cysteamine; IGF-1+beta-ME; EGF+cysteamine or EGF+beta-ME. The total number of oocytes assigned to each maturation treatment ranged from 31 to 66. After maturation in different maturation medium, media used for in vitro fertilization and subsequent development of embryo was same for all groups. Data were analysed using Chi-square test. The maturation rate observed for the growth factor plus antioxidant treatments was similar to that for the control (90.4%). The highest cleavage rate recorded in the IGF-1+cysteamine treatment (71.9%) which was significantly higher (P<0.05) than the IGF-1+beta-ME (45.2%) and EGF+beta-ME (46.4%) treatments, but not significantly differ from the control (63.8%) and EGF+cysteamine treatment (60.7%). The proportion of cleaved oocytes those developed to blastocyst stage was significantly higher in the IGF-1+cysteamine treatment (52.2%; P<0.05) than in the control (23.3%), the EGF+cysteamine (13.5%) or the EGF+beta-ME (7.7%) treatments, but did not differ significantly from the IGF-1+beta-ME (28.6%) treatment. Following non-surgical transfer of 15 embryos to 14 synchronized recipients, four became pregnant and only one recipient sustained the pregnancy as long as 4.5 months when spontaneous abortion occurred. It was concluded that supplementing the maturation medium with IGF-1+cysteamine improved the production of buffalo embryos significantly in vitro culture.  相似文献   

17.
Our previous studies have shown that larger and more competent oocytes can be selected using the brilliant cresyl blue (BCB) test. The objective of this study was to assess, in BCB-selected oocytes, the effect on the embryo development of prepubertal goat oocytes of the addition to in vitro culture (IVC) medium of either glutathione (GSH) alone or GSH in combination with glucose. Oocytes were exposed to 26 mM BCB and were classified as: oocytes with a blue cytoplasm or grown oocytes (BCB+) and oocyteswithout blue cytoplasm or growing oocytes (BCB-). Oocytes were matured in TCM-199 with 100 microM cysteamine. Presumptive zygotes were cultured in synthetic oviductal fluid (SOF) in the presence or absence of 1 mM glutathione (experiment 1) for 7 days (8 days post-insemination, p.i.). In experiment 2 we tested the addition to culture of 2.78 mM glucose at day 5 p.i. BCB+ oocytes showed higher percentages of nuclear maturation than the BCB- and control groups (82.6%, 55.7% and 74.7%, respectively). The percentage of polyspermic oocytes was higher in BCB- than BCB+ oocytes. Supplementation of SOF medium with 1 mM GSH did not affect embryo development but the percentage of total embryos developed after culture was higher in BCB+ oocytes than in BCB- oocytes independently of the GSH supplementation. Glucose, alone or with GSH, added at 5 days p.i. did not affect embryo development. In conclusion, prepubertal goat oocytes were unable to develop beyond the 8-cell stage embryo under the culture conditions in this study.  相似文献   

18.
Glutathione has been shown to play an important role during embryo development in both plant and animal systems. The effects of altered glutathione metabolism during microspore-derived embryos (MDEs) of Brassica napus were investigated following exogenous application of reduced glutathione (GSH), its oxidized form (GSSG) and buthionine sulfoximine (BSO), an inhibitor of glutathione de novo synthesis. Applications of BSO which lowered the cellular glutathione redox status, i.e. GSH/(GSH + GSSG), enhanced significantly the quality of the embryos and their ability to convert into viable plants. Histological analyses revealed that inclusions of BSO in the culture medium altered the pattern of storage product accumulation in the embryos and improved the architecture of the shoot apical meristems (SAMs). Compared with their control counterparts which showed severe signs of SAM deterioration, such as the formation of intercellular spaces and differentiation of the meristematic cells, BSO-treated embryos had well-organized SAMs. The improved SAM organization observed in the presence of BSO also correlated with the proper localization pattern of WUSCHEL , a SAM molecular marker gene which was miss-expressed in control embryos. The beneficial effects of BSO on embryo development and conversion were ascribed to the increasing levels of ABA. The concentration of this growth regulator in BSO-treated embryos was always higher than that of control embryos during the second half of the maturation period. Furthermore, many structural alterations induced by BSO could be reproduced in embryos cultured in the presence of ABA. Taken together, these results suggest that a lowering of the glutathione redox status during embryo development may represent a metabolic switch needed for increasing the endogenous levels of ABA, which is required for successful completion of the developmental program.  相似文献   

19.
The present study examined the effect of different concentrations of cysteine in the presence of a thiol compound, beta-mercaptoethanol (BME), during in vitro maturation (IVM) of pig oocytes on cumulus expansion, nuclear maturation, intracellular glutathione (GSH) level and subsequent embryonic development after in vitro fertilisation (IVF). In experiment 1, oocytes were matured in NCSU 23 medium containing 10% porcine follicular fluid, 25 microM BME, 0.5 microgram/ml LH, 0.5 microgram/ml FSH and 0, 0.1, 0.2 or 0.4 mg/ml cysteine for 20-22 h and then without hormonal supplements for an additional 20-22 h. After culture, cumulus cells were removed and a proportion of oocytes fixed to examine the rate of nuclear maturation. The remaining oocytes were co-incubated with spermatozoa for 5-6 h and putative zygotes were transferred to NCSU 23 medium containing 0.4% bovine serum albumin for 144 h. A proportion of putative zygotes were fixed 12 h after insemination to examine fertilisation parameters. In experiment 2, oocytes were matured as in experiment 1 and the GSH content was measured by a DTNB-GSSG reductase recycling assay. No mean differences among treatments were observed in nuclear maturation (78-89%). The mean differences in penetration rate (69-77%), polyspermy rate (31-40%), male pronuclear formation rate (93-96%) or mean number of sperm per oocyte (1.5-1.8) were not affected by the presence or absence of cysteine during oocyte maturation. Also no difference was observed in cleavage rates 48 h after insemination. However, compared with no addition (19%), the presence of 0.1-0.4 mg/ml cysteine during IVM increased (p < 0.001) the proportion of blastocysts (32-39%) at 144 h. In comparison with controls (5.6 pmol/oocyte), the GSH content of oocytes matured in the presence of cysteine was significantly (p < 0.001) higher (13-15 pmol/oocyte) with no mean differences among different cysteine concentrations. The results indicate that in the presence of a thiol compound, supplementation of IVM medium with cysteine can increase the GSH level and improve the developmental competence of pig oocytes following fertilisation. Further, no effect on either GSH level or embryo development was observed by increasing the levels of cysteine supplementation from 0.1 to 0.4 mg/ml.  相似文献   

20.
This study examined the ability of epidermal growth factor (EGF) to improve the developmental competence of pig oocytes matured in a protein-free (PF) in vitro maturation (IVM) system. Oocyte maturation was done in one of three media: 1. PF-TCM: tissue culture medium (TCM) 199 + 0.1% polyvinylalcohol (PVA); 2. PF-TCM+EGF: PF-TCM + 10 ng/ml EGF; and 3. +ve CONT: North Carolina State University (NCSU) 23 medium + 10% porcine follicular fluid. All media contained 0.57 mM cysteine. Hormonal supplements, 0.5 microg/mL LH and 0.5 microg/mL FSH, were present only for the first half (20 to 22 h) of the culture period. After maturation, oocytes were co-incubated with frozen-thawed spermatozoa for 5 to 6 h and transferred to embryo culture medium, NCSU 23 containing 0.4% BSA, for 144 h. In Experiment 1, differences in cumulus expansion were observed for oocytes matured in +ve CONT (Category 4), PF-TCM (Category 2) and PF-TCM+EGF (Category 3). However, no significant differences in nuclear maturation to metaphase II stage were observed. In Experiment 2, no differences in fertilization parameters were observed. Significant (P < 0.01) differences in cleavage rates were observed among the three media for a proportion of the oocytes matured (52, 60 and 69% in PF-TCM, PF-TCM+EGF, and +ve CONT, respectively). Oocytes matured in PF-TCM showed the lowest (P < 0.01) blastocyst development (22%). However, the same rate of blastocyst development was obtained for +ve CONT (37%) and PF-TCM+EGF (37%). Blastocyst cell numbers were significantly higher when oocytes were matured in the presence of EGF (26 vs. 37 to 41). In Experiment 3, oocytes matured in PF-TCM+EGF had a significantly (P < 0.05) higher intracellular glutathione (GSH) concentration (5.9 vs. 11.4 pmol/oocyte) compared with PF-TCM. Twenty-two of 25 embryo transfer recipients became pregnant (Experiment 4). Four animals returned to estrus in within 60 days. Six pregnant animals slaughtered at 26 to 45 days had 43 fetuses (range: 4 to 12) and the remaining 12 animals farrowed 82 piglets (range: 3 to 12). These results indicate that EGF enhances the developmental competence of pig oocytes matured in a protein-free culture medium which is correlated with higher GSH level in oocytes. Birth of piglets indicate that embryos derived from oocytes matured in the presence of EGF are viable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号