首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soybean-nodulating bradyrhizobia are genetically diverse and are classified into different species. In this study, the genetic diversity of native soybean bradyrhizobia isolated from different topographical regions along the southern slopes of the Himalayan Mountains in Nepal was explored. Soil samples were collected from three different topographical regions with contrasting climates. A local soybean cultivar, Cobb, was used as a trap plant to isolate bradyrhizobia. A total of 24 isolates selected on the basis of their colony morphology were genetically characterized. For each isolate, the full nucleotide sequence of the 16S rRNA gene and ITS region, and partial sequences of the nifD and nodD1 genes were determined. Two lineages were evident in the conserved gene phylogeny; one representing Bradyrhizobium elkanii (71% of isolates), and the other representing Bradyrhizobium japonicum (21%) and Bradyrhizobium yuanmingense (8%). Phylogenetic analyses revealed three novel lineages in the Bradyrhizobium elkanii clade, indicating high levels of genetic diversity among Bradyrhizobium isolates in Nepal. B. japonicum and B. yuanmingense strains were distributed in areas from 2420 to 2660 m above sea level (asl), which were mountain regions with a temperate climate. The B. elkanii clade was distributed in two regions; hill regions ranging from 1512 to 1935 m asl, and mountain regions ranging from 2420 to 2660 m asl. Ten multi-locus genotypes were detected; seven among B. elkanii, two among B. japonicum, and one among B. yuanmingense-related isolates. The results indicated that there was higher species-level diversity of Bradyrhizobium in the temperate region than in the sub-tropical region along the southern slopes of the Himalayan Mountains in Nepal.  相似文献   

2.
3.

Background and Aims

The holoparasitic flowering plant Balanophora displays extreme floral reduction and was previously found to have enormous rate acceleration in the nuclear 18S rDNA region. So far, it remains unclear whether non-ribosomal, protein-coding genes of Balanophora also evolve in an accelerated fashion and whether the genes with high substitution rates retain their functionality. To tackle these issues, six different genes were sequenced from two Balanophora species and their rate variation and expression patterns were examined.

Methods

Sequences including nuclear PI, euAP3, TM6, LFY and RPB2 and mitochondrial matR were determined from two Balanophora spp. and compared with selected hemiparasitic species of Santalales and autotrophic core eudicots. Gene expression was detected for the six protein-coding genes and the expression patterns of the three B-class genes (PI, AP3 and TM6) were further examined across different organs of B. laxiflora using RT-PCR.

Key Results

Balanophora mitochondrial matR is highly accelerated in both nonsynonymous (dN) and synonymous (dS) substitution rates, whereas the rate variation of nuclear genes LFY, PI, euAP3, TM6 and RPB2 are less dramatic. Significant dS increases were detected in Balanophora PI, TM6, RPB2 and dN accelerations in euAP3. All of the protein-coding genes are expressed in inflorescences, indicative of their functionality. PI is restrictively expressed in tepals, synandria and floral bracts, whereas AP3 and TM6 are widely expressed in both male and female inflorescences.

Conclusions

Despite the observation that rates of sequence evolution are generally higher in Balanophora than in hemiparasitic species of Santalales and autotrophic core eudicots, the five nuclear protein-coding genes are functional and are evolving at a much slower rate than 18S rDNA. The mechanism or mechanisms responsible for rapid sequence evolution and concomitant rate acceleration for 18S rDNA and matR are currently not well understood and require further study in Balanophora and other holoparasites.  相似文献   

4.
The domestication of wheat was instrumental in spawning the civilization of humankind, and it occurred through genetic mutations that gave rise to types with non-fragile rachises, soft glumes, and free-threshing seed. Wild emmer (Triticum turgidum ssp. dicoccoides), the tetraploid AB-genome progenitor of domesticated wheat has genes that confer tenacious glumes (Tg) that underwent genetic mutations to give rise to free-threshing wheat. Here, we evaluated disomic substitution lines involving chromosomes 2A and 2B of wild emmer accessions substituted for homologous chromosomes in tetraploid and hexaploid backgrounds. The results suggested that both chromosomes 2A and 2B of wild emmer possess genes that inhibit threshability. A population of recombinant inbred lines derived from the tetraploid durum wheat variety Langdon crossed with a Langdon — T. turgidum ssp. dicoccoides accession PI 481521 chromosome 2B disomic substitution line was used to develop a genetic linkage map of 2B, evaluate the genetics of threshability, and map the gene derived from PI 481521 that inhibited threshability. A 2BS linkage map comprised of 58 markers was developed, and markers delineated the gene to a 2.3 cM interval. Comparative analysis with maps containing the tenacious glume gene Tg-D1 on chromosome arm 2DS from Aegilops tauschii, the D genome progenitor of hexaploid wheat, revealed that the gene inhibiting threshability in wild emmer was homoeologous to Tg-D1 and therefore designated Tg-B1. Comparative analysis with rice and Brachypodium distachyon indicated a high level of divergence and poorly conserved colinearity, particularly near the Tg-B1 locus. These results provide a foundation for further studies involving Tg-B1, which, together with Tg-D1, had profound influences on wheat domestication.  相似文献   

5.
Li QQ  Zhou SD  He XJ  Yu Y  Zhang YC  Wei XQ 《Annals of botany》2010,106(5):709-733

Background and Aims

The genus Allium comprises more than 800 species, placing it among the largest monocotyledonous genera. It is a variable group that is spread widely across the Holarctic region. Previous studies of Allium have been useful in identifying and assessing its evolutionary lineages. However, there are still many gaps in our knowledge of infrageneric taxonomy and evolution of Allium. Further understanding of its phylogeny and biogeography will be achieved only through continued phylogenetic studies, especially of those species endemic to China that have often been excluded from previous analyses. Earlier molecular studies have shown that Chinese Allium is not monophyletic, so the goal of the present study was to infer the phylogeny and biogeography of Allium and to provide a classification of Chinese Allium by placement of Chinese species in the context of the entire phylogeny.

Methods

Phylogenetic studies were based on sequence data of the nuclear ribosomal internal transcribed spacer (ITS) and chloroplast rps16 intron, analysed using parsimony and Bayesian approaches. Biogeographical patterns were conducted using statistical dispersal–vicariance analysis (S-DIVA).

Key Results

Phylogenetic analyses indicate that Allium is monophyletic and consists of three major clades. Optimal reconstructions have favoured the ancestors of Amerallium, Anguinum, Vvedenskya, Porphyroprason and Melanocrommyum as originating in eastern Asia.

Conclusions

Phylogenetic analyses reveal that Allium is monophyletic but that some subgenera are not. The large genetic distances imply that Allium is of ancient origin. Molecular data suggest that its evolution proceeded along three separate evolutionary lines. S-DIVA indicates that the ancestor of Amerallium, Anguinum, Vvedenskya, Porphyroprason and Melanocrommyum originated from eastern Asia and underwent different biogeographical pathways. A taxonomic synopsis of Chinese Allium at sectional level is given, which divides Chinese Allium into 13 subgenera and 34 sections.  相似文献   

6.

Background and Aims

Molecular phylogenetic studies of palms (Arecaceae) have not yet provided a fully resolved phylogeny of the family. There is a need to increase the current set of markers to resolve difficult groups such as the Neotropical subtribe Bactridinae (Arecoideae: Cocoseae). We propose the use of two single-copy nuclear genes as valuable tools for palm phylogenetics.

Methods

New primers were developed for the amplification of the AGAMOUS 1 (AG1) and PHYTOCHROME B (PHYB) genes. For the AGAMOUS gene, the paralogue 1 of Elaeis guineensis (EgAG1) was targeted. The region amplified contained coding sequences between the MIKC K and C MADS-box domains. For the PHYB gene, exon 1 (partial sequence) was first amplified in palm species using published degenerate primers for Poaceae, and then specific palm primers were designed. The two gene portions were sequenced in 22 species of palms representing all genera of Bactridinae, with emphasis on Astrocaryum and Hexopetion, the status of the latter genus still being debated.

Key Results

The new primers designed allow consistent amplification and high-quality sequencing within the palm family. The two loci studied produced more variability than chloroplast loci and equally or less variability than PRK, RPBII and ITS nuclear markers. The phylogenetic structure obtained with AG1 and PHYB genes provides new insights into intergeneric relationships within the Bactridinae and the intrageneric structure of Astrocaryum. The Hexopetion clade was recovered as monophyletic with both markers and was weakly supported as sister to Astrocaryum sensu stricto in the combined analysis. The rare Astrocaryum minus formed a species complex with Astrocaryum gynacanthum. Moreover, both AG1 and PHYB contain a microsatellite that could have further uses in species delimitation and population genetics.

Conclusions

AG1 and PHYB provide additional phylogenetic information within the palm family, and should prove useful in combination with other genes to improve the resolution of palm phylogenies.  相似文献   

7.
8.
9.
10.
The oral bacterium, Campylobacter rectus, is an etiological agent of periodontitis. The virulence genes of C. rectus are largely unknown. The aim of this study was to query C. rectus for the presence of an invasion antigen B (ciaB) gene, which is needed for cell invasion by the related species Campylobacter jejuni. PCR and PCR-walking identified a ciaB from C. rectus. In silico analyses of C. rectus 314 ciaB (Cr-ciaB) revealed an ORF of 1,830 base pairs. The Cr-CiaB protein shared significant sequence identity (BLASTx and phylogeny) with CiaB from related campylobacters. Cr-CiaB is predicted to lack membrane helices, signal peptides, and localizes to the cytoplasm; which are consistent with CiaB proteins. Expression of Cr-ciaB was confirmed with RT-PCR; and potential ciaB genes were detected in eight additional strains of C. rectus. Cr-ciaB is the first CiaB identified from the oral campylobacters.  相似文献   

11.
The higher level phylogeny of fungi has been addressed in previous studies, but for those analyses, either taxon sampling or gene sampling was low, or some basal lineages important for the inference of basidiomycete phylogeny were lacking. Here, a phylogenomic analysis based on highly conserved genes and including the enigmatic species Bartheletia paradoxa from Ginkgo biloba is presented. While phylogenetic analyses including also less conserved parts of core eukaryotic genes yielded a basal position for the extremophile genus Wallemia with low support, an exclusion of highly variable parts of these genes suggested Bartheletia paradoxa as the most basal member of the Agaricomycotina, but again with low support. Network analyses suggest a network-like evolution at the base of the Basidiomycota, supported by phylogenies based on single genes and gene clusters with shared topology. When further removing noise by removing poorly resolving genes, strong but not maximum support was obtained for Bartheletia paradoxa being the sister lineage to all other Agaricomycotina. We speculate that the lack of support for the early splits in Agaricomycotina and Basidiomycota can probably be explained by rapid radiation, linked to major evolutionary developments, such as, in the case of Basidiomycota, the advent of basidia in the last common ancestor.  相似文献   

12.
Fishes of the family Antennariidae (order Lophiiformes) are primarily shallow-water benthic forms found in nearly all tropical and subtropical oceans and seas of the world, with some taxa extending into temperate waters. Despite an earlier attempt based on morphology, no previous hypothesis of intergeneric relationships of the Antennariidae exists. To resolve phylogenetic relationships within the Antennariidae, and to test the validity of species groups within Antennarius, DNA sequences from the mitochondrial 16S and cytochrome oxidase c subunit 1 (COI) genes, and nuclear recombination activating gene 2 (RAG2), for 25 described and four undescribed antennariid species, representing 10 of 12 known genera and one undescribed genus, were unambiguously aligned and analyzed using Bayesian and maximum likelihood methods. The markers were partitioned and analyzed for substitution saturation and only the third codon position of COI (COI-3) was found to have reached saturation. However, analysis of both datasets, one with the saturated data and one without, differed only slightly. All molecular analyses recovered two major clades, one comprised of Fowlerichthys, Antennarius, Histrio, and Antennatus; and another containing Rhycherus, Antennariidae gen. et sp. nov., Kuiterichthys, Phyllophryne, Echinophryne, Tathicarpus, Lophiocharon, and Histiophryne. Evidence is presented to illustrate a correlation between phylogeny, geographic distribution, and reproductive life history. The results of these analyses provide the first hypothesis of evolutionary relationships within the Antennariidae.  相似文献   

13.

Background

Cytochrome P450s (CYPs) encode one of the most diverse enzyme superfamily in nature. They catalyze oxidative reactions of endogenous molecules and exogenous chemicals.

Methods

We identified CYPs genes through in silico analysis using EST, RNA-Seq and genome databases of channel catfish. Phylogenetic analyses and conserved syntenic analyses were conducted to determine their identities and orthologies. Meta-analysis of RNA-Seq databases was conducted to analyze expression profile of CYP genes following bacterial infection.

Results

A full set of 61 CYP genes was identified and characterized in channel catfish. Phylogenetic tree and conserved synteny provided strong evidence of their identities and orthorlogy. Lineage-specific gene duplication was evident in a number of clans in channel catfish. CYP46A1 is missing in the catfish genome as observed with syntenic analysis and RT-PCR analysis. Thirty CYPs were found up- or down-regulated in liver, while seven and eight CYPs were observed regulated in intestine and gill following bacterial infection.

Conclusion

We systematically identified and characterized a full set of 61 CYP genes in channel catfish and studied their expression profiles after bacterial infection. While bacterial challenge altered the expression of large numbers of CYP genes, the mechanisms and significance of these changes are not known.

General significance

This work provides an example to systematically study CYP genes in non-model species. Moreover, it provides a basis for further toxicological and physiological studies in channel catfish.  相似文献   

14.

Background

The Brassicaceae family is an exemplary model for studying plant polyploidy. The Brassicaceae knowledge-base includes the well-annotated Arabidopsis thaliana reference sequence; well-established evidence for three rounds of whole genome duplication (WGD); and the conservation of genomic structure, with 24 conserved genomic blocks (GBs). The recently released Brassica rapa draft genome provides an ideal opportunity to update our knowledge of the conserved genomic structures in Brassica, and to study evolutionary innovations of the mesohexaploid plant, B. rapa.

Results

Three chronological B. rapa genomes (recent, young, and old) were reconstructed with sequence divergences, revealing a trace of recursive WGD events. A total of 636 fast evolving genes were unevenly distributed throughout the recent and young genomes. The representative Gene Ontology (GO) terms for these genes were ‘stress response’ and ‘development’ both through a change in protein modification or signaling, rather than by enhancing signal recognition. In retention patterns analysis, 98% of B. rapa genes were retained as collinear gene pairs; 77% of those were singly-retained in recent or young genomes resulting from death of the ancestral copies, while others were multi-retained as long retention genes. GO enrichments indicated that single retention genes mainly function in the interpretation of genetic information, whereas, multi-retention genes were biased toward signal response, especially regarding development and defense. In the recent genome, 13,302, 5,790, and 20 gene pairs were multi-retained following Brassica whole genome triplication (WGT) events with 2, 3, and 4 homoeologous copies, respectively. Enriched GO-slim terms from B. rapa homomoelogues imply that a major effect of the B. rapa WGT may have been to acquire environmental adaptability or to change the course of development. These homoeologues seem to more frequently undergo subfunctionalization with spatial expression patterns compared with other possible events including nonfunctionalization and neofunctionalization.

Conclusion

We refined Brassicaceae GB information using the latest genomic resources, and distinguished three chronologically ordered B. rapa genomes. B. rapa genes were categorized into fast evolving, single- and multi-retention genes, and long retention genes by their substitution rates and retention patterns. Representative functions of the categorized genes were elucidated, providing better understanding of B. rapa evolution and the Brassica genus.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-606) contains supplementary material, which is available to authorized users.  相似文献   

15.
The complete genome sequence of Bacillus amyloliquefaciens type strain DSM7T is presented. A comparative analysis between the genome sequences of the plant associated strain FZB42 (Chen et al., 2007) with the genome of B. amyloliquefaciens DSM7T revealed obvious differences in the variable part of the genomes, whilst the core genomes were found to be very similar. The strains FZB42 and DSM7T have in common 3345 genes (CDS) in their core genomes; whilst 547 and 344 CDS were found to be unique in DSM7T and FZB42, respectively. The core genome shared by both strains exhibited 97.89% identity on amino acid level. The number of genes representing the core genome of the strains FZB42, DSM7T, and Bacillus subtilis DSM10T was calculated as being 3098 and their identity was 92.25%. The 3,980,199 bp genome of DSM7T contains numerous genomic islands (GI) detected by different methods. Many of them were located in vicinity of tRNA, glnA, and glmS gene copies. In contrast to FZB42, but similar to B. subtilis DSM10T, the GI were enriched in prophage sequences and often harbored transposases, integrases and recombinases. Compared to FZB42, B. amyloliquefaciens DSM7T possessed a reduced potential to non-ribosomally synthesize secondary metabolites with antibacterial and/or antifungal action. B. amyloliquefaciens DSM7T did not produce the polyketides difficidin and macrolactin and was impaired in its ability to produce lipopeptides other than surfactin. Differences established within the variable part of the genomes, justify our proposal to discriminate the plant-associated ecotype represented by FZB42 from the group of type strain related B. amyloliquefaciens soil bacteria.  相似文献   

16.
The hepatitis B virus (HBV) has a circular DNA genome of about 3,200 base pairs. Economical use of the genome with overlapping reading frames may have led to severe constraints on nucleotide substitutions along the genome and to highly variable rates of substitution among nucleotide sites. Nucleotide sequences from 13 complete HBV genomes were compared to examine such variability of substitution rates among sites and to examine the phylogenetic relationships among the HBV variants. The maximum likelihood method was employed to fit models of DNA sequence evolution that can account for the complexity of the pattern of nucleotide substitution. Comparison of the models suggests that the rates of substitution are different in different genes and codon positions; for example, the third codon position changes at a rate over ten times higher than the second position. Furthermore, substantial variation of substitution rates was detected even after the effects of genes and codon positions were corrected; that is, rates are different at different sites of the same gene or at the same codon position. Such rates after the correction were also found to be positively correlated at adjacent sites, which indicated the existence of conserved and variable domains in the proteins encoded by the viral genome. A multiparameter model validates the earlier finding that the variation in nucleotide conservation is not random around the HBV genome. The test for the existence of a molecular clock suggests that substitution rates are more or less constant among lineages. The phylogenetic relationships among the viral variants were examined. Although the data do not seem to contain sufficient information to resolve the details of the phylogeny, it appears quite certain that the serotypes of the viral variants do not reflect their genetic relatedness. Correspondence to: Z. Yang  相似文献   

17.
Molecular cloning, molecular phylogeny, gene structure and expression analyses of growth hormone (GH) were performed in a passerine bird, the jungle crow (Corvus macrorhynchos). Unexpectedly, duplicated GH cDNA and genes were identified and designated as GH1A and GH1B. In silico analyses identified the zebra finch orthologs. Both GH genes encode 217 amino acid residues and consist of five exons and four introns, spanning 5.2 kbp in GH1A and 4.2 kbp in GH1B. Predicted GH proteins of the jungle crow and zebra finch contain four conserved cysteine residues, suggesting duplicated GH genes are functional. Molecular phylogenetic analysis revealed that duplication of GH genes occur after divergence of the passerine lineage from the other avian orders as has been suggested from partial genomic DNA sequences of passerine GH genes. RT-PCR analyses confirmed expression of GH1A and GH1B in the pituitary gland. In addition, GH1A gene is expressed in all the tissues examined. However, expression of GH1B is confined to several brain areas and blood cells. These results indicate that the regulatory mechanisms of duplicated GH genes are different and that duplicated GH genes exert both endocrine and autocrine/paracrine functions.  相似文献   

18.
19.

Background

Carotenoids are isoprenoid compounds synthesized by all photosynthetic organisms. Despite much research on carotenoid biosynthesis in the model plant Arabidopsis thaliana, there is a lack of information on the carotenoid pathway in Brassica rapa. To better understand its carotenoid biosynthetic pathway, we performed a systematic analysis of carotenoid biosynthetic genes at the genome level in B. rapa.

Results

We identified 67 carotenoid biosynthetic genes in B. rapa, which were orthologs of the 47 carotenoid genes in A. thaliana. A high level of synteny was observed for carotenoid biosynthetic genes between A. thaliana and B. rapa. Out of 47 carotenoid biosynthetic genes in A. thaliana, 46 were successfully mapped to the 10 B. rapa chromosomes, and most of the genes retained more than one copy in B. rapa. The gene expansion was caused by the whole-genome triplication (WGT) event experienced by Brassica species. An expression analysis of the carotenoid biosynthetic genes suggested that their expression levels differed in root, stem, leaf, flower, callus, and silique tissues. Additionally, the paralogs of each carotenoid biosynthetic gene, which were generated from the WGT in B. rapa, showed significantly different expression levels among tissues, suggesting differentiated functions for these multi-copy genes in the carotenoid pathway.

Conclusions

This first systematic study of carotenoid biosynthetic genes in B. rapa provides insights into the carotenoid metabolic mechanisms of Brassica crops. In addition, a better understanding of carotenoid biosynthetic genes in B. rapa will contribute to the development of conventional and transgenic B. rapa cultivars with enriched carotenoid levels in the future.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1655-5) contains supplementary material, which is available to authorized users.  相似文献   

20.
Here we describe a phylogenetic analysis of sciaenids of the East China Sea based on nuclear exon-primed intron-crossing genes (EPIC markers) and a mitochondrial gene (CO1). Separate analyses of the two data partitions resulted in mostly congruent trees. Although there were some differences in the classification of these species, the main difference between trees obtained by the mitochondrial gene (CO1) and nuclear DNA sequences was the position of Miichthys miiuy and Johnius belangerii. In the mitochondrial phylogeny, Johnius belangerii was placed at the most basal position forming an individual clade, while other species formed another large cluster. Miichthys miiuy formed an independent basal sub-clade grouped with Larimichthys and Collichthys. Collichthys lucidus was grouped with Larimichthys crocea and Larimichthys polyactis. Trees based on the nuclear genes differed somewhat from those based on the CO1 mitochondrial gene. In this analysis, two groups resulted, the Larimichthys and Collichthys clade, and another clade including a total of five species: Johnius belangerii, Nibea albiflora, Pennahia argentata, Sciaenops ocellatus, and Argyrosomus japonicus; Johnius belangerii clustered with Nibea albiflora. Miichthys miiuy was placed at the basal position of the other cluster because it was an independent basal sub-clade grouped with Johnius belangerii, Nibea albiflora, Pennahia argentata, Sciaenops ocellatus, and Argyrosomus japonicus. Many aspects of the phylogeny of the Sciaenidae remain unresolved, and further analysis based on more molecular information and extensive taxon sampling is necessary to elucidate the phylogenetic relationships among the major lineages within Sciaenidae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号