首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Human arginase I is a binuclear manganese metalloenzyme that catalyzes the hydrolysis of l-arginine to generate l-ornithine and urea. We demonstrate that N-hydroxy-l-arginine (NOHA) binds to this enzyme with Kd = 3.6 μM, and nor-N-hydroxy-l-arginine (nor-NOHA) binds with Kd = 517 nM (surface plasmon resonance) or Kd ≈ 50 nM (isothermal titration calorimetry). Crystals of human arginase I complexed with NOHA and nor-NOHA afford 2.04 and 1.55 Å resolution structures, respectively, which are significantly improved in comparison with previously-determined structures of the corresponding complexes with rat arginase I. Higher resolution structures clarify the binding interactions of the inhibitors. Finally, the crystal structure of the complex with l-lysine (Kd = 13 μM) is reported at 1.90 Å resolution. This structure confirms the importance of hydrogen bond interactions with inhibitor α-carboxylate and α-amino groups as key specificity determinants of amino acid recognition in the arginase active site.  相似文献   

2.
A functional urea cycle with both cytosolic (ARG I) and mitochondrial (ARG II) arginase activity is present in the liver of an ureogenic air-breathing teleost, Heteropneustes fossilis. Antibodies against mammalian ARG II showed no cross-reactivity with the H. fossilis ARG II. ARG II was purified to homogeneity from H. fossilis liver. Purified ARG II showed a native molecular mass of 96 kDa. SDS–PAGE showed a major band at 48 kDa. The native enzyme, therefore, appears to be a homodimer. The pI value of the enzyme was 7.5. The purified enzyme showed maximum activity at pH 10.5 and 55 °C. The Km of purified ARG II for l-arginine was 5.25 ± 1.12 mM. l-Ornithine and Nω-hydroxy-l-arginine showed mixed inhibition with Ki values 2.16 ± 0.08 and 0.02 ± 0.004 mM respectively. Mn+ 2 and Co+ 2 were effective activators of arginase activity. Antibody raised against purified H. fossilis ARG II did not cross-react with fish ARG I, and mammalian ARG I and ARG II. Western blot with the antibodies against purified H. fossilis hepatic ARG II showed cross reactivity with a 96 kDa band on native PAGE and a 48 kDa band on SDS–PAGE. The molecular, immunological and kinetic properties suggest uniqueness of the hepatic mitochondrial ARG II in H. fossilis.  相似文献   

3.
Arginase performs the first enzymatic step in polyamine biosynthesis in Leishmania and represents a promising target for drug development. Polyamines in Leishmania are involved in trypanothione synthesis, which neutralize the oxidative burst of reactive oxygen species (ROS) and nitric oxide (NO) that are produced by host macrophages to kill the parasite. In an attempt to synthesize arginase inhibitors, six 1-phenyl-1H-pyrazolo[3,4-d]pyrimidine derivatives with different substituents at the 4-position of the phenyl group were synthesized. All compounds were initially tested at 100 µM concentration against Leishmania amazonensis ARG (LaARG), showing inhibitory activity ranging from 36 to 74%. Two compounds, 1 (R=H) and 6 (R=CF3), showed arginase inhibition >70% and IC50 values of 12 µM and 47 µM, respectively. Thus, the kinetics of LaARG inhibition were analyzed for compounds 1 and 6 and revealed that these compounds inhibit the enzyme by an uncompetitive mechanism, showing Kis values, and dissociation constants for ternary complex enzyme-substrate-inhibitor, of 8.5 ± 0.9 µM and 29 ± 5 µM, respectively. Additionally, the molecular docking studies proposed that these two uncompetitive inhibitors interact with different LaARG binding sites, where compound 1 forms more H-bond interactions with the enzyme than compound 6. These compounds showed low activity against L. amazonensis free amastigotes obtained from mice lesions when assayed with as much as 30 µM. The maximum growth inhibition reached was between 20 and 30% after 48 h of incubation. These results suggest that this system can be promising for the design of potential antileishmanial compounds.  相似文献   

4.
Leishmaniasis is a vector-borne, neglected tropical disease caused by parasites from the genus Leishmania. Galactofuranose (Galf) is found on the cell surface of Leishmania parasites and is important for virulence. The flavoenzyme that catalyzes the isomerization of UDP-galactopyranose to UDP-Galf, UDP-galactopyranose mutase (UGM), is a validated drug target in protozoan parasites. UGMs from L. mexicana and L. infantum were recombinantly expressed, purified, and characterized. The isolated enzymes contained tightly bound flavin cofactor and were active only in the reduced form. NADPH is the preferred redox partner for both enzymes. A kcat value of 6 ± 0.4 s−1 and a Km value of 252 ± 42 μM were determined for L. infantum UGM. For L. mexicana UGM, these values were ∼4-times lower. Binding of UDP-Galp is enhanced 10–20 fold in the reduced form of the enzymes. Changes in the spectra of the reduced flavin upon interaction with the substrate are consistent with formation of a flavin-iminium ion intermediate.  相似文献   

5.
Cytochrome P450 3A4 (CYP3A4) is the most abundant CYP enzyme in the liver and metabolizes approximately 50% of the drugs, including antiretrovirals. Although CYP3A4 induction by ethanol and impact of CYP3A4 on drug metabolism and toxicity is known, CYP3A4-ethanol physical interaction and its impact on drug binding, inhibition, or metabolism is not known. Therefore, we studied the effect of ethanol on binding and inhibition of CYP3A4 with a representative protease inhibitor, nelfinavir, followed by the effect of alcohol on nelfinavir metabolism. Our initial results showed that methanol, ethanol, isopropanol, isobutanol, and isoamyl alcohol bind in the active site of CYP3A4 and exhibit type I spectra. Among these alcohol compounds, ethanol showed the lowest KD (5.9 ± 0.34 mM), suggesting its strong binding affinity with CYP3A4. Ethanol (20 mM) decreased the KD of nelfinavir by >5-fold (0.041 ± 0.007 vs. 0.227 ± 0.038 μM). Similarly, 20 mM ethanol decreased the IC50 of nelfinavir by >3-fold (2.6 ± 0.5 vs. 8.3 ± 3.1 μM). These results suggest that ethanol facilitates binding of nelfinavir with CYP3A4. Furthermore, we performed nelfinavir metabolism using LCMS. Although ethanol did not alter kcat, it decreased the Km of nelfinavir, suggesting a decrease in catalytic efficiency (kcat/Km). This is an important finding because alcoholism is prevalent in HIV-1-infected persons and alcohol is shown to decrease the response to antiretroviral therapy.  相似文献   

6.
The kinetic effects of a selection of triarylmethane, phenoxazine and phenothiazine dyes (pararosaniline (PR), malachite green (MG), methyl green (MeG); meldola blue (MB), nile blue (NB), nile red (NR); methylene blue (MethB)) and of ethopropazine on horse serum butyrylcholinesterase were studied spectrophotometrically at 25 °C in 50 mM MOPS buffer, pH 8, using butyrylthiocholine as substrate. PR, MeG, MB and ethopropazine acted as linear mixed type inhibitors of the enzyme, with respective Ki values of 4.5 ± 0.50 μM, 0.41 ± 0.007 μM, 0.44 ± 0.086 μM and 0.050 ± 0.0074 μM. MG, NB, MethB and NR caused complex, nonlinear inhibition pointing to cooperative binding at two sites. Intrinsic K′ values (≡[I]20.5 extrapolated to [S]=0) for MG, NB, NR and MethB were 0.20 ± 0.096 μM, 0.0018 ± 0.0015 μM, 0.92 ± 0.23 μM and 0.23 ± 0.08 μM. NB stood out as a potent inhibitor effective at nM levels. Comparison of inhibitory effects on horse and human serum butyrylcholinesterases suggested that the two enzymes must have distinct microstructural features.  相似文献   

7.
Expression in Escherichia coli of his-tagged human mevalonate diphosphate decarboxylase (hMDD) has expedited enzyme isolation, characterization, functional investigation of the mevalonate diphosphate binding site, and crystal structure determination (2.4 Å resolution). hMDD exhibits Vmax = 6.1 ± 0.5 U/mg; Km for ATP is 0.69 ± 0.07 mM and Km for (R,S) mevalonate diphosphate is 28.9 ± 3.3 μM. Conserved polar residues predicted to be in the hMDD active site were mutated to test functional importance. R161Q exhibits a ∼1000-fold diminution in specific activity, while binding the fluorescent substrate analog, TNP-ATP, comparably to wild-type enzyme. Diphosphoglycolyl proline (Ki = 2.3 ± 0.3 uM) and 6-fluoromevalonate 5-diphosphate (Ki = 62 ± 5 nM) are competitive inhibitors with respect to mevalonate diphosphate. N17A exhibits a Vmax = 0.25 ± 0.02 U/mg and a 15-fold inflation in Km for mevalonate diphosphate. N17A’s Ki values for diphosphoglycolyl proline and fluoromevalonate diphosphate are inflated (>70-fold and 40-fold, respectively) in comparison with wild-type enzyme. hMDD structure indicates the proximity (2.8 Å) between R161 and N17, which are located in an interior pocket of the active site cleft. The data suggest the functional importance of R161 and N17 in the binding and orientation of mevalonate diphosphate.  相似文献   

8.
α-Amylase from Sorghum bicolor, is reversibly unfolded by chemical denaturants at pH 7.0 in 50 mM Hepes containing 13.6 mM calcium and 15 mM DTT. The isothermal equilibrium unfolding at 27 °C is characterized by two state transition with ΔG (H2O) of 16.5 kJ mol−1 and 22 kJ mol−1, respectively, at pH 4.8 and pH 7.0 for GuHCl and ΔG (H2O) of 25.2 kJ mol−1 at pH 4.8 for urea. The conformational stability indicators such as the change in excess heat capacity (ΔCp), the unfolding enthalpy (Hg) and the temperature at ΔG = 0 (Tg) are 17.9 ± 0.7 kJ mol−1 K−1, 501.2 ± 18.2 kJ mol1 and 337.3 ± 6.9 K at pH 4.8 and 14.3 ± 0.5 kJ mol−1 K−1, 509.3 ± 21.7 kJ mol−1 and 345.4 ± 4.8 K at pH 7.0, respectively. The reactivity of the conserved cysteine residues, during unfolding, indicates that unfolding starts from the ‘B’ domain of the enzyme. The oxidation of cysteine residues, during unfolding, can be prevented by the addition of DTT. The conserved cysteine residues are essential for enzyme activity but not for the secondary and tertiary fold acquired during refolding of the denatured enzyme. The pH dependent stability described by ΔG (H2O) and the effect of salt on urea induced unfolding confirm the role of electrostatic interactions in enzyme stability.  相似文献   

9.
PhzE from Pseudomonas aeruginosa catalyzes the first step in the biosynthesis of phenazine-1-carboxylic acid, pyocyanin, and other phenazines, which are virulence factors for Pseudomonas species. The reaction catalyzed converts chorismate into aminodeoxyisochorismate using ammonia supplied by a glutamine amidotransferase domain. It has structural and sequence homology to other chorismate-utilizing enzymes such as anthranilate synthase, isochorismate synthase, aminodeoxychorismate synthase, and salicylate synthase. Like these enzymes, it is Mg2 + dependent and catalyzes a similar SN2" nucleophilic substitution reaction. PhzE catalyzes the addition of ammonia to C2 of chorismate, as does anthranilate synthase, yet unlike anthranilate synthase it does not catalyze elimination of pyruvate from enzyme-bound aminodeoxyisochorismate. Herein, the cloning of the phzE gene, high level expression of active enzyme in E. coli, purification, and kinetic characterization of the enzyme is presented, including temperature and pH dependence. Steady-state kinetics give Kchorismate = 20 ± 4 μM, KMg2 + = 294 ± 22 μM, KL-gln = 11 ± 1 mM, and kcat = 2.2 ± 0.2 s− 1 for a random kinetic mechanism. PhzE can use NH4+ as an alternative nucleophile, while Co2 + and Mn2 + are alternative divalent metals.  相似文献   

10.
Human tissue from uninvolved liver of cancer patients was fractionated using differential centrifugation and characterized for 11βHSD enzyme activity against corticosterone, dehydrocorticosterone, 7α- and 7β-hydroxy-dehydroepiandrosterone, and 7-oxo-dehydroepiandrosterone. An enzyme activity was observed in nuclear protein fractions that utilized either NADP+ or NAD+, but not NADPH and NADH, as pyridine nucleotide cofactor with Km values of 12 ± 2 and 390 ± 2 μM, compared to the Km for microsomal 11βHSD1 of 43 ± 8 and 264 ± 24 μM, respectively. The Km for corticosterone in the NADP+-dependent nuclear oxidation reaction was 102 ± 16 nM, compared to 4.3 ± 0.8 μM for 11βHSD1. The Kcat values for nuclear activity with NADP+ was 1687 nmol/min/mg/μmol, compared to 755 nmol/min/mg/μmol for microsomal 11βHSD1 activity. Inhibitors of 11βHSD1 decreased both nuclear and microsomal enzyme activities, suggesting that the nuclear activity may be due to an enzyme similar to 11βHSD Type 1 and 2.  相似文献   

11.
In this work, the kinetics of ginsenosidase type IV hydrolyzing the 6-O-multi-glycosides of protopanaxatriol type ginsenosides (PPT) from Aspergillus sp.39g strain were investigated. The enzyme molecular weight was about 56 kDa. The enzyme hydrolyzes the 6-O-α-l-(1 → 2)-rhamnoside of ginsenoside Re and 6-O-β-d-(1 → 2)-xyloside of R1 into Rg1, and subsequently hydrolyzes 6-O-β-d-glucoside of Rg1 into F1. The enzyme hydrolyzes 6-O-α-l-(1 → 2)-rhamnoside of Rg2 and 6-O-β-d-(1 → 2)-glucoside of Rf into Rh1, and subsequently hydrolyzes 6-O-β-d-glucoside of Rh1 into its aglycone. The enzyme Km and Vmax for Re were 22.2 mM, and 7.94 mM/h; the Km and Vmax for R1 were 7.06 mM and 1.61 mM/h; the enzyme transformation velocity (V0) at 5 mM substrate was 1.46 mM/h for Re, and 0.67 mM/h for R1. Therefore, the enzyme hydrolysis on the Re rhamnoside was faster than that on R1 xyloside. The enzyme V0 on Rg1 was 0.05 mM/h that indicated the enzyme hardly hydrolyzed the 6-O-β-d-glucoside of Rg1. The enzyme kinetic parameters of Rg2 and Rf were 5.74 and 9.43 mM for Km; 2.70 and 2.84 mM/h for Vmax; 1.26 and 0.98 mM/h for V0 at 5 mM substrate, respectively. Thus the enzyme hydrolysis on Rg2 rhamnoside was faster than that on the glucoside of Rf.  相似文献   

12.
Yakov M. Milgrom 《BBA》2010,1797(10):1768-1774
The effect of inorganic phosphate (Pi) on uni-site ATP binding and hydrolysis by the nucleotide-depleted F1-ATPase from beef heart mitochondria (ndMF1) has been investigated. It is shown for the first time that Pi decreases the apparent rate constant of uni-site ATP binding by ndMF1 3-fold with the Kd of 0.38 ± 0.14 mM. During uni-site ATP hydrolysis, Pi also shifts equilibrium between bound ATP and ADP + Pi in the direction of ATP synthesis with the Kd of 0.17 ± 0.03 mM. However, 10 mM Pi does not significantly affect ATP binding during multi-site catalysis.  相似文献   

13.
In this work, we describe the ability of living trophozoites of Giardia lamblia to hydrolyze extracellular ATP. In the absence of any divalent cations, a low level of ATP hydrolysis was observed (0.78 ± 0.08 nmol Pi × h−1 × 10−6 cells). The ATP hydrolysis was stimulated by MgCl2 in a dose-dependent manner. Half maximum stimulation of ATP hydrolysis was obtained with 0.53 ± 0.07 mM. ATP was the best substrate for this enzyme. The apparent Km for ATP was 0.21 ± 0.04 mM. In the pH range from 5.6 to 8.4, in which cells were viable, this activity was not modified. The Mg2+-stimulated ATPase activity was insensitive to inhibitors of intracellular ATPases such as vanadate (P-ATPases), bafilomycin A1 (V-ATPases), and oligomycin (F-ATPases). Inhibitors of acid phosphatases (molybdate, vanadate and fluoride) or alkaline phosphatases (levamizole) had no effect on the ecto-ATPase activity. The impermeant agent DIDS and suramin, an antagonist of P2 purinoreceptors and inhibitor of some ecto-ATPases, decreased the enzymatic activity in a dose-dependent manner, confirming the external localization of this enzyme. Besides ATP, trophozoites were also able to hydrolyse ADP and 5´ AMP, but the hydrolysis of these nucleotides was not stimulated by MgCl2. Our results are indicative of the occurrence of a G. lamblia ecto-ATPase activity that may have a role in parasite physiology.  相似文献   

14.
The 3C-like protease (3CLpro) of severe acute respiratory syndrome associated coronavirus (SARS-CoV) is vital for SARS-CoV replication and is a promising drug target. Structure based virtual screening of 308 307 chemical compounds was performed using the computation tool Autodock 3.0.5 on a WISDOM Production Environment. The top 1468 ranked compounds with free binding energy ranging from −14.0 to −17.09 kcal mol−1 were selected to check the hydrogen bond interaction with amino acid residues in the active site of 3CLpro. Fifty-three compounds from 35 main groups were tested in an in vitro assay for inhibition of 3CLpro expressed by Escherichia coli. Seven of the 53 compounds were selected; their IC50 ranged from 38.57 ± 2.41 to 101.38 ± 3.27 μM. Two strong 3CLpro inhibitors were further identified as competitive inhibitors of 3CLpro with Ki values of 9.11 ± 1.6 and 9.93 ± 0.44 μM. Hydrophobic and hydrogen bond interactions of compound with amino acid residues in the active site of 3CLpro were also identified.  相似文献   

15.
Four positional isomers of Thiastearate (TS) and Isoxyl (Thiocarlide) were assayed as fatty acid desaturase inhibitors in Trypanosoma cruzi epimastigotes. 9-TS did not exert a significant effect on growth of T. cruzi, nor on the fatty acid profile of the parasite cells. One hundred micromolars of 10-TS totally inhibited growth, with an effective concentration for 50% growth inhibition (EC50) of 3.0 ± 0.2 μM. Growth inhibition was reverted by supplementing the culture media with oleate. The fatty acid profile of treated cells revealed that conversion of stearate to oleate and palmitate to palmitoleate were drastically reduced and, as a consequence, the total level of unsaturated fatty acids decreased from 60% to 32%. Isoxyl, a known inhibitor of stearoyl-CoA Δ9 desaturase in mycobacteria, had similar effects on T. cruzi growth (EC50 2.0 ± 0.3 μM) and fatty acid content, indicating that Δ9 desaturase was the target of both drugs. 12- and 13-TS were inhibitors of growth with EC50 values of 50 ± 2 and 10 ± 3 μM, respectively, but oleate or linoleate were unable to revert the effect. Both drugs increased the percentage of oleate and palmitate in the cell membrane and drastically reduced the content of linoleate from 38% to 16% and 12%, respectively, which is in agreement with a specific inhibition of oleate Δ12 desaturase. The absence of corresponding enzyme activity in mammalian cells and the significant structural differences between trypanosome and mammalian Δ9 desaturases, together with our results, highlight these enzymes as promising targets for selective chemotherapeutic intervention.  相似文献   

16.
Although many synthetic calcium indicators are available, a search for compounds with improved characteristics continues. Here, we describe the synthesis and properties of Asante Calcium Red-1 (ACR-1) and its low affinity derivative (ACR-1-LA) created by linking BAPTA to seminaphthofluorescein. The indicators combine a visible light (450–540 nm) excitation with deep-red fluorescence (640 nm). Upon Ca2+ binding, the indicators raise their fluorescence with longer excitation wavelengths producing higher responses. Although the changes occur without any spectral shifts, it is possible to ratio Ca2+-dependent (640 nm) and quasi-independent (530 nm) emission when using visible (<490 nm) or multiphoton (∼780 nm) excitation. Therefore, both probes can be used as single wavelength or, less dynamic, ratiometric indicators. Long indicator emission might allow easy [Ca2+]i measurement in GFP expressing cells. The indicators bind Ca2+ with either high (Kd = 0.49 ± 0.07 μM; ACR-1) or low affinity (Kd = 6.65 ± 0.13 μM; ACR-1-LA). Chelating Zn2+ (Kd = 0.38 ± 0.02 nM) or Mg2+ (Kd ∼ 5 mM) slightly raises and binding Co2+ quenches dye fluorescence. New indicators are somewhat pH-sensitive (pKa = 6.31 ± 0.07), but fairly resistant to bleaching. The probes are rather dim, which combined with low AM ester loading efficiency, might complicate in situ imaging. Despite potential drawbacks, ACR-1 and ACR-1-LA are promising new calcium indicators.  相似文献   

17.
α-Methylacyl-coenzyme A racemase (AMACR) catalyzes the epimerization of (2R)- and (2S)-methyl branched fatty acyl-coenzyme A (CoA) thioesters. AMACR is a biomarker for prostate cancer and a putative target for the development of therapeutic agents directed against the disease. To facilitate development of AMACR inhibitors, a continuous circular dichroism (CD)-based assay has been developed. The open reading frame encoding AMACR from Mycobacterium tuberculosis (MCR) was subcloned into a pET15b vector, and the enzyme was overexpressed and purified using metal ion affinity chromatography. The rates of MCR-catalyzed epimerization of either (2R)- or (2S)-ibuprofenoyl-CoA were determined by following the change in ellipticity at 279 nm in the presence of octyl-β-d-glucopyranoside (0.2%). MCR exhibited slightly higher affinity for (2R)-ibuprofenoyl-CoA (Km = 48 ± 5 μM, kcat = 291 ± 30 s−1), but turned over (2S)-ibuprofenoyl-CoA (Km = 86 ± 6 μM, kcat = 450 ± 14 s−1) slightly faster. MCR expressed as a fusion protein bearing an N-terminal His6-tag had a catalytic efficiency (kcat/Km) that was reduced 22% and 47% in the 2S → 2R and 2R → 2S directions, respectively, relative to untagged enzyme. The continuous CD-based assay offers an economical and efficient alternative method to the labor-intensive, fixed-time assays currently used to measure AMACR activity.  相似文献   

18.
The role of calcium and its relevance have been deeply revised with respect to trypanosomatids, as the mechanism by which calcium enters trypanosomes was, until now, not well understood. There is evidence supporting the presence of a nAChR in another member of the trypanosomatidae family, Trypanosoma cruzi, these receptors being one entry path to calcium ions. The aims of this work were to determine if there was a nicotinic acetylcholine receptor (nAChR) in Trypanosoma evansi, and to subsequently perform a partial pharmacological characterization of this receptor.After being loaded with FURA-2AM, individual cells of T. evansi, were exposed to cholinergic compounds, and the cells displayed a dose-dependent response to carbachol. This observation indicated that a cholinergic receptor may be present in T. evansi. Although a dose-dependent response to muscarine could not be demonstrated, nicotine could promote an incremental dose-dependent response. The relative potency of this specific agonist of nAChR is in agreement with previous reports. The estimated affinity values were a Kd1 value of 29.6 ± 5.72 nM and a Kd2 value of 315.9 ± 26.6 nM, which is similar to the Kd value reported for the α4 nicotinic receptor. The Hill coefficients were determined to be an n1 of 1.2 ± 0.3 and an n2 of 4.2 ± 1.3. Finally, our calculations indicated that there are about 1020 receptors in each T. evansi parasite, which is approximately 15-fold lower than the number reported in Torpedo californica electric cells. These results suggest the presence of a nAChR in T. evansi, which is able to bind nicotinic ligands and induce calcium signals.  相似文献   

19.
UDP-galactopyranose mutase (UGM) is a flavin-containing enzyme that catalyzes the conversion of UDP-galactopyranose to UDP-galactofuranose, the precursor of galactofuranose, which is an important cell wall component in Aspergillus fumigatus and other pathogenic microbes. A. fumigatus UGM (AfUGM) was expressed in Escherichia coli and purified to homogeneity. The enzyme was shown to function as a homotetramer by size-exclusion chromatography and to contain ∼50% of the flavin in the active reduced form. A kcat value of 72 ± 4 s−1 and a KM value of 110 ± 15 μM were determined with UDP-galactofuranose as substrate. In the oxidized state, AfUGM does not bind UDP-galactopyranose, while UDP and UDP-glucose bind with Kd values of 33 ± 9 μM and 90 ± 30 μM, respectively. Functional and structural differences between the bacterial and eukaryotic UGMs are discussed.  相似文献   

20.
The glycolytic enzyme triose phosphate isomerase from Schistosoma mansoni is a potential target for drugs and vaccines. Molecular modelling of the enzyme predicted that a Ser-Ala-Asp motif which is believed to be a helminth-specific epitope is exposed. The enzyme is dimeric (as judged by gel filtration and cross-linking), resistant to proteolysis and highly stable to thermal denaturation (melting temperature of 82.0 °C). The steady-state kinetic parameters are high (Km for dihydroxyacetone phosphate is 0.51 mM; Km for glyceraldehyde 3-phosphate is 1.1 mM; kcat for dihydroxyacetone phosphate is 7800 s−1 and kcat for glyceraldehyde 3-phosphate is 6.9 s−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号