首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Maiväli  Ü.  Saarma  U.  Remme  J. 《Molecular Biology》2001,35(4):569-574
We have studied in vivothe phenotypes of 23S rRNA mutations G2582A, G2582U, G2583C, and U2584C, which are located at the A site of Escherichia coli50S ribosomal subunit. All mutant rRNAs incorporated into 50S ribosomal subunits. Upon sucrose gradient fractionation of cell lysates, 23S rRNAs mutated at G2582 to A and G2583 to C accumulated in the 50S and 70S fractions and were underrepresented in the polysome fraction. Induction of 23S rRNAs mutated at G2582 and G2583 lead to a drastic reduction in cell growth. In addition, mutations G2582A and G2583C reduced to one-third the total protein synthesis but not the RNA synthesis. Finally, we show that 23S rRNA mutations G2582A, G2582U, and G2583C cause a significant increase in peptidyl-tRNA drop-off from ribosomes, thereby reducing translational processivity. The results clearly show that tRNA–23S rRNA interaction has an essential role in maintaining the processivity of translation.  相似文献   

3.
The modern ribosome and its component RNAs are quite large and it is likely that at an earlier time they were much smaller. Hence, not all regions of the modern ribosomal RNAs (rRNA) are likely to be equally old. In the work described here, it is hypothesized that the oldest regions of the RNAs will usually be highly integrated into the machinery. When this is the case, an examination of the interconnectivity between local RNA regions can provide insight to the relative age of the various regions. Herein, we describe an analysis of all known long-range RNA/RNA interactions within the 23S rRNA and between the 23S rRNA and the 16S rRNA in order to assess the interconnectivity between the usual Domains as defined by secondary structure. Domain V, which contains the peptidyl transferase center is centrally located, extensively connected, and therefore likely to be the oldest region. Domain IV and Domain II are extensively interconnected with both themselves and Domain V. A portion of Domain IV is also extensively connected with the 30S subunit and hence Domain IV may be older than Domain II. These results are consistent with other evidence relating to the relative age of RNA regions. Although the relative time of addition of the GTPase center can not be reliably deduced it is pointed out that the development of this may have dramatically affected the progenotes that preceded the last common ancestor.  相似文献   

4.
A new member of the family of periplasmic protein thiol:disulfide oxidoreductases, CcmG (also called DsbE), was characterized with regard to its role in cytochrome c maturation in Escherichia coli. The CcmG protein was shown to be membrane bound, facing the periplasm with its C-terminal, hydrophilic domain. A chromosomal, nonpolar in-frame deletion in ccmG resulted in the complete absence of all c-type cytochromes. Replacement of either one or both of the two cysteine residues of the predicted active site in CcmG (WCPTC) led to low but detectable levels of Bradyrhizobium japonicum holocytochrome c550 expressed in E. coli. This defect, but not that of the ccmG null mutant, could be complemented by adding low-molecular-weight thiol compounds to growing cells, which is in agreement with a reducing function for CcmG.  相似文献   

5.
The data reported here are consistent with the hypothesis that the rate of ribosome assembly in vivo approximates a constant fraction of the generation time for the four rates studied. This conclusion is indicated by the following. (i) There is an increased lag period before radioisotopically labeled uracil appears in 23 and 16S ribosomal ribonucleic acid of 70S ribosomes as a function of growth rate. (ii) The time necessary for (3)H-uracil in the 43S ribonucleoprotein precursor to the 50S subunit to assume a position at 50S in sucrose gradients is greatly increased inversely to the growth rate.  相似文献   

6.
7.
4.5S RNA is the bacterial homolog of the mammalian signal recognition particle (SRP) RNA that targets ribosome-bound nascent peptides to the endoplasmic reticulum. To explore the interaction of bacterial SRP with the ribosome, we have isolated rRNA suppressor mutations in Escherichia coli that decrease the requirement for 4.5S RNA. Mutations at C732 in 16S rRNA and at A1668 and G1423 in 23S rRNA altered the cellular responses to decreases in both Ffh (the bacterial homolog of SRP54) and 4.5S RNA levels, while the C1066U mutation in 16S rRNA and G424A mutation in 23S rRNA affected the requirement for 4.5S RNA only. These data are consistent with a dual role for 4.5S RNA, one involving co-translational protein secretion by a 4.5S-Ffh complex, the other involving free 4.5S RNA.  相似文献   

8.
Disruption of pstS encoding the P(i)-binding protein in Escherichia coli generally leads to the constitutive expression of the pho regulon. We demonstrate that P(i)-controlled expression is restored when the activity of the P(i) transporter PitA or PitB is increased. Apparently, PstS is not an essential component of the signal transduction pathway.  相似文献   

9.
10.
The trmD operon is located at 56.7 min on the genetic map of the Escherichia coli chromosome and contains the genes for ribosomal protein (r-protein) S16, a 21-kDa protein (RimM, formerly called 21K), the tRNA (m1G37)methyltransferase (TrmD), and r-protein L19, in that order. Previously, we have shown that strains from which the rimM gene has been deleted have a sevenfold-reduced growth rate and a reduced translational efficiency. The slow growth and translational deficiency were found to be partly suppressed by mutations in rpsM, which encodes r-protein S13. Further, the RimM protein was shown to have affinity for free ribosomal 30S subunits but not for 30S subunits in the 70S ribosomes. Here we have isolated several new suppressor mutations, most of which seem to be located close to or within the nusA operon at 68.9 min on the chromosome. For at least one of these mutations, increased expression of the ribosome binding factor RbfA is responsible for the suppression of the slow growth and translational deficiency of a ΔrimM mutant. Further, the RimM and RbfA proteins were found to be essential for efficient processing of 16S rRNA.  相似文献   

11.
Two chloramphenicol resistance mutations were isolated in an Escherichia coli rRNA operon (rrnH) located on a multicopy plasmid. Both mutations also confer resistance to 14-atom lactone ring macrolide antibiotics, but they do not confer resistance to 16-atom lactone ring macrolide antibiotics or other inhibitors of the large ribosomal subunit. Classic genetic and recombinant DNA methods were used to map the two mutations to 154-base-pair regions of the 23S RNA genes. DNA sequencing of these regions revealed that chloramphenicol-erythromycin resistance results from a guanine-to-adenine transition at position 2057 of the 23S RNA genes of both independently isolated mutants. These mutations affect a region of 23S RNA strongly implicated in peptidyl transfer and known to interact with a variety of peptidyl transferase inhibitors.  相似文献   

12.
The Escherichia coli DEAD protein DbpA is an RNA-specific ATPase that is activated by a 153-nt fragment within domain V of 23S rRNA. A series of RNA subfragments and sequence changes were used to identify the recognition elements of this RNA-protein interaction. Reducing the size of the fully active 153-nt RNA yields compromised substrates in which both RNA and ATP binding are weakened considerably without affecting the maximal rate of ATP hydrolysis. All RNAs that stimulate ATPase activity contain hairpin 92 of 23S rRNA, which is known to interact with the 3' end of tRNAs in the ribosomal A-site. RNAs with base mutations within this hairpin fail to activate ATP hydrolysis, suggesting that it is a critical recognition element for DbpA. Although the isolated hairpin fails to activate DbpA, RNAs with an extension of approximately 15 nt on either the 5' or 3' side of hairpin 92 elicit full ATPase activity. These results suggest that the binding of DbpA to RNA requires sequence-specific interactions with hairpin 92 as well as nonspecific interactions with the RNA extension. A model relating the RNA binding and ATPase activities of DbpA is presented.  相似文献   

13.
A comprehensive range of chemical reagents and ribonucleases was employed to investigate the interaction of the antibiotics thiostrepton and micrococcin with the ribosomal protein L11-23S RNA complex and with the 50S subunit. Both antibiotics block processes associated with the ribosomal A-site but differ in their effects on GTP hydrolysis, which is inhibited by thiostrepton and stimulated by micrococcin. The interaction sites of both drugs were shown to occur within the nucleotide sequences A1067-A1098 within the protein L11 binding site on 23S RNA. This region of the ribosome structure is involved in elongation factor-G-dependent GTP hydrolysis and in the stringent response. No effects of drug binding were detected elsewhere in the 23S RNA. In general, the two drugs afforded 23S RNA similar protection from the chemical and nuclease probes in accord with their similar modes of action. One important exception, however, occurred at nucleotide A1067 within a terminal loop where thiostrepton protected the N-1 position while micrococcin rendered it more reactive. This difference correlates with the opposite effects of the two antibiotics on GTPase activity.  相似文献   

14.
15.
The rapid evolution of bacteria is crucial to their survival and is caused by exchange, transfer, and uptake of DNA, among other things. Conjugation is one of the main mechanisms by which bacteria share their DNA, and it is thought to be controlled by varied bacterial immune systems. Contradictory results about restriction-modification systems based on phenotypic studies have been presented as reasons for a barrier to conjugation with and other means of uptake of exogenous DNA. In this study, we show that inactivation of the R.EcoKI restriction enzyme in strain Escherichia coli K-12 strain MG1655 increases the conjugational transfer of plasmid pOLA52, which carriers two EcoKI recognition sites. Interestingly, the results were not absolute, and uptake of unmethylated pOLA52 was still observed in the wild-type strain (with an intact hsdR gene) but at a reduction of 85% compared to the uptake of the mutant recipient with a disrupted hsdR gene. This leads to the conclusion that EcoKI restriction-modification affects the uptake of DNA by conjugation but is not a major barrier to plasmid transfer.  相似文献   

16.
We report the synthesis of a radioactive, photolabile 2'-O-methyloligoRNA probe, 2258-53/52(SAz)-48, PHONT1, and its exploitation in identifying 23S rRNA nucleotides neighboring the so-called 'P-loop'. The probe is complementary to nt 2248-2258 in Escherichia coli 50S subunits. PHONT1 contains a p-azidophenacyl group attached to a phosphorothioate bridge between the nucleotides complementary to the positions 2252-2253, such that the photogenerated nitrene is maximally 17-19 A from 23S RNA nucleotides G2252 and G2253. PHONT1 binds to the 50S subunit, and photoincorporates within or immediately adjacent to its target site, as well as into several nucleotides falling between G2357 and A2430. The significance of these results for the structure of the peptidyl transferase center is considered. The PHONT approach is generally applicable to studies of complex RNA-containing molecules.  相似文献   

17.
Binding of complementary oligonucleotides (ONs) with alpha-sarcin loop region (2638-2682) of Escherichia coli 23S rRNA was investigated. Four of the tested pentadecanucleotides efficiently bound to target sequences with association rate and equilibrium constants approximately 10(3) M(-1)s(-1) and 10(7) M(-1), respectively. ON S5 (CGAGAGGACCGGAGU) complementary to the sequence 2658-2672 displayed the highest affinity to the target. Activation energy for binding of ON S5 was measured to be 11 kcal/mol; this value corresponds to approximately 10% of the calculated enthalpy of the local RNA structure unfolding in the presence of this oligonucleotide. The activation energy value is evidence for the heteroduplex formation to occur via strand displacement pathway; the initiation of heteroduplex formation requires disruption of 1-2 base pairs in RNA hairpin.  相似文献   

18.
One of the main causes of failure of fluorescence in situ hybridization with rRNA-targeted oligonucleotides, besides low cellular ribosome content and impermeability of cell walls, is the inaccessibility of probe target sites due to higher-order structure of the ribosome. Analogous to a study on the 16S rRNA (B. M. Fuchs, G. Wallner, W. Beisker, I. Schwippl, W. Ludwig, and R. Amann, Appl. Environ. Microbiol. 64:4973-4982, 1998), the accessibility of the 23S rRNA of Escherichia coli DSM 30083(T) was studied in detail with a set of 184 CY3-labeled oligonucleotide probes. The probe-conferred fluorescence was quantified flow cytometrically. The brightest signal resulted from probe 23S-2018, complementary to positions 2018 to 2035. The distribution of probe-conferred cell fluorescence in six arbitrarily set brightness classes (classes I to VI, 100 to 81%, 80 to 61%, 60 to 41%, 40 to 21%, 20 to 6%, and 5 to 0% of the brightness of 23S-2018, respectively) was as follows: class I, 3%; class II, 21%; class III, 35%; class IV, 18%; class V, 16%; and class VI, 7%. A fine-resolution analysis of selected areas confirmed steep changes in accessibility on the 23S RNA to oligonucleotide probes. This is similar to the situation for the 16S rRNA. Indeed, no significant differences were found between the hybridization of oligonucleotide probes to 16S and 23S rRNA. Interestingly, indications were obtained of an effect of the type of fluorescent dye coupled to a probe on in situ accessibility. The results were translated into an accessibility map for the 23S rRNA of E. coli, which may be extrapolated to other bacteria. Thereby, it may contribute to a better exploitation of the high potential of the 23S rRNA for identification of bacteria in the future.  相似文献   

19.
20.
A bacterial strain, designated BzDS03 was isolated from water sample, collected from Dal Lake Srinagar. The strain was characterized by using 16S ribosomal RNA gene and 16S-23S rRNA internal transcribed spacer region sequences. Phylogenetic analysis showed that 16S rRNA sequence of the isolate formed a monophyletic clade with genera Escherichia. The closest phylogenetic relative was Escherichia coli with 99% 16S rRNA gene sequence similarity. The result of Ribosomal database project's classifier tool revealed that the strain BzDS03 belongs to genera Escherichia.16S rRNA sequence of isolate was deposited in GenBank with accession number FJ961336. Further analysis of 16S-23S rRNA sequence of isolate confirms that the identified strain BzDS03 be assigned as the type strain of Escherichia coli with 98% 16S-23S rRNA sequence similarity. The GenBank accession number allotted for 16S-23S rRNA intergenic spacer sequence of isolate is FJ961337.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号