首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method is described for the analysis of amino acids, monoamines and metabolites by high-performance liquid chromatography with electrochemical detection (HPLC–ED) from individual brain areas. The chromatographic separations were achieved using microbore columns. For amino acids we used a 100×1 mm I.D. C8, 5 μm column. A binary mobile phases was used: mobile phase A consisted of 0.1 M sodium acetate buffer (pH 6.8)–methanol–dimethylacetamide (69:24:7, v/v) and mobile phase B consisted of sodium acetate buffer (pH 6.8)–methanol–dimethylacetamide (15:45:40, v/v). The flow-rate was maintained at 150 μl/min. For monoamines and metabolites we used a 150×1 mm I.D. C18 5 μm reversed-phase column. The mobile phase consisted of 25 mM monobasic sodium phosphate, 50 mM sodium citrate, 27 μM disodium EDTA, 10 mM diethylamine, 2.2 mM octane sulfonic acid and 10 mM sodium chloride with 3% methanol and 2.2% dimethylacetamide. The potential was +700 mV versus Ag/AgCl reference electrode for both the amino acids and the biogenic amines and metabolites. Ten rat brain regions, including various cortical areas, the cerebellum, hippocampus, substantia nigra, red nucleus and locus coeruleus were microdissected or micropunched from frozen 300-μm tissue slices. Tissue samples were homogenized in 50 or 100 μl of 0.05 M perchloric acid. The precise handling and processing of the tissue samples and tissue homogenates are described in detail, since care must be exercised in processing such small volumes while preventing sample degradation. An aliquot of the sample was derivatized to form the tert.-butylthiol derivatives of the amino acids and γ-aminobutyric acid. A second aliquot of the same sample was used for monamine and metabolite analyses. The results indicate that the procedure is ideal for processing and analyzing small tissue samples.  相似文献   

2.
A simple and rapid method for the determination of serum amino acids by gas chromatography (GC) has been developed. Following deproteinization of serum with perchloric acid, free amino acids in the supernatant were converted into their N(O,S)-isobutoxycarbonyl methyl ester derivatives and measured by GC with flame ionization detection using a DB-17 capillary column. All the derivatives of the 22 protein amino acids were completely resolved as single peaks within 9 min by GC. The calibration curves were linear in the range 0.2–50 μg of each amino acid, and the correlation coefficients were above 0.998. By using this method, serum amino acids could be directly analysed without prior clean-up procedure such as ion-exchange column chromatography except for deproteinization of the samples, and without any interference from coexisting substances. Overall recoveries of amino acids added to serum samples were 88–108%. Analytical results for serum amino acids from normal subjects are presented.  相似文献   

3.
The concurrent determination of free amino acid enantiomers and non-chiral amino acids in rat brain and serum was accomplished by high-performance liquid chromatography with fluorimetric detection after derivatization with N-tert.-butyloxycarbonyl- -cysteine and o-phthaldialdehyde. The method revealed the presence of a large amount of free -serine (0.22 μmol/g of tissue; + RATIO = 0.25) in the brain whereas -aspartate and -alanine were established to be at trace levels. These results further support the presence of -serine in adult brain tissues as demonstrated by recent work using gas chromatography.  相似文献   

4.
A sensitive HPLC method for the determination of phenol and chlorophenols was developed. The fluorescence labeling reaction of phenols with 4-(4,5-diphenyl-1H-imidazol-2-yl)benzoyl chloride (DIB-Cl) was completed in 30 min at 60°C. The separation of DIB-derivatives of five representative phenols, i.e., phenol, o-, p-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, was achieved within 35 min with an ODS column using isocratic elution. The detection limits of these DIB derivatives at a signal-to-noise ratio (S/N) of 3 were in the range of 0.024 to 0.08 μM (0.12–0.45 pmol/20 μl injection). Twelve kinds of DIB derivatives with phenols containing mono-, di-, tri-, tetra- and penta-chlorophenol were also well separated within 208 min by changing the elution conditions. The derivatives were stable for at least for 24 h when they were placed at room temperature in the dark. The proposed method was applied to the assay of human urine samples and free and total phenol were determined. The relative standard deviations (RSDs) of the proposed method for within and between-day assay were <7.0% and <14.2%, respectively. The average concentrations of free and total phenol found in urine (n=6) were 4.3±2.5 and 29.5±14.0 μM, respectively.  相似文献   

5.
Ginkgolic acids (GAs) are toxic phenolic compounds present in the fruits and leaves of Ginkgo biloba L. (Ginkgoacae). Their maximum level in phytopharmaceuticals containing ginkgo extracts has been recently restricted to 5 μg/g by the Commission E of the former Federal German Health Authority. In order to detect ginkgolic acids at these low levels, a sensitive and selective analytical method, based on liquid chromatography–electrospray mass spectrometry (LC–ES-MS) has been developed. The three main phenolic acids (13) of the chloroform fruit extract were isolated and used as standards for quantification. In the LC–ES-MS negative ion mode, calibration curves with good linearities (r=0.9973, n=6) were obtained in the range of 0.5–10 μg/g for compounds 1, 2 and between 0.1 and 7.5 μg/g (r=0.9949, n=6) for ginkgolic acid 3. The detection limits at a S/N ratio of 3 were 0.1 (3) and 0.25 μg/g (1, 2). Recoveries were around 101% at 5 μg/g for the substances detected in the leaf extracts. Good precision was achieved with relative standard deviations of less than 4% (n=6). The optimised method was applied to verify whether the amount of gingkolic acids was below 5 μg/g in a standardised leaf extract which is a constituent of a phytopreparation.  相似文献   

6.
We report a rapid and sensitive method for separation and quantitation of free fatty acids (FFAs) in human plasma using high-performance liquid chromatography (HPLC). Two established techniques of lipid extraction were investigated and modified to achieve maximal FFA recovery in a reasonably short time period. A modified Dole extraction method exhibited greater recovery (90%) and short processing times (30 min) compared to the method of Miles et al. Reversed-phase HPLC using UV detection was used for plasma FFA separation and quantitation. Two phenacyl ester derivatives, phenacyl bromide and p-bromophenacyl bromide, were investigated in order to achieve optimal separation of individual plasma FFAs (saturated and unsaturated) with desirable detection limits. Different chromatographic parameters including column temperature, column type and elution profiles (isocratic and gradient) were tested to achieve optimal separation and recovery of fatty acids. Phenacyl bromide esters of plasma fatty acids were best resolved using an octadecylsilyl column with endcapped silanol groups. An isocratic elution method using acetonitrile–water (83:17) at 2 ml/min with UV detection at 242 nm and a column temperature of 45°C was found to optimally resolve the six major free fatty acids present in human plasma (myristic [14:0], palmitic [16:0], palmitoleic [16:1], stearic [18:0], oleic [18:1] and linoleic [18:2]), with a run time of less than 35 min and detection limits in the nmol range. The entire process including plasma extraction, pre-column derivatization, and HPLC quantitation can be completed in 90 min with plasma samples as small as 50 μl. Over a wide physiological range, plasma FFA concentrations determined using our HPLC method agree closely with measurements using established TLC–GC methods (r2≥0.95). In addition, by measuring [14C] or [3H] radioactivity in eluent fractions following HPLC separation of plasma FFA, this method can also quantitate rates of FFA turnover in vivo in human metabolic studies employing isotopic tracers of one or more fatty acids.  相似文献   

7.
A high-performance liquid chromatographic method for the analysis of hydroxyproline and proline has been developed. The method is based on the derivatization of the secondary amino group with dabsyl-chloride after blocking of the primary amino group with o-phthalaldehyde. Dabsyl-hydroxyproline and dabsyl-proline were separated from other amino acids by high-performance liquid chromatography in the gradient elution mode, and eluted at 10.27 and 16.02 min, respectively. The correlations between the peak areas of dabsyl-hydroxyproline and dabsyl-proline were linear in the range from 20–200 pmol, with equations y = 1.10x − 0.80 (r = 0.999) and y = 1.12x − 0.52 (r = 0.999), respectively. The method was applied to the analysis of rat tail collagen, and the contents of hydroxyproline and proline were 1.55 ± 0.04 and 2.03 ± 0.04 nmol/μg, respectively.  相似文献   

8.
We have determined the content of free l-amino acids and d-aspartate in the nervous tissue of three representative cephalopods: Sepia officinalis, Octopus vulgaris, and Loligo vulgaris, and the optic lobes of adult and embryo Sepia officinalis. Taurine is the most abundant amino acid in the cephalopod nervous tissue. Its content amounts to more than 50% of the total free amino acids. The other most concentrated amino acids are Glu, Ala, Asp, and GABA. High concentrations of d-aspartate were found in the nervous tissue of all cephalopods examined (7–12 μmol/g wet tissue) which represents 50–80% of the total aspartate (d + l), depending on the animal. Among the various regions of the brain of Octopus vulgaris, d-aspartate was found to be evenly distributed in the various regions of the brain. In nerve tissue of Sepia officinalis, there is no significant difference in the pattern of free l-amino acids, in particular of the d-aspartate concentration, between adults and embryos, except for GABA, Gly, His and Thr. This suggests that d-aspartate in nerve tissue of the Cephalopoda is of endogenous origin and not a product of accumulation from exogenous sources. From a comparative study of the content of d-aspartate in the nervous tissue of different animals, we found that protostomia contain a significantly higher amount than deuterostomia. Thus, d-aspartate could be a criterion to distinguish the protostomia phyla from the deuterostomia phyla.  相似文献   

9.
A sensitive high-performance liquid chromatographic method for quantification of sulphydryl and disulfide amino acids in human plasma using ultra violet spectrophotometric detection was developed. Precolumn derivatization with 5,5′-dithio-bis-nitrobenzoic acid (DTNB) and an optional pre-derivatization reaction with dithiothreitol allowed both quantitative reduction of disulfides for measurement of total amino acid levels and the measurement of the reduced forms. A dynamic range of 500 nmol/l–750 μmol/l allowed the major analytes of interest to be quantified in plasma without sample dilution. The assay is a sensitive and precise method for the determination of sulphydryl and disulfide amino acids in plasma and cell extracts.  相似文献   

10.
A rapid precolumn high-performance liquid chromatography method based on fluorescence detection has been developed for the measurement of multiple amino acids from both ex vivo and in vivo biological samples using monolithic C18 columns. A mixture of 18 primary amino acids were derivatised with napthalene-2,3-dicarboxaldehyde (NDA) in the presence of cyanide. The resulting isoindole derivatives were resolved within 10 min using a linear binary gradient elution profile with Rs values in the range 1.2-9.0. The limit of detection (LOD) was found to be between 6.0 and 60 fmol for 5 microl injection with a signal to noise ratio of 3:1. The NDA derivatives were found to be stable for 9 h at 4 degrees C. This assay has been employed for the rapid analysis of amino acids from brain tissue and microdialysis samples. Examples of application of the method are given.  相似文献   

11.
We developed a rapid step-gradient HPLC method for determination of glutamate, glycine and taurine, and a separate method for determination of γ-aminobutyric acid (GABA) in striatal microdialysates. The amino acids were pre-column derivatized with o-phthalaldehyde–2-mercaptoethanol by using an automated refrigerated autoinjector. Separation of the amino acids was established with a non-porous ODS-II HPLC column, late-eluting substances were washed out with a one-step low-pressure gradient. Concentrations of the amino acids were determined with a fixed-wavelength fluorescence detector. The detection limit for GABA was 80 fmol in a 15 μl sample, detection limits for glutamate, glycine and taurine were not determined because their concentrations in striatal perfusates were far above their detection limits. Total analysis time was less than 12 min, including the wash-out step. The methods described are relatively simple, sensitive, inexpensive, and fast enough to keep up with the microdialysis sampling.  相似文献   

12.
A rapid liquid chromatography–electrospray mass spectrometry (LC–ES-MS) assay for the determination of flunarizine (FZ) in rat brain has been developed. A C18 column and an isocratic elution were employed for the separation. Using post-column split, 64% of the eluent was introduced into the ES-MS system for detection. The [M+H]+ (m/z 406) and a fragmented ion (m/z 203) were detected using selected ion monitoring. The linear range of this assay was good, ranging from 0.05 to 5 μM (r2=0.99). The intra- and inter-day precisions showed relative standard deviations ranging from 1.4% to 2.0% and 1.3% to 2.9%, respectively. The application of this newly developed method was demonstrated by examining the pharmacokinetics of FZ in rat brain.  相似文献   

13.
A rapid, selective and sensitive HPLC assay has been developed for the routine analysis of metronidazole in small volumes of rat plasma, gastric aspirate and gastric tissue. The extraction procedure involves liquid–liquid extraction and a protein precipitation step. A microbore Hypersil ODS 3 μm (150×2.1 mm I.D.) column was used with a mobile phase consisting of acetonitrile–aqueous 0.05 M potassium phosphate buffer (pH 7) containing 0.1% triethylamine (10:90). The column temperature was at 25°C and the detection was by UV absorbance at 317 nm. The limit of detection was 0.015 μg ml−1 for gastric juice aspirate and plasma and 0.010 μg g−1 for gastric tissue (equivalent to 0.75 ng on-column). The method was linear up to a concentration of 200 μg ml−1 for plasma and gastric juice aspirate and up to 40 μg g−1 for tissue, with inter- and intra-day relative standard deviations less than 14%. The measured recovery was at least 78% in all sample matrices. The method proved robust and reliable when applied to the measurement of metronidazole in rat plasma, gastric juice aspirate and gastric tissue for pharmacokinetic studies in individual rats.  相似文献   

14.
An automated reversed-phase high-performance liquid chromatographic (RP-HPLC) method, using a linear gradient elution, is described for the simultaneous analysis of caffeine and metabolites according to their elution order: 7-methyluric acid, 1-methyluric acid, 7-methylxanthine, 3-methylxanthine, 1-methylxanthine, 1,3-dimethyluric acid, theobromine, 1,7-dimethyluric acid, paraxanthine and theophylline. The analytical column, an MZ Kromasil C4, 250×4 mm, 5 μm, was operated at ambient temperature with back pressure values of 80–110 kg/cm2. The mobile phase consisted of an acetate buffer (pH 3.5)–methanol (97:3, v/v) changing to 80:20 v/v in 20 min time, delivered at a flow-rate of 1 ml/min. Paracetamol was used as internal standard at a concentration of 6.18 ng/μl. Detection was performed with a variable wavelength UV–visible detector at 275 nm, resulting in detection limits of 0.3 ng per 10-μl injection, while linearity held up to 8 ng/μl for most of analytes, except for paraxanthine and theophylline, for which it was 12 ng/μl and for caffeine for which it was 20 ng/μl. The statistical evaluation of the method was examined performing intra-day (n=6) and inter-day calibration (n=7) and was found to be satisfactory, with high accuracy and precision results. High extraction recoveries from biological matrices: blood serum and urine ranging from 84.6 to 103.0%, were achieved using Nexus SPE cartridges with hydrophilic and lipophilic properties and methanol–acetate buffer (pH 3.5) (50:50, v/v) as eluent, requiring small volumes, 40 μl of blood serum and 100 μl of urine.  相似文献   

15.
A simple but effective coupling of microdialysis and capillary electrophoresis with laser induced fluorescence detection technique was applied to analysis of amino acid neurotransmitters in the hypothalamus of rats after acute exhausting exercise. The separation of amino acids was achieved using an uncoated fused-silica capillary (57 cm×75 μm I.D.) with a buffer of 10 mM disodium tetraborate at pH 10 and an applied voltage of 12.5 kV. The detection limit was 10−10 M for each amino acid. It is sufficiently sensitive and rapid for the determination of amino acids in a 5-μl Microdialysate. In comparison to pre-exercise, a significant increase in the levels of six hypothalamic amino acids (arginine, glycine, lysine, glutamic acid, alanine, γ-amino-n-butyric acid) was found after exercise. These results demonstrate that the increase of metabolic amino acids in the hypothalamus of rats can be induced by exhausting exercise and suggests that amino acid neurotransmitters may play functional roles in the central effects of exercise.  相似文献   

16.
Enaminone derivatives of the 4-carbomethoxy-5-methylcyclohexane-1,3-dione series represent a new and potentially active series of compounds for the treatment of Epilepsy. Enaminone esters have been previously evaluated as compounds with potent oral anticonvulsant activity similar to class 1 anticonvulsants phenytoin, carbamazepine, and lamotrigine. DM5, a member of this class with –Cl in the para-substituted position, has been assessed to have the most potent pharmacological activity (ED50) in both the mouse and rat. A selective and specific high-performance liquid chromatography method was developed to quantitate DM5 in plasma and brain tissue in mice. Reverse phase chromatography with ultraviolet (λ=307 nm) detection was utilized to quantitate eluate. A C18 analytical column was used and the mobile phase consisted of acetonitrile and 0.05 M NaH2PO4 buffer (60:40; v/v). Liquid–liquid extraction with ether was used to extract the DM5 from plasma or brain homogenates. DM5 and carbamazepine (internal standard) eluted at 6.0 and 9.0 min without any interfering peaks. The calibration curves were found to be linear (r≥0.9999) in the range of 0.1–5.0 μg/ml or μg/g. Intra-run precision’s were in all in the range of 90%. The absolute recovery of the analyte in brain and plasma samples was ≤90%. The valid method accurately quantified DM5 in plasma and brain tissue samples collected from a pharmacokinetic study consisting of an intravenous bolus in the tail vein of wild type and genetically altered mice.  相似文献   

17.
A method for the simultaneous determination of the three selective serotonin reuptake inhibitors (SSRIs) citalopram, fluoxetine, paroxetine and their metabolites in whole blood and plasma was developed. Sample clean-up and separation were achieved using a solid-phase extraction method with C8 non-endcapped columns followed by reversed-phase high-performance liquid chromatography with fluorescence and ultraviolet detection. The robustness of the solid-phase extraction method was tested for citalopram, fluoxetine, paroxetine, Cl-citalopram and the internal standard, protriptyline, using a fractional factorial design with nine factors at two levels. The fractional factorial design showed two significant effects for paroxetine in whole blood. The robustness testing for citalopram, fluoxetine, Cl-citalopram and the internal standard revealed no significant main effects in whole blood and plasma. The optimization and the robustness of the high-performance liquid chromatographic separation were investigated with regard to pH and relative amount of acetonitrile in the mobile phase by a central composite design circumscribed. No alteration in the elution order and no significant change in resolution for a deviation of ±1% acetonitrile and ±0.3 pH units from the specified conditions were observed. The method was validated for the concentration range 0.050–5.0 μmol/l with fluorescence detection and 0.12–5.0 μmol/l with ultraviolet detection. The limits of quantitation were 0.025 μmol/l for citalopram and paroxetine, 0.050 μmol/l for desmethyl citalopram, di-desmethyl citalopram and citalopram-N-oxide, 0.12 μmol/l for the paroxetine metabolites by fluorescence detection, and 0.10 μmol/l for fluoxetine and norfluoxetine by ultraviolet detection. Relative standard deviations for the within-day and between-day precision were in the ranges 1.4–10.6% and 3.1–20.3%, respectively. Recoveries were in the 63–114% range for citalopram, fluoxetine and paroxetine, and in the 38–95% range for the metabolites. The method has been used for the analysis of whole blood and plasma samples from SSRI-exposed patients and forensic cases.  相似文献   

18.
This study describes a sensitive HPLC–electrochemical detection method for the analysis of ceftazidime, a third-generation cephalosporin, in human plasma. The extraction procedure involved protein precipitation with 30% trichloroacetic acid. The separation was achieved on a reversed-phase column (250×4.6 mm I.D., 5 μm) packed with C18 Kromasil with isocratic elution and a mobile phase consisting of acetonitrile–25 mM KH2PO4–Na2HPO4 buffer, pH 7.4 (10:90, v/v). The proposed analytical method is selective, reproducible and reliable. The assay has a precision of 0.2–15.1% (C.V.) in the range of 5–200 μg ml−1. (corresponding to 0.5 to 20 ng of ceftazidime injected onto the column), and is optimised for assaying 50 μl of plasma. The extraction recovery from plasma was approximately 100%. The method was highly specific for ceftazidime and there was no interference from either commonly administered drugs or endogenous compounds. This assay was used to measure ceftazidime in elderly patients for therapeutic drug monitoring.  相似文献   

19.
A highly sensitive HPLC method for the determination of prolyl dipeptides, Pro and Hyp in serum was developed. After deproteinization of serum and pretreatment with o-phthalaldehyde, the analytes were derivatized with 4-(5,6-dimethoxy-2-phthalimidinyl)-2-methoxyphenylsulfonyl chloride at 70°C for 10 min. The fluorescent derivatives of prolyl dipeptides, Pro and Hyp, were separated on tandem reversed-phase columns by a gradient elution at 55°C and detected by fluorescence measured at 318 nm (excitation) and 392 nm (emission). The detection limits for prolyl dipeptides were 2–5 fmol/injection (S/N=3). Pro–Hyp, Pro–Gly and Pro–Pro were identified as serum prolyl dipeptides. The within-day and between-day relative standard deviations were 1.5–7.9 and 2.4–10.8%, respectively. The recoveries were in the range of 90.8–97.3%. The concentrations of Pro–Hyp, Pro–Gly, Pro–Pro, Pro and Hyp in normal human serum (n=10) were 0.64±0.35, 0.078±0.047, 0.022±0.016, 177.0±43.0 and 11.1±3.5 μM, respectively. The concentrations of Pro–Hyp and Pro–Pro in serum of a patient with bone metastases of prostatic cancer were about three times and 50 times, respectively, higher than those in normal human serum.  相似文献   

20.
A selective semi-automated solid-phase extraction (SPE) of the non-steroidal anti-inflammatory drugs diclofenac sodium, indomethacin and phenylbutazone from urine prior to high-performance liquid chromatography was investigated. The drugs were recovered from urine buffered at pH 5.0 using C18 Bond-Elut cartridges as solid sorbent material and mixtures of methanol–aqueous buffer or acetonitrile–aqueous buffer as washing and elution solvents. The extracts were chromatographed on a reversed-phase ODS column using 10 mM acetate buffer (pH 4.0)–acetonitrile (58:42, v/v) as the mobile phase, and the effluent from the column was monitored at 210 nm with ultraviolet detection. Absolute recoveries of the anti-inflammatory drugs within the range 0.02–1.0 μg/ml were about 85% for diclofenac and indomethacin, and 50% for phenylbutazone without any interference from endogenous compounds of the urine. The within-day and between-day repeatabilities were in all cases less than 5% and 10%, respectively. Limits of detection were 0.007 μg/ml for diclofenac sodium and indomethacin and 0.035 μg/ml for phenylbutazone, whereas limits of quantitation were 0.02 μg/ml for diclofenac and indomethacin and 0.1 μg/ml for phenylbutazone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号