首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
左右不对称信号分子Pitx2   总被引:3,自引:0,他引:3  
同型框基因Pitx2在鸡、小鼠和爪蟾胚胎中不对称地表达在左侧板中胚层和衍生器官(如心脏、肠等)中. 转录因子Pitx2看来是Shh和Nodal等信号分子的下游效应子. Pitx2的错误表达足以产生器官逆位和身体旋转逆向,人类若有Pitx2表达缺陷就可能导致Rieger综合征. Pitx2看来是脊椎动物介导左右不对称的关键且保守的信号分子.  相似文献   

2.
During vertebrate embryogenesis, a left-right axis is established. The heart, associated vessels and inner organs adopt asymmetric spatial arrangements and morphologies. Secreted growth factors of the TGF-beta family, including nodal, lefty-1 and lefty-2, play crucial roles in establishing left-right asymmetries [1] [2] [3]. In zebrafish, nodal signalling requires the presence of one-eyed pinhead (oep), a member of the EGF-CFC family of membrane-associated proteins [4]. We have generated a mutant allele of cryptic, a mouse EGF-CFC gene [5]. Homozygous cryptic mutants developed to birth, but the majority died during the first week of life because of complex cardiac malformations such as malpositioning of the great arteries, and atrial-ventricular septal defects. Moreover, laterality defects, including right isomerism of the lungs, right or left positioning of the stomach and splenic hypoplasia were observed. Nodal gene expression in the node was initiated in cryptic mutant mice, but neither nodal, lefty-2 nor Pitx2 were expressed in the left lateral plate mesoderm. The laterality defects observed in cryptic(-/-) mice resemble those of mice lacking the type IIB activin receptor or the homeobox-containing factor Pitx2 [6] [7] [8] [9], and are reminiscent of the human asplenic syndrome [10]. Our results provide genetic evidence for a role of cryptic in the signalling cascade that determines left-right asymmetry.  相似文献   

3.
Regulation of left-right asymmetry by thresholds of Pitx2c activity   总被引:3,自引:0,他引:3  
Although much progress has been made in understanding the molecular mechanisms regulating left-right asymmetry, the final events of asymmetric organ morphogenesis remain poorly understood. The phenotypes of human heterotaxia syndromes, in which organ morphogenesis is uncoupled, have suggested that the early and late events of left-right asymmetry are separable. The Pitx2 homeobox gene plays an important role in the final stages of asymmetry. We have used two new Pitx2 alleles that encode progressively higher levels of Pitx2c in the absence of Pitx2a and Pitx2b, to show that different organs have distinct requirements for Pitx2c dosage. The cardiac atria required low Pitx2c levels, while the duodenum and lungs used higher Pitx2c doses for normal development. As Pitx2c levels were elevated, the duodenum progressed from arrested rotation to randomization, reversal and finally normal morphogenesis. In addition, abnormal duodenal morphogenesis was correlated with bilateral expression of Pitx2c. These data reveal an organ-intrinsic mechanism, dependent upon dosage of Pitx2c, that governs asymmetric organ morphogenesis. They also provide insight into the molecular events that lead to the discordant organ morphogenesis of heterotaxia.  相似文献   

4.
Generation of conditional Cited2 null alleles   总被引:1,自引:0,他引:1  
  相似文献   

5.
Analysis of several mutations in the mouse is providing useful insights into the nature of the genes required for the establishment of the left-right axis during early development. Here we describe a new targeted allele of the mouse Tg737 gene, Tg737(Delta)2-3(beta)Gal), which causes defects in left-right asymmetry and other abnormalities during embryogenesis. The Tg737 gene was originally identified based on its association with the mouse Oak Ridge Polycystic Kidney (orpk) insertional mutation, which causes polycystic kidney disease and other defects. Complementation tests between the original orpk mutation and the new targeted knock-out mutation demonstrate that Tg737(Delta)2-3(beta)Gal) behaves as an allele of Tg737. The differences in the phenotype between the two mutations suggest that the orpk mutation is a hypomorphic allele of the Tg737 gene. Unlike the orpk allele, where all homozygotes survive to birth, embryos homozygous for the Tg737(Delta)2-3(beta)Gal) mutation arrest in development at mid-gestation and exhibit neural tube defects, enlargement of the pericardial sac and, most notably, left-right asymmetry defects. At mid-gestation the direction of heart looping is randomized, and at earlier stages in development lefty-2 and nodal, which are normally expressed asymmetrically, exhibit symmetrical expression in the mutant embryos. Additionally, we determined that the ventral node cells in mutant embryos fail to express the central cilium, which is a characteristic and potentially functional feature of these cells. The expression of both Shh and Hnf3(beta) is downregulated in the midline at E8.0, indicating that there are significant alterations in midline development in the Tg737(Delta)2-3(beta)Gal) homozygous embryos. We propose that the failure of ventral node cells to fully mature alters their ability to undergo differentiation as they migrate out of the node to contribute to the developing midline structures. Analysis of this new knockout allele allows us to define a critical role for the Tg737 gene during early embryogenesis. We have named the product of the Tg737 gene Polaris, which is based on the various polarity related defects associated with the different alleles of the Tg737 gene.  相似文献   

6.
Pitx2 is expressed in developing visceral organs on the left side and is implicated in left-right (LR) asymmetric organogenesis. The asymmetric expression of Pitx2 is controlled by an intronic enhancer (ASE) that contains multiple Foxh1-binding sites and an Nkx2-binding site. These binding sites are essential and sufficient for asymmetric enhancer activity and are evolutionarily conserved among vertebrates. We now show that mice that lack the ASE of Pitx2 (Pitx2(Delta)(ASE/)(Delta)(ASE) mice) fail to manifest left-sided Pitx2 expression and exhibit laterality defects in most visceral organs, although the position of the stomach and heart looping remain unaffected. Asymmetric Pitx2 expression in some domains, such as the common cardinal vein, was found to be induced by Nodal signaling but to be independent of the ASE of Pitx2. Expression of Pitx2 appears to be repressed in a large portion of the heart ventricle and atrioventricular canal of wild-type mice by a negative feedback mechanism at a time when the gene is still expressed in its other domains. Rescue of the early phase of asymmetric Pitx2 expression in the left lateral plate of Pitx2(Delta)(ASE/)(Delta)(ASE) embryos was not sufficient to restore normal organogenesis, suggesting that continuous expression of Pitx2 in the lineage of the left lateral plate is required for situs-specific organogenesis.  相似文献   

7.
8.
9.
Loss-of-function analysis has shown that the transforming growth factor-like signaling molecule nodal is essential for mouse mesoderm development. However, definitive proof of nodal function in other developmental processes in the mouse embryo has been lacking because the null mutation blocks gastrulation. We describe the generation and analysis of a hypomorphic nodal allele. Mouse embryos heterozygous for the hypomorphic allele and a null allele undergo gastrulation but then display abnormalities that fall into three distinct mutant phenotypic classes, which may result from expression levels falling below critical thresholds in one or more domains of nodal expression. Our analysis of each of these classes provides conclusive evidence for nodal-mediated regulation of several developmental processes in the mouse embryo, beyond its role in mesoderm formation. We find that nodal signaling is required for correct positioning of the anteroposterior axis, normal anterior and midline patterning, and the left-right asymmetric development of the heart, vasculature, lungs and stomach.  相似文献   

10.
Specification of the left-right axis during embryonic development is critical for the morphogenesis of asymmetric organs such as the heart, lungs, and stomach. The first known left-right asymmetry to occur in the mouse embryo is a leftward fluid flow in the node that is created by rotating cilia on the node surface. This flow is followed by asymmetric expression of Nodal and its inhibitor Cerl2 in the node. Defects in cilia and/or fluid flow in the node lead to defective Nodal and Cerl2 expression and therefore incorrect visceral organ situs. Here we show the cilia protein Arl13b is required for left right axis specification as its absence results in heterotaxia. We find the defect originates in the node where Cerl2 is not downregulated and asymmetric expression of Nodal is not maintained resulting in symmetric expression of both genes. Subsequently, Nodal expression is delayed in the lateral plate mesoderm (LPM). Symmetric Nodal and Cerl2 in the node could result from defects in either the generation and/ or the detection of Nodal flow, which would account for the subsequent defects in the LPM and organ positioning.  相似文献   

11.
Alagille syndrome is a human autosomal dominant developmental disorder characterized by liver, heart, eye, skeletal, craniofacial and kidney abnormalities. Alagille syndrome is caused by mutations in the Jagged 1 (JAG1) gene, which encodes a ligand for Notch family receptors. The majority of JAG1 mutations seen in Alagille syndrome patients are null alleles, suggesting JAG1 haploinsufficiency as a primary cause of this disorder. Mice homozygous for a Jag1 null mutation die during embryogenesis and Jag1/+ heterozygous mice exhibit eye defects but do not exhibit other phenotypes characteristic of Alagille syndrome patients ( Xue, Y., Gao, X., Lindsell, C. E., Norton, C. R., Chang, B., Hicks, C., Gendron-Maguire, M., Rand, E. B., Weinmaster, G. and Gridley, T. (1999) HUM: Mol. Genet. 8, 723-730). Here we report that mice doubly heterozygous for the Jag1 null allele and a Notch2 hypomorphic allele exhibit developmental abnormalities characteristic of Alagille syndrome. Double heterozygous mice exhibit jaundice, growth retardation, impaired differentiation of intrahepatic bile ducts and defects in heart, eye and kidney development. The defects in bile duct epithelial cell differentiation and morphogenesis in the double heterozygous mice are similar to defects in epithelial morphogenesis of Notch pathway mutants in Drosophila, suggesting that a role for the Notch signaling pathway in regulating epithelial morphogenesis has been conserved between insects and mammals. This work also demonstrates that the Notch2 and Jag1 mutations interact to create a more representative mouse model of Alagille syndrome and provides a possible explanation of the variable phenotypic expression observed in Alagille syndrome patients.  相似文献   

12.
13.
14.
15.
16.
During vertebrate embryonic development, the organs of the chest and abdomen, heart, lung and gastrointestinal tract, acquire characteristic asymmetric positions with respect to the left-right body axis. In the beginning of the 20th century Hans Spemann and his co-workers described manipulations of amphibian embryos which resulted in inversion of organ laterality in a predictable manner. Hedwig Wilhelmi concluded from these experiments that determinants on the left side of the embryo specify laterality, and Meyer postulated that a mediator should transfer this positional information to the forming heart. In this review we discuss the classical experiments in the light of recent advances in the molecular understanding of left-right development, with a focus on the mediator role of the homeobox gene Pitx2.  相似文献   

17.
Inactivation of the left-right asymmetry gene Pitx2 has been shown, in mice, to result in right isomerism with associated defects that are similar to that found in humans. We show that the Pitx2c isoform is expressed asymmetrically in a presumptive secondary heart field within the branchial arch and splanchnic mesoderm that contributes to the aortic sac and conotruncal myocardium. Pitx2c was expressed in left aortic sac mesothelium and in left splanchnic and branchial arch mesoderm near the junction of the aortic sac and branchial arch arteries. Mice with an isoform-specific deletion of Pitx2c had defects in asymmetric remodeling of the aortic arch vessels. Fatemapping studies using a Pitx2 cre recombinase knock-in allele showed that daughters of Pitx2-expressing cells populated the right and left ventricles, atrioventricular cushions and valves and pulmonary veins. In Pitx2 mutant embryos, descendents of Pitx2-expressing cells failed to contribute to the atrioventricular cushions and valves and the pulmonary vein, resulting in abnormal morphogenesis of these structures. Our data provide functional evidence that the presumptive secondary heart field, derived from branchial arch and splanchnic mesoderm, patterns the forming outflow tract and reveal a role for Pitx2c in aortic arch remodeling. Moreover, our findings suggest that a major function of the Pitx2-mediated left right asymmetry pathway is to pattern the aortic arches, outflow tract and atrioventricular valves and cushions.  相似文献   

18.
19.
Recent experiments, showing that both cranial paraxial and splanchnic mesoderm contribute to branchiomeric muscle and cardiac outflow tract (OFT) myocardium, revealed unexpected complexity in development of these muscle groups. The Pitx2 homeobox gene functions in both cranial paraxial mesoderm, to regulate eye muscle, and in splanchnic mesoderm to regulate OFT development. Here, we investigated Pitx2 in branchiomeric muscle. Pitx2 was expressed in branchial arch core mesoderm and both Pitx2 null and Pitx2 hypomorphic embryos had defective branchiomeric muscle. Lineage tracing with a Pitx2cre allele indicated that Pitx2 mutant descendents moved into the first branchial arch. However, markers of both undifferentiated core mesoderm and specified branchiomeric muscle were absent. Moreover, lineage tracing with a Myf5cre allele indicated that branchiomeric muscle specification and differentiation were defective in Pitx2 mutants. Conditional inactivation in mice and manipulation of Pitx2 expression in chick mandible cultures revealed an autonomous function in expansion and survival of branchial arch mesoderm.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号