首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 405 毫秒
1.
Evolution has set biochemical constraints on the chemical composition of living organisms. These constraints seem to lead to increases in N : C and P : C ratios with increasing relative growth rate for all types of organisms. The N : P ratio also seems to decrease with relative growth rate for heterotrophs whereas autotrophs may show a more complex behaviour. Here I will show that, from biochemical considerations, N : C should increase linearly and P : C quadratically with relative growth rate in autotrophs with the consequence that N : P increases at low relative growth rates, passes a maximum and then decreases at high relative growth rates. These predictions are verified against observations for a freshwater alga (Selenastrum minutum) and a tree seedling (Betula pendula). Changes in temperature, light or other factors that affect the growth rate of autotrophs interact with nutrient supply in such a way that there are no simple rules for as to how N : P will change.  相似文献   

2.
3.
The growth-rate hypothesis states that fast-growing organisms need relatively more phosphorus-rich RNA to support rapid rates of protein synthesis, and therefore predicts, within and among taxa, increases in RNA and phosphorus content (relative to protein and nitrogen content) with increased growth rate. Here, we present a test of this hypothesis in vascular plants. We determined nitrogen : phosphorus ratios and protein : RNA ratios in pines growing at different rates due to nutrient conditions. In general, when comparing leaves of the same species at low and high growth rates, the faster-growing plants had higher RNA content, higher %N and %P, and lower protein : RNA ratios, but not consistently lower N : P ratios. We found no link between growth rate and foliar N : P or protein : RNA when comparing multiple species of different inherent growth rates. We conclude that plants adjust the balance of protein and RNA to favour either speed or efficiency of protein synthesis, but this balance does not alone dictate leaf stoichiometry.  相似文献   

4.
5.
6.
7.
8.
9.
10.
A new framework is proposed for the interpretation of spontaneous cardiac baroreflex sensitivity data and the general concept of baroreflex resetting. The framework is used to explore baroreflex function along two separate lines of inquiry: one following a direct intervention in baroreflex function in individual subjects, another in a group of subjects where baroreflex function may have been compromised by coronary artery disease or aging. It is found that under baseline conditions the baroreflex is in a “free-floating” state in which the gain or “sensitivity” is highly variable, while under orthostatic stress or in the absence of or reduced vagal input the gain is more tightly controlled with an expected decline in sensitivity but a very large decline in the variability of that sensitivity. It is concluded that baroreflex “resetting” is better viewed not simply as a change in baroreflex sensitivity but rather as a change in the “focus” or “attention” of the baroreflex as expressed by an observed decline in the variability of the measured gain. The results do not support the interpretation of baroreflex “resetting” as a departure from or return to a universal “set point” as in homeostasis or open loop models.  相似文献   

11.
1. We examined the role of flooding on the leaf nutrient content of riparian trees by comparing the carbon : nitrogen : phosphorus (C : N : P) ratio of leaves and litter of Rio Grande cottonwood (Populus deltoides ssp. wislizenii) in flood and non‐flood sites along the Middle Rio Grande, NM, U.S.A. The leaf C : N : P ratio was also examined for two non‐native trees, saltcedar (Tamarix chinensis) and Russian olive (Elaeagnus angustifolia), and six species of dominant riparian arthropods. 2. Living leaves and leaf litter of cottonwoods at flood sites had a significantly lower leaf N : P ratio and higher %P compared with leaves and litter at non‐flood sites. A non‐flood site downstream from wastewater effluent had a significantly lower litter C : N ratio than all other sites, suggesting N fertilisation through ground water. The non‐native trees, saltcedar and Russian olive, had higher mean leaf N content, N : P ratio, and lower C : N ratio compared with cottonwoods across study sites. 3. Riparian arthropods ranged from 5.2 to 7.1 for C : N ratio, 56–216 for C : P ratio, and 8.9–34 for N : P ratio. C content ranged from 25 to 52% of dry mass, N content from 4.7 to 10.8%, and P content from 0.59 to 1.2%. Differences in stoichiometry between high C : nutrient leaf litter and low C : nutrient invertebrates suggests possible food‐quality constraints for detritivores. 4. These results suggest that spatial and temporal variation in the C : N : P ratio of cottonwood leaves and leaf litter is influenced by surface and subsurface hydrologic connection within the floodplain. Reach‐scale variation in the elemental composition of riparian organic matter inputs may have important implications for decomposition, nutrient cycling, and food webs in river floodplain systems.  相似文献   

12.
13.
14.
15.
16.
Three‐dimensional models of exoinulinase from Bacillus stearothermophilus and endoinulinase from Aspergillus niger were built up by means of homology modeling. The crystal structure of exoinulinase from Aspergillus awamori was used as a template, which is the sole structure of inulinase resolved so far. Docking and molecular dynamics simulations were performed to investigate the differences between the two inulinases in terms of substrate selectivity. The analysis of the structural differences between the two inulinases provided the basis for the explanation of their different regio‐selectivity and for the understanding of enzyme‐substrate interactions. Surface analysis was performed to point out structural features that can affect the efficiency of enzymes also after immobilization. The computational analysis of the three‐dimensional models proved to be an effective tool for acquiring information and allowed to formulate an optimal immobilized biocatalyst even more active that the native one, thus enabling the full exploitation of the catalytic potential of these enzymes. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号