首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bone morphogenetic protein 2B (BMP 2B, also known as BMP 4) induces cartilage and bone morphogenesis in ectopic extraskeletal sites. BMP 2B is one of several bone morphogenetic proteins which along with activins and inhibins are members of the transforming growth factor-beta (TGF-beta) family. Both BMP 2B and activin A, but not TGF-beta 1, induce rat pheochromocytoma PC12 neuronal cell differentiation and expression of VGF, a nervous system-specific mRNA. PC12 cells exhibited approximately 2,500 receptors per cell for BMP 2B with an apparent dissociation constant of 19 pM. Extracellular matrix components, including fibronectin, laminin, and collagen type IV potentiated the activity of BMP and activin A, with the latter being the most active. Direct experiments demonstrated that radioiodinated BMP 2B bound to collagen type IV better than to either laminin or fibronectin. These data demonstrate a common neurotrophic activity of both BMP 2B and activin A, and suggest that these regulatory molecules alone and in conjunction with extracellular matrix components may play a role in both the development and repair of nervous tissue.  相似文献   

2.
In order to study the molecular basis of platelet interaction with collagen IV of the basement membrane separating the arterial endothelium from the underlying subendothelial connective tissue, the possibility of presence of platelet membrane protein with affinity to type IV collagen was examined by subjecting the platelet membrane extract to affinity chromatography on collagen IV-sepharose. Urea (4 M) eluate was found to contain a protein with an apparent mol. wt of 68 kDa. The radioiodinated protein was isolated and used to test its specificity. By dot blot assay on nitrocellulose disks and solid-phase assays, the 68 kDa protein was found to bind with high affinity to collagen IV. Lack of significant binding to fibronectin and laminin when compared to albumin control indicated its high specificity for collagen. The radioiodinated protein was inserted into egg yolk lecithin liposomes. While these liposomes attached to microtitre plates coated with collagen IV, there was no significant binding to fibronectin or laminin coated wells, suggesting the membrane associated character of the protein as well as its specificity for collagen. These results indicate that presence of a 68 kDa protein in platelet membrane which interacts with very high specificity to collagen IV.  相似文献   

3.
The extracellular matrix regulates many fundamental cellular processes such as proliferation, migration, and differentiation. Among the ECM components, type I collagen induces endothelial tube formation in vitro. By analysing genes participating in this event, the bone morphogenetic protein receptor-II (BMPR-II) was detected to be upregulated in cells cultured on or within fibrillar type I collagen. Furthermore, the basement membrane type IV collagen or amorphous type I collagen did not show an induction of BMPR-II. Addition of the BMPR-II specific ligands, BMP2 and BMP4, in the culture medium of the endothelial cells seeded on type I collagen increased [(3)H]-thymidine incorporation into cellular DNA, indicating that endothelial cells were able to form a functional receptor. In addition, in the chick chorioallantoic membrane (CAM), an in vivo angiogenesis model, BMPR-II and BMPR-I were upregulated in the growing phase and ceased in the mature CAM.  相似文献   

4.
Interactions between type IV collagen and heparin were examined under equilibrium conditions with rotary shadowing, solid-phase binding assays, and affinity chromatography. With the technique of rotary shadowing and electron microscopy, heparin appeared as thin, short strands and bound to the following three sites: the NC1 domain, and in the helix, at 100 and 300 nm from the NC1 domain. By solid-phase binding assays the binding of [3H]heparin in solution to type IV collagen immobilized on a solid surface was found to be specific, since it was saturable and could be displaced by an excess of unlabeled heparin. Scatchard analysis indicated three classes of binding sites for heparin-type IV collagen interactions with dissociation constants of 3, 30, and 100 nM, respectively. Furthermore, by the solid-phase binding assays, the binding of tritiated heparin could be competed almost to the same extent by unlabeled heparin and chondroitin sulfate side chains. This finding indicates that chondroitin sulfate should also bind to type IV collagen. By affinity chromatography, [3H]heparin bound to a type IV collagen affinity column and was eluted with a linear salt gradient, with a profile exhibiting three distinct peaks at 0.18, 0.22, and 0.24 M KCl, respectively. This suggested that heparin-type IV collagen binding was of an electrostatic nature. Finally, the effect of the binding of heparin to type IV collagen on the process of self-assembly of this basement membrane glycoprotein was studied by turbidimetry and rotary shadowing. In turbidity experiments, the presence of heparin, even in small concentrations, drastically reduced maximal aggregation of type IV collagen which was prewarmed to 37 degrees C. By using the morphological approach of rotary shadowing, lateral associations and network formation by prewarmed type IV collagen were inhibited in the presence of heparin. Thus, the binding of heparin resulted in hindrance of assembly of type IV collagen, a process previously described for interactions between various glycosaminoglycans and interstitial collagens. Such regulation may influence the assembly of basement membranes and possibly modify functions. Furthermore, qualitative and quantitative changes of proteoglycans which occur in certain pathological conditions, such as diabetes mellitus, may alter molecular assembly and possibly permeability functions of several basement membranes.  相似文献   

5.
Implantation of demineralized tooth matrix in subcutaneous sites results in new bone formation locally. The osteoinductive activity of the tooth matrix was dissociatively extracted in 4.0 M guanidine hydrochloride and the residue was devoid of biologic activity. The bone inductive protein, osteogenin, was partially purified by heparin affinity chromatography. The heparin binding fraction initiated the bone differentiation cascade when implanted with guanidine extracted, inactive bone or tooth matrices. These results imply a cooperative interaction between the soluble osteogenin and collagenous substratum in bone induction.  相似文献   

6.
DRAGON, a bone morphogenetic protein co-receptor   总被引:5,自引:0,他引:5  
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor (TGF)beta superfamily of ligands that regulate many crucial aspects of embryonic development and organogenesis. Unlike other TGFbeta ligands, co-receptors for BMP ligands have not been described. Here we show that DRAGON, a glycosylphosphatidylinositol-anchored member of the repulsive guidance molecule family, which is expressed early in the developing nervous system, enhances BMP but not TGFbeta signaling. DRAGON binds directly to BMP2 and BMP4 but not to BMP7 or other TGFbeta ligands. The enhancing action of DRAGON on BMP signaling is also reduced by administration of Noggin, a soluble BMP antagonist, indicating that the action of DRAGON is ligand-dependent. DRAGON associates directly with BMP type I (ALK2, ALK3, and ALK6) and type II (ActRII and ActRIIB) receptors, and its signaling is reduced by dominant negative Smad1 and ALK3 or -6 receptors. In the Xenopus embryo, DRAGON both reduces the threshold of the ability of Smad1 to induce mesodermal and endodermal markers and alters neuronal and neural crest patterning. The direct interaction of DRAGON with BMP ligands and receptors indicates that it is a BMP co-receptor that potentiates BMP signaling.  相似文献   

7.
Heparin is a glycosaminoglycan known to bind bone morphogenetic proteins (BMPs) and the growth and differentiation factors (GDFs) and has strong and variable effects on BMP osteogenic activity. In this paper we report our predictions of the likely heparin binding sites for BMP-2 and 14. The N-terminal sequences upstream of TGF-β-type cysteine-knot domains in BMP-2, 7 and 14 contain the basic residues arginine and lysine, which are key components of the heparin/HS-binding sites, with these residues being highly non-conserved. Importantly, evolutionary conserved surfaces on the beta sheets are required for interactions with receptors and antagonists. Furthermore, BMP-2 has electropositive surfaces on two sides compared to BMP-7 and BMP-14. Molecular docking simulations suggest the presence of high and low affinity binding sites in dimeric BMP-2. Histidines were found to play a role in the interactions of BMP-2 with heparin; however, a pK(a) analysis suggests that histidines are likely not protonated. This is indicative that interactions of BMP-2 with heparin do not require acidic pH. Taken together, non-conserved amino acid residues in the N-terminus and residues protruding from the beta sheet (not overlapping with the receptor binding sites and the dimeric interface) and not C-terminal are found to be important for heparin-BMP interactions.  相似文献   

8.
The binding of collagens and fragments of type I collagen to heparin was studied by gel electrophoresis and affinity chromatography. Samples bound in 150 mM NaCl/10 mM Hepes (pH6.5) were eluted with 2 M NaCl, 6 M urea, or a linear gradient of 0.15–1.0 M NaCl. The triple-helical conformation was shown to be essential for binding. The vertebrate collagenase-generated C-terminal fragment, TCB was shown to have greater binding affinity for heparin than the N-terminal TCA fragment. Both type II collagen and the NC1 domain of type IV collagen bound to heparin, whereas pepsin-solubilized tetrameric type IV failed to bind.  相似文献   

9.
Specific binding of collagen type IV to Streptococcus pyogenes   总被引:5,自引:0,他引:5  
Many strains of Streptococcus pyogenes are capable of binding type IV collagen. In the present study, all 50 S. pyogenes strains isolated from patients with acute glomerulonephritis showed high or moderate affinity for radiolabelled type IV collagen. A majority of strains of other sources, such as reference strains of various M-types and strains isolated from patients with pharyngeal infections also bound type IV collagen; however, a number of weak binders or non-binders were found among those. The collagen type IV binding component(s) on S. pyogenes were susceptible to proteinase K digestion, partially sensitive to trypsin but insensitive to pepsin treatment at pH 5.5. According to tests with three M-positive strains and their M-negative derivatives, the binding was not dependent on M-protein. The binding was saturable with time and inhibited by unlabelled type IV collagen. Partially inhibition was found with type II collagen, gelatin and fibrinogen but not with a number of other serum proteins.  相似文献   

10.
Osteogenin was purified from bovine bone matrix and its activity monitored by an in vivo bone induction assay. The purification method utilized extraction of the bone-inducing activity with 6 M urea, followed by chromatography on heparin-Sepharose, hydroxyapatite, and Sephacryl S-200. Active fractions were further purified by preparative sodium dodecyl sulfate gel electrophoresis without reduction. Osteogenin activity was localized in a zone between 30 and 40 kDa. The amino acid sequences of a number of tryptic peptides of the gel-eluted material were determined. Reduction and alkylation of purified osteogenin in 7 M guanidine hydrochloride resulted in the total loss of biological activity. Sodium dodecyl sulfate gel electrophoresis under reducing conditions revealed a broad band with an apparent molecular mass of 22 kDa.  相似文献   

11.
Three distinctive heparin-binding sites were observed in type IV collagen by the use of rotary shadowing: in the NC1 domain and at distances 100 and 300 nm from the NC1 domain. Scatchard analysis indicated different affinities for these sites. Electron microscopic analysis of heparin-type IV collagen interaction with increasing salt concentrations showed the different affinities to be NC1 greater than 100 nm greater than 300 nm. The NC1 domain bound specifically to chondroitin/dermatan sulfate side chains as well. This binding was observed at the electron microscope and in solid-phase binding assays (where chondroitin sulfate could compete for the binding of [3H]heparin to NC1-coated substrata). The triple helix-rich, rod-like domain of type IV collagen did not bind to chondroitin/dermatan sulfate side chains. In solid-phase binding assays only heparin could compete for the binding of [3H]heparin to this domain. In order to more precisely map potential heparin-binding sites in type IV collagen, we chemically synthesized 17 arginine- and lysine-containing peptides from the alpha 1(IV) and alpha 2(IV) chains. Three peptides from the known sequence of the alpha 1(IV) and alpha 2(IV) chains were shown to specifically bind heparin: peptide Hep-I (TAGSCLRKFSTM), from the alpha 1(NC1) chain, peptide Hep-II (LAGSCLARFSTM), a peptide corresponding to the same sequence in peptide Hep-I from the alpha 2 (NC1) chain, and peptide Hep-III (GEFYFDLRLKGDK) which contained an interruption of the triple helical sequence of the alpha 1(IV) chain at about 300 nm from the NC1 domain, were demonstrated to bind heparin in solid-phase binding assays and compete for the binding of [3H]heparin to type IV collagen-coated substrata. Therefore, each of these peptides may represent a potential heparin-binding site in type IV collagen. The mapping of the binding of heparin or related structures, such as heparan sulfate proteoglycan, to specific sequences of type IV collagen could help the understanding of several structural and functional properties of this basement membrane protein as well as interactions with other basement membrane and/or cell surface-associated macromolecules.  相似文献   

12.
Bone morphogenetic proteins (BMP) constitute a sub-group of the large transforming growth factor-beta (TGF-β) family. They play important roles in the embryonic development of multiple structures and in adult bone modeling. We have recently isolated a novel member of the BMP family from placenta, termed PLAB. PLAB is expressed highly in placenta, but can be found upon stringent analysis in low levels in most other tissues. At the amino acid level, PLAB is most closely related to BMP-8/OP-2, another member of the BMP family. Like TGF-β, PLAB inhibits the proliferation of primitive hematopoietic progenitors. The high expression of PLAB by placenta raises the possibility that it may be a mediator of placental control of embryonic development.  相似文献   

13.
14.
Basement membrane protein BM-40, prepared from the mouse Engelbreth-Holm-Swarm tumor, was used in native, denatured and proteolytically processed form for binding to various extracellular matrix proteins. BM-40 and its derivatives were also characterized by CD spectroscopy, calcium binding and epitope analysis. Of several basement membrane proteins tested only collagen IV showed a distinct and calcium-dependent binding of BM-40 in an immobilized ligand assay. This interaction was specific as shown by a low activity of other collagen types (I, III, V, VI) in direct binding and competition assays. The binding was reduced or abolished by metal-ion-chelating or chaotropic agents, high salt and reduction of disulfide bonds in BM-40. Fragment studies indicated that domains III (alpha-helix) and/or IV (EF hand) of BM-40 possess the binding site(s) for collagen IV, while the N-terminal domains I and II provide the major antigenic determinants. A major BM-40-binding site on collagen IV was dependent on a triple-helical conformation and could be localized to a pepsin fragment from the central portion of the triple-helical domain, in agreement with electron microscopic visualization of BM-40--collagen-IV complexes.  相似文献   

15.
Subcutaneous implantation of demineralized bone matrix results in bone differentiation. The bone inductive protein, osteogenin, was isolated recently by heparin affinity chromatography. The affinity of osteogenin for various lectins was examined to attain further purification and characterization. Osteogenin extracted from bovine bone matrix binds to concanavalin A (Con A) but not to wheat germ agglutinin or soybean lectin. The present data indicate that the bone inductive protein, osteogenin, is a glycoprotein. The use of a Con A Sepharose affinity column followed by preparative gel electrophoresis resulted in a greater than 250,000 fold purification of osteogenin.  相似文献   

16.
Interaction of link protein with collagen   总被引:6,自引:0,他引:6  
Link protein (Mr = 42,000) is an integral component of cartilage as well as of some noncartilagenous tissues. In cartilage, it forms a macromolecular complex with cartilage proteoglycan and hyaluronic acid, but its function in other tissues is unknown. We provide evidence here that the link protein of cartilage binds well to native collagen types I and III. The binding occurs only if both link protein and collagen are native. The binding of link protein to collagen type fibrils is higher than to monomeric collagen. Link protein binding to collagen fibrils is saturable and occurs at molar ratio of collagen to link protein of 7-13:1. These data suggest that the link protein binds to collagen and that the binding requires the collagen to be in its native triple helical structure. This interaction may play a role in collagen fibril formation.  相似文献   

17.
Collagen-proteoglycan interactions participate in the regulation of matrix assembly and in cell-matrix interactions. We reported previously that a fragment (Ile824-Pro950) of the collagen alpha1(V) chain, HepV, binds to heparin via a cluster of three major basic residues, Arg912, Arg918, and Arg921, and two additional residues, Lys905 and Arg909 (Delacoux, F., Fichard, A., Cogne, S., Garrone, R., and Ruggiero, F. (2000) J. Biol. Chem. 275, 29377-29382). Here, we further characterized the binding of HepV and collagen V to heparin and heparan sulfate by surface plasmon resonance assays. HepV bound to heparin and heparan sulfate with a similar affinity (KD approximately 18 and 36 nM, respectively) in a cation-dependent manner, and 2-O-sulfation of heparin was shown to be crucial for the binding. An octasaccharide of heparin and a decasaccharide of heparan sulfate were required for HepV binding. Studies with HepV mutants showed that the same basic residues were involved in the binding to heparin, to heparan sulfate, and to the cell surface. The contribution of Lys905 and Arg909 was found to be significant. The triple-helical peptide GPC(GPP)5G904-R918(GPP)5GPC-NH2 and native collagen V molecules formed much more stable complexes with heparin than HepV, and collagen V bound to heparin/heparan sulfate with a higher affinity (in the nanomolar range) than HepV. Heat and chemical denaturation strongly decreased the binding, indicating that the triple helix plays a major role in stabilizing the interaction with heparin. Collagen V and HepV may play different roles in cell-matrix interactions and in matrix assembly or remodeling mediated by their specific interactions with heparan sulfate.  相似文献   

18.
The interaction of heparin with heparin binding growth-associated molecule (HB-GAM) was studied using isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR). ITC studies showed that, in solution, heparin bound HB-GAM with a deltaH of -30 kcal/mole corresponding to a dissociation constant (Kd) of 460 nM. The stoichiometry of interaction was 3 moles of HB-GAM per mole of heparin, corresponding to a minimum heparin binding site for HB-GAM of 12-16 saccharide residues. Kinetic measurements of heparin interaction with HB-GAM made by SPR afforded a Kd of 4 nM, suggesting considerably tighter binding when HB-GAM was immobilized on a surface. Affinity chromatography of a sized mixture of heparin oligosaccharides, having a degree of polymerization (dp) of > 14 saccharide units, on HB-GAM-Sepharose demonstrated that oligosaccharides having more than 18 saccharide residues showed the tightest interaction.  相似文献   

19.
The surface of the fish pathogen Aeromonas salmonicida is covered by a paracrystalline array (the A-layer) which is a virulence factor for the organism. Quantification of the ability of A. salmonicida cells to bind collagen types I and IV in a 125I-radiolabelled liquid-phase assay showed that A-layer-positive cells bound high levels of collagen type IV, but significantly lower levels of collagen type I. Collagen type IV binding was confirmed using non-radiolabelled enzyme-linked immunosorbent assays. 125I-Collagen type IV binding was rapid, specific, saturable, high affinity, and essentially irreversible by unlabelled collagen type IV. The A-layer was responsible for collagen type IV binding because binding was inactivated by selective removal of the A-layer at pH 2.2, and neither isogenic A-layer-deficient A. salmonicida mutants nor strains of Aeromonas hydrophila possessing a morphologically similar paracrystalline array bound this basement membrane protein.  相似文献   

20.
In Xenopus and zebrafish, BMP2, 4 and 7 have been implicated, after the onset of zygotic expression, in inducing and maintaining ventro-lateral cell fate during early development. We provide evidence here that a maternally expressed bone morphogenetic protein (BMP), Radar, may control early ventral specification in zebrafish. We show that Radar ventralizes zebrafish embryos and induces the early expression of bmp2b and bmp4. The analysis of Radar overexpression in both swirl/bmp2b mutants and embryos expressing truncated BMP receptors shows that Radar-induced ventralization is dependent on functional BMP2/4 pathways, and may initially rely on an Alk6-related signaling pathway. Finally, we show that while radar-injected swirl embryos still exhibit a strongly dorsalized phenotype, the overexpression of Radar into swirl/bmp2b mutant embryos restores ventral marker expression, including bmp4 expression. Our results suggest that a complex regulation of different BMP pathways controls dorso-ventral (DV) patterning from early cleavage stages until somitogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号