首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parasite transfer to native fauna is a potentially catastrophic impact of invasive species. Introduced cane toads in Australia frequently host the nematode lungworm Rhabdias pseudosphaerocephala, which reduces viability of metamorph toads. If native frogs are vulnerable to this South American parasite, cane toad invasion may affect native species via this route; but if the native taxa are not vulnerable, we may be able to exploit the parasites for managing toads. Our laboratory experiments show that infective larvae can penetrate the body of all seven species of Australian frogs (five hylids: Cyclorana longipes, Litoria caerulea, Litoria dahlii, Litoria nasuta, Litoria rothii, one myobatrachid: Opisthodon ornatus, and one limnodynastid: Limnodynastes convexiusculus) we tested, but most did not host the adult worms at the end of the trials, and none showed major impairment of growth, survival or locomotor performance. One native tree‐frog (L. caerulea) retained high infection levels with few ill effects, suggesting that we might be able to use this taxon as a reservoir species to build up local parasite densities for toad management. However, the interspecific variation in lungworm retention suggests that generalizations about parasite effects on native frogs will be elusive.  相似文献   

2.
Parasites that are carried by invasive species can infect native taxa, with devastating consequences. In Australia, invading cane toads (Rhinella marina) carry lungworm parasites (Rhabdias pseudosphaerocephala) that (based on previous laboratory studies) can infect native treefrogs (Litoria caerulea and L. splendida). To assess the potential of parasite transmission from the invader to the native species (and from one infected native frog to another), we used surveys and radiotelemetry to quantify anuran microhabitat use, and proximity to other anurans, in two sites in tropical Australia. Unsurprisingly, treefrogs spent much of their time off the ground (especially by day, and in undisturbed forests) but terrestrial activity was common at night (especially in anthropogenically modified habitats). Microhabitat overlap between cane toads and frogs was generally low, except at night in disturbed areas, whereas overlap between the two frog species was high. The situations of highest overlap, and hence with the greatest danger of parasite transmission, involve aggregations of frogs within crevices by day, and use of open ground by all three anuran species at night. Overall, microhabitat divergence between toads and frogs should reduce, but not eliminate, the transmission of lungworms from invasive toads to vulnerable native frogs.  相似文献   

3.
Evolutionary theory predicts that individuals at an expanding range edge will disperse faster than conspecifics in long-colonized locations, but direct evidence is rare. Previous reports of high rates of dispersal of cane toads (Rhinella marina) at the invasion front have been based on studies at a single site in the Northern Territory. To replicate the earlier work, we radio-tracked free-ranging toads in the Kimberley region of northwestern Australia (at the westward-spreading invasion front) and 500 km northeast, on the Adelaide River floodplain of the Northern Territory (where toads had already been present for 6 years). For comparison, we also radio-tracked native frogs (Litoria caerulea and L. splendida) at the same sites. Consistent with the earlier reports, invasion-front cane toads travelled further per day, were more highly directional, and re-used refuge sites less frequently, than did conspecifics from an already-colonized site. In contrast, native frogs showed similar movement patterns in the two study areas. Our results confirm previous reports, and suggest that accelerated dispersal may be a common feature of individuals at the vanguard of a biological invasion.  相似文献   

4.
Learning to avoid toxic prey items may aid native predators to survive the invasion of highly toxic species, such as cane toads Bufo marinus in tropical Australia. If the predators’ initial aversion is generalized, native prey that resemble the toxic invader may receive a benefit through accidental mimicry. What ecological factors influence the acquisition of learned avoidance (and hence, the impact of invasion on both predators and native prey)? We conducted laboratory experiments to evaluate how the relative abundance of toad tadpoles compared to palatable native tadpoles (Litoria caerulea and L. rubella) affected the ability of native aquatic predators to discriminate between these two prey types. Both fish (northern trout gudgeon, Mogurnda mogurnda) and frogs (Dahl's aquatic frog, Litoria dahlii) learned to discriminate between toads and frogs within an eight‐day period. Higher abundance of toad tadpoles relative to frog tadpoles enhanced rates of predator learning, and thus reduced predation on toads and increased predation on native tadpoles. In the field, spatial and temporal variation in the relative abundance of cane toads compared to native frogs may influence the rates at which these novel toxic items are deleted from predator diets, and the duration of predator protection afforded to natives that resemble the invader.  相似文献   

5.
Host-parasite systems have often evolved over time, such that infection dynamics may become greatly modified from the time of initial contact of the host with the parasite. Biological invasions may be useful to clarify processes in the initial contact of hosts with parasites, and allow us to compare parasite uptake between the ancestral (coevolved) host and novel (noncoevolved) hosts. Cane toads (Bufo marinus) are spreading rapidly through tropical Australia, carrying with them a nematode lungworm (Rhabdias pseudosphaerocephala) congeneric with those found in Australian frogs. We investigated the dynamics of infections of the toad parasite by conducting histologic examinations of cane toads and three native Australian frogs (Litoria dahlii, Litoria nasuta, and Opisthodon ornatus) at 2, 6, and 10 days after experimental exposure to the toad lungworm. More worms were found in toads than in frogs, especially at longer periods postexposure. In toads, the infective larvae entered the skin and muscles within 2 days postexposure, passed into the coelom in 6 days, and reached the lungs at 10 days. In frogs, larvae were found in many organs rather than migrating to consistent target tissues; a few larvae reached the lungs of L. dahlii. Migratory larvae caused increasing inflammation (primarily granulomatous admixed with granulocytes then lymphocytes) through time, especially in frogs. Evolution has resulted in an enhanced ability of the lungworm to locate the target organ (the lungs) of the toad, and an increase in rates of parasite survival within this host.  相似文献   

6.
The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has caused mass mortality leading to population declines and extinctions in many frog species worldwide. The lack of host resistance may be due to fungal immunosuppressive effects that have been observed when Bd is incubated with cultured lymphocytes, but whether in vivo host immunosuppression occurs is unknown. We used a broad range of hematologic and protein electrophoresis biomarkers, along with various functional tests, to assess immune competence in common green (Litoria caerulea) and white-lipped (L. infrafrenata) tree frogs experimentally infected with Bd. Compared with uninfected frogs, Bd infection in L. caerulea caused a reduction in immunoglobulin and splenic lymphocyte responses to antigenic stimulation with sheep red blood cells, along with decreased white blood cell and serum protein concentrations, indicating possible impaired immune response capability of Bd-infected frogs. This is the first in vivo study suggesting that infection with Bd causes multiple defects in systemic host immune function, and this may contribute to disease development in susceptible host species. Although L. infrafrenata failed to maintain Bd infection after exposure, white blood cell and serum globulin concentrations were lower in recovered frogs compared with unexposed frogs, but antigen-specific serum and splenic antibody, and splenic cellular, responses were similar in both recovered and unexposed frogs. This may indicate potential systemic costs associated with infection clearance and/or redirection of host resources towards more effective mechanisms to overcome infection. No clear mechanism for resistance was identified in L. infrafrenata, suggesting that localized and/or innate immune defense mechanisms may be important factors involved in disease resistance in this species.  相似文献   

7.
8.
The cane toad (Rhinella marina) is one of the most successful invasive species worldwide, and has caused significant negative impacts on Australian fauna. Experimental work in the laboratory and in mesocosms has shown that tadpoles of native frogs can affect survival, size at metamorphosis and duration of larval period of cane toad tadpoles. To test if these effects occur in nature, we conducted a field experiment using two temporary ponds where we set up enclosures with tadpoles of native green tree frogs (Litoria caerulea) and cane toads in treatments with a range of densities and combinations. The presence of green tree frog tadpoles significantly decreased the growth rate of toad tadpoles and increased the duration of their larval period in both ponds; in one pond, frog tadpoles also significantly reduced the body length and mass of metamorph toads. Toad tadpoles did not have any significant negative effects on green tree frog tadpoles, but there was strong intraspecific competition within the latter species: increased frog tadpole density resulted in increased larval period and reduced survival, growth rate and size at metamorphosis for frogs at one or both ponds. Our results are encouraging for the possibility of using native frogs as one component of an integrated approach to the biological control of cane toads.  相似文献   

9.
Invasive species can induce shifts in habitat use by native taxa: either by modifying habitat availability, or by repelling or attracting native species to the vicinity of the invader. The ongoing invasion of cane toads (Rhinella marina) through tropical Australia might affect native frogs by affecting refuge‐site availability, because both frogs and toads frequently shelter by day in burrows. Our laboratory and field studies in the wet‐dry tropics show that native frogs of at least three species (Litoria tornieri, Litoria nasuta and Litoria dahlii) preferentially aggregate with conspecifics, and with (some) other species of native frogs. However, the frogs rarely aggregated with cane toads either in outdoor arenas or in standardized experimental burrows that we monitored in the field. The native frogs that we tested either avoided burrows containing cane toads (or cane toad scent) or else ignored the stimulus (i.e. treated such a burrow in the same way as they did an empty burrow). Native frogs selected a highly non‐random suite of burrows as diurnal retreat sites, whereas cane toads were less selective. Hence, even in the absence of toads, frogs do not use many of the burrows that are suitable for toads. The invasion of cane toads through tropical Australia is unlikely to have had a major impact on retreat‐site availability for native frogs.  相似文献   

10.
One important impact of invasive species may be to modify the behaviour of native taxa. For example, the invasion of highly toxic cane toads (Bufo marinus) kills many anurophagous native predators, but other predators learn to recognize and avoid the toxic invader. We exposed native fish (northern trout gudgeons, Mogurnda mogurnda) and Dahl's aquatic frogs (Litoria dahlii) to cane toad tadpoles, then monitored the predator's responses during subsequent trials. Both the frogs and fish initially attacked toad tadpoles, but rapidly learned not to do so. Fish and adult frogs retained their aversion for at least a week, whereas recently metamorphosed frogs did not. Clearly, the spread of cane toads through tropical Australia can modify feeding responses of native aquatic predators. For predators capable of rapid avoidance learning, the primary impact of cane toads may be on foraging behaviour rather than mortality.  相似文献   

11.
Adaptations that enhance fitness in one situation can become liabilities if circumstances change. In tropical Australia, native snake species are vulnerable to the invasion of toxic cane toads. Death adders (Acanthophis praelongus) are ambush foragers that (i) attract vertebrate prey by caudal luring and (ii) handle anuran prey by killing the frog then waiting until the frog''s chemical defences degrade before ingesting it. These tactics render death adders vulnerable to toxic cane toads (Bufo marinus), because toads elicit caudal luring more effectively than do native frogs, and are more readily attracted to the lure. Moreover, the strategy of delaying ingestion of a toad after the strike does not prevent fatal poisoning, because toad toxins (unlike those of native frogs) do not degrade shortly after the prey dies. In our laboratory and field trials, half of the death adders died after ingesting a toad, showing that the specialized predatory behaviours death adders use to capture and process prey render them vulnerable to this novel prey type. The toads'' strong response to caudal luring also renders them less fit than native anurans (which largely ignored the lure): all toads bitten by adders died. Together, these results illustrate the dissonance in behavioural adaptations that can arise following the arrival of invasive species, and reveal the strong selection that occurs when mutually naive species first interact.  相似文献   

12.
In a previous report (Luyo-Acero et al., 2004), we demonstrated that cytochrome b (Cyt b) gene analysis is an effective method for classifying several isolates of the genus Leishmania; hence, we have further applied this method to other Leishmania species in an effort to enhance the accuracy of the procedure and to construct a new phylogenic tree. In this study, a total of 30 Leishmania and Endotrypanum WHO reference strains, clinical isolates from our patients assigned to 28 strains (human and non-human pathogenic species) and two species of the genus Endotrypanum were analyzed. The Cyt b gene in each sample was amplified by PCR, and was then sequenced by several primers, as reported previously. The phylogenic tree was constructed based on the results obtained by the computer software MEGA v3.1 and PAUP* v4.0 Beta. The present phylogenic tree was almost identical to the traditional method of classification proposed by Lainson and Shaw (1987). However, it produces the following suggestions: (1) exclusion of L. (Leishmania) major from the L. (L.) tropica complex; (2) placement of L.tarentolae in the genus Sauroleishmania; (3) L. (L.) hertigi complex and L. (V.) equatorensis close to the genus Endotrypanum; (4) L. (L.) enrietti, defined as L. (L.) mexicana complex, placed in another position; and (5) L. (L.) turanica and L. (L.) arabica are located in an area far from human pathogenic Leishmania strains. Cyt b gene analysis is thus applicable to the analyzing phylogeny of the genus Leishmania and may be useful for separating non-human pathogenic species from human pathogenic species.  相似文献   

13.
Chytridiomycosis, a disease caused by Batrachochytrium dendrobatidis, has contributed to worldwide amphibian population declines; however, the pathogenesis of this disease is still somewhat unclear. Previous studies suggest that infection disrupts cutaneous sodium transport, which leads to hyponatremia and cardiac failure. However, infection is also correlated with unexplained effects on appetite, skin shedding, and white blood cell profiles. Glucocorticoid hormones may be the biochemical connection between these disparate effects, because they regulate ion homeostasis and can also influence appetite, skin shedding, and white blood cells. During a laboratory outbreak of B. dendrobatidis in Australian Green Tree Frogs, Litoria caerulea, we compared frogs showing clinical signs of chytridiomycosis to infected frogs showing no signs of disease and determined that diseased frogs had elevated baseline corticosterone, decreased plasma sodium and potassium, and altered WBC profiles. Diseased frogs also showed evidence of poorer body condition and elevated metabolic rates compared with frogs showing no signs of disease. Prior to displaying signs of disease, we also observed changes in appetite, body mass, and the presence of shed skin associated with infected but not yet diseased frogs. Collectively, these results suggest that elevated baseline corticosterone is associated with chytridiomycosis and correlates with some of the deleterious effects observed during disease development.  相似文献   

14.
Spatial and temporal partitioning of resources underlies the coexistence of species with similar niches. In communities of frogs and toads, the phenology of advertisement calling provides insights into temporal partitioning of reproductive effort and its implications for community dynamics. This study assessed the phenology of advertisement calling in an anuran community from Melbourne, in southern Australia. We collated data from 1432 surveys of 253 sites and used logistic regression to quantify seasonality in the nightly probability of calling and the influence of meteorological variables on this probability for six species of frogs. We found limited overlap in the predicted seasonal peaks of calling among these species. Those shown to have overlapping calling peaks are unlikely to be in direct competition, due to differences in larval ecology (Crinia signifera and Litoria ewingii) or differences in calling behavior and acoustics (Limnodynastes dumerilii and Litoria raniformis). In contrast, closely related and ecologically similar species (Crinia signfera and Crinia parinsignifera; Litoria ewingii and Litoria verreauxii) appear to have staggered seasonal peaks of calling. In combination with interspecific variation in the meteorological correlates of calling, these results may be indicative of temporal partitioning of reproductive activity to facilitate coexistence, as has been reported for tropical and temperate anurans from other parts of the globe.  相似文献   

15.
The frequency and severity of wildfires are increasing due to anthropogenic modifications to habitats and to climate. Post-fire landscapes may advantage invasive species via multiple mechanisms, including changes to host–parasite interactions. We surveyed the incidence of endoparasitic lungworms (Rhabdias pseudosphaerocephala) in invasive cane toads (Rhinella marina) in near-coastal sites of eastern Australia, a year after extensive fires in this region. Both the prevalence of infection and number of worms in infected toads increased with toad body size in unburned areas. By contrast, parasite load decreased with toad body size in burned areas. By killing moisture-dependent free-living lungworm larvae, the intense fires may have liberated adult cane toads from a parasite that can substantially reduce the viability of its host. Smaller toads, which are restricted to moist environments, did not receive this benefit from fires.  相似文献   

16.
Many species of amphibians in the wet tropics of Australia have experienced population declines linked with the emergence of a skin-invasive chytrid fungus, Batrachochytrium dendrobatidis. An innate defense, antimicrobial peptides produced by granular glands in the skin, may protect some species from disease. Here we present evidence that supports this hypothesis. We tested ten synthesized peptides produced by Australian species, and natural peptide mixtures from five Queensland rainforest species. Natural mixtures and most peptides tested in isolation inhibited growth of B. dendrobatidis in vitro. The three most active peptides (caerin 1.9, maculatin 1.1, and caerin 1.1) were found in the secretions of non-declining species (Litoria chloris, L. caerulea, and L. genimaculata). Although the possession of a potent isolated antimicrobial peptide does not guarantee protection from infection, non-declining species (L. lesueuri and L. genimaculata) inhabiting the rainforest of Queensland possess mixtures of peptides that may be more protective than those of the species occurring in the same habitat that have recently experienced population declines associated with chytridiomycosis (L. nannotis, L. rheocola, and Nyctimystes dayi). This study demonstrates that in vitro effectiveness of skin peptides correlates with the degree of decline in the face of an emerging pathogen. Further research is needed to assess whether this non-specific immune defense may be useful in predicting disease susceptibility in other species.  相似文献   

17.
2010年冬季寒冷天气对闽江口3种红树植物幼苗的影响   总被引:2,自引:0,他引:2  
2010年10月8日-2011年2月26日,跟踪监测了闽江河口互花米草治理试验区人工种植的秋茄(Kandelia candel)、无瓣海桑(Sonneratia apetala)和拉关木(Leguncalaria racemosa)1年生幼苗叶片相溶性物质含量以及活性氧代谢等生理生化指标.结果表明:可溶性糖和脯氨酸含量均随气温的逐步降低而增加,秋茄可溶性糖含量最高,拉关木脯氨酸含量最高;整个监测期无瓣海桑和拉关木幼苗叶片超氧阴离子(O2)产生速率显著高于秋茄(P<0.01),而超氧化物歧化酶(SOD)和过氧化物酶(POD)活性显著低于秋茄(P<0.01);3种植物叶片丙二醛(MDA)含量及电解质渗透率均随着气温的降低而增加,其中无瓣海桑和拉关木MDA含量及电解质渗透率与日最低气温为显著和极显著的负相关关系.2010年冬季持续寒冷天气对闽江河口湿地1年生土著种秋茄幼苗无破坏,对引进种无瓣海桑和拉关木造成了严重的低温胁迫并使幼苗基本全部死亡.  相似文献   

18.
Summary Amphibian skin is a rich source of peptides that are specific to pathogens and act by disrupting bacterial membranes. Three antimicrobial peptides were isolated from the skin glands of Australian tree frogs,Litoria caerulea andLitoria genimaculata. NMR spectroscopy was used to observe changes induced by these peptides in the31P resonances of bacterial membranes in vivo. Caerin 1.1 and maculatin 1.1, both wide-spectrum antibiotics disrupted the membranes ofBacillus cereus andStaphylococcus epidermidis (Gram-positive), leading to an increase in the isotropic31P NMR signal. Caerin 4.1, a narrow-spectrum antibiotic, however, did not affect the31P spectra of these organisms. The results demonstrate the use of31P NMR to study the effects of membrane-disrupting agents on the membranes of live bacteria.  相似文献   

19.
Host defense peptides of 35 species of Australian frogs from the hylids Cyclorana and Litoria, and the myobatrachids Crinia, Limnodynastes and Uperoleia have been identified. The biological activities of the majority of these peptides have been determined and include hormones, neuropeptides, opioids, immunomodulators, membrane active peptides [including antimicrobial, anticancer, antiviral (enveloped viruses like HIV and Herpes) and antifungal peptides], neuronal nitric oxide synthase inhibitors, pheromones and individual peptides with other specific activities. The host defense peptide skin profile can be diagnostic at both the species and higher taxonomic levels; for example, species of Crinia, Litoria and Uperoleia each produce quite different types of peptides. Species of Cyclorana and Limnodynastes are more difficult to characterize by skin peptides alone: species of both genera produce similar peptides with no apparent activity. The skin peptide profiles of frogs from the genera Crinia, Litoria and Uperoleia may be used together with morphological and cognate methods, to differentiate between sub-species and even different population clusters of the same species. Nucleotide sequencing of cDNAs of precursors (pre-pro peptides) of bioactive peptides from the skin glands of various species of the genus Litoria show that the majority of these peptides originated from a single ancestor gene before the break away of Australia from Gondwana. The exceptions are the caerulein neuropeptides {e.g. caerulein [pEQDY(SO3H)TGWMDF(NH2)]} which have a different origin to that of other Litoria peptides. Disulfide containing peptides from skin glands of species of Crinia show a different evolutionary route to peptides from species of Litoria.  相似文献   

20.
We examined interaction between Bacillus thuringiensis subsp. kurstaki HD-1 (Foray 48B) and larval midgut bacteria in two lepidopteran hosts, Lymantria dispar and Choristoneura fumiferana. The pathogen multiplied in either moribund (C. fumiferana) or dead (L. dispar) larvae, regardless of the presence of midgut bacteria. Inoculation of L. dispar resulted in a pronounced proliferation of enteric bacteria, which did not contribute to larval death because B. thuringiensis was able to kill larvae in absence of midgut bacteria. Sterile, aureomycin- or ampicillin-treated larvae were killed in a dose-dependent manner but there was no mortality among larvae treated with the antibiotic cocktail used by [Broderick et al., 2006] and [Broderick et al., 2009]. These results do not support an obligate role of midgut bacteria in insecticidal activity of HD-1. The outcome of experiments on the role of midgut bacteria may be more dependent on which bacterial species are dominant at the time of experimentation than on host species per se. The L. dispar cohorts used in our study had a microflora, that was dominated by Enterococcus and Staphylococcus and lacked Enterobacter. Another factor that can confound experimental results is the disk-feeding method for inoculation, which biases mortality estimates towards the least susceptible portion of the test population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号