首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New experimental data on the implosion of plasma of nested kapron?tungsten arrays are obtained at the Angara-5-1 facility. The mode of plasma implosion is implemented in which a shock wave region forms in the space between the inner and outer arrays where a transition from the super-Alfvénic (V r > V A ) to sub-Alfvénic (V r < V A ) plasma flow takes place. Specific features of the formation and decay of the shock region are studied using laser shadow imaging and X-ray frame photography. The plasma density in the transition region is estimated. By comparing the experimental data with the results of simulations of quasi-steady implosion of a nested array with allowance for extended plasma production, the physical conditions are determined at which the implosion mode with the formation the shock region takes place. Stable compression of the plasma of the inner array was observed during the implosion of combined nested arrays with a fiber outer array and tungsten inner array. Suppression of magnetic Rayleigh-Taylor instability during the compression of the inner array plasma results in the formation of a compact radiating Z-pinch and generation of a soft X-ray pulse with a peak power of 4 TW and duration of about 5 ns.  相似文献   

2.
The role of the Hall effect in experiments on the magnetic implosion of a D-T plasma in a cylindrical MTF/MAGO chamber fed from a helical explosive magnetic generator is investigated. The plasma dynamics is simulated numerically by a 2D code developed for solving the set of MHD equations with account of the Hall effect. In simulations, the generator, the break switch, and other units were replaced with LR circuits. It is shown that taking into account the Hall effect provides better agreement between numerical simulations and experimental data.  相似文献   

3.
Results from experimental studies of implosion of nested wire and fiber arrays at currents of up to 4 МА at the Angara-5-1 facility are presented. Depending on the ratio between the radii of the inner and outer arrays, different modes of the plasma flow in the space between the inner and outer arrays were implemented: the sub-Alfvénic (V r < V А ) and super-Alfvénic (V r > V А ) modes and a mode with the formation of the transition shock wave (SW) region between the cascades. By varying the material of the outer array (tungsten wires or kapron fibers), it is shown that the plasma flow mode between the inner and outer arrays depends on the ratio between the plasma production rates ?in /?out in the inner and outer arrays. The obtained experimental results are compared with the results of one-dimensional MHD simulation of the plasma flow between the arrays. Stable implosion of the inner array plasma was observed in experiments with combined nested arrays consisting of a fiber outer array and a tungsten inner array. The growth rates of magnetic Rayleigh?Taylor (MRT) instability in the inner array plasma at different numbers of fibers in the outer array and different ratios between the radii of the inner and outer arrays are compared. Suppression of MRT instability during the implosion of the inner array plasma results in the formation of a stable compact Z-pinch and generation of a soft X-ray pulse. A possible scenario of interaction between the plasmas of the inner and outer arrays is offered. The stability of the inner array plasma in the stage of final compression depends on the character of interaction of plasma jets from the outer array with the magnetic field of the inner array.  相似文献   

4.
Results of experimental studies of the implosion of quasi-spherical wire (or metalized fiber) arrays are presented. The goal of the experiments was to achieve synchronous three-dimensional compression of the plasma produced in different regions of a quasi-spherical array into its geometrical center. To search for optimal synchronization conditions, quasi-spherical arrays with different initial profiles of the linear mass were used. The following dependences of the linear mass on the poloidal angle were used: m l (θ) ∝ sin–1θ and m l (θ) ∝ sin–2θ. The compression dynamics of such arrays was compared with that of quasi-spherical arrays without linear mass profiling, m l (θ) = const. To verify the experimental data, the spatiotemporal dynamics of plasma compression in quasi-spherical arrays was studied using various diagnostics. The experiments on three-dimensional implosion of quasi-spherical arrays made it possible to study how the frozen-in magnetic field of the discharge current penetrates into the array. By measuring the magnetic field in the plasma of a quasi-spherical array, information is obtained on the processes of plasma production and formation of plasma flows from the wire/fiber regions with and without an additionally deposited mass. It is found that penetration of the magnetic flux depends on the initial linear mass profile m l (θ) of the quasi-spherical array. From space-resolved spectral measurements and frame imaging of plasma X-ray emission, information is obtained on the dimensions and shape of the X-ray source formed during the implosion of a quasi-spherical array. The intensity of this source is estimated and compared with that of the Z-pinch formed during the implosion of a cylindrical array.  相似文献   

5.
MHD oscillations with m/n = 4/1 and 3/1 that arise at the periphery of the TUMAN-3M tokamak in the initial stage of a discharge are investigated. It is found that these oscillations lead to a significant modulation of the electron density n e , which is attributable to the accumulation of plasma within a magnetic island. Numerical simulations of the modulation structure made it possible to determine the radius of the resonant surface and the radial width of the island and to evaluate the characteristic density gradient in the island. The gradient was found to be ten times larger than that of the unperturbed profile of n e (r) near the resonant surface. This points to reduced plasma transport within the magnetic island.  相似文献   

6.
On the basis of a two-component (two-fluid) hydrodynamic model, it is shown that the probable phenomenon of solar core rotation with a velocity higher than the average velocity of global rotation of the Sun, discovered by the SOHO mission, can be related to fast solid-body rotation of the light hydrogen component of the solar plasma, which is caused by thermonuclear fusion of hydrogen into helium inside the hot dense solar core. Thermonuclear fusion of four protons into a helium nucleus (α-particle) creates a large free specific volume per unit particle due to the large difference between the densities of the solar plasma and nuclear matter. As a result, an efficient volumetric sink of one of the components of the solar substance—hydrogen—forms inside the solar core. Therefore, a steady-state radial proton flux converging to the center should exist inside the Sun, which maintains a constant concentration of hydrogen as it burns out in the solar core. It is demonstrated that such a converging flux of hydrogen plasma with the radial velocity v r (r) = ?βr creates a convective, v r ?v φ/?r, and a local Coriolis, v r v φ/r,φ nonlinear hydrodynamic forces in the solar plasma, rotating with the azimuthal velocity v φ. In the absence of dissipation, these forces should cause an exponential growth of the solid-body rotation velocity of the hydrogen component inside the solar core. However, friction between the hydrogen and helium components of the solar plasma due to Coulomb collisions of protons with α-particles results in a steady-state regime of rotation of the hydrogen component in the solar core with an angular velocity substantially exceeding the global rotational velocity of the Sun. It is suggested that the observed differential (liquid-like) rotation of the visible surface of the Sun (photosphere) with the maximum angular velocity at the equator is caused by sold-body rotation of the solar plasma in the radiation zone and strong turbulence in the tachocline layer, where the turbulent viscosity reaches its maximum value at the equator. There, the tachocline layer exerts the most efficient drag on the less dense outer layers of the solar plasma, which are slowed down due to the interaction with the ambient space plasma (solar wind).  相似文献   

7.
8.
A study is made of the structure of a relativistic current filament with the azimuthal magnetic field Bθ in the range 4πn e m e c2?B θ 2 n i m i c2, when the plasma quasineutrality near the filament axis is violated and a narrow peak in electron density is formed there. The ion dynamics in a strong radial electric field of the filament on time scales of about several inverse ion plasma frequencies ω pi ?1 is investigated. The initial ion pressure prevents the ion plasma component from compression to infinitely high densities under the action of the electric field and leads to the formation of a dense hot plasma core near the axis of the Z-pinch on time scales of about a dozen ω pi ?1 . The compression of the ion component in the axial region gives rise to a collisionless “unloading” shock wave that propagates away from the axis and is accompanied by the vanishing of the radial ion velocity behind the shock front, the accumulation of positive charge near the axis, and the formation of a steady-state ion density profile. It is shown theoretically that ion-ion dissipation manifests itself as the destruction of the hot core of the formed Z-pinch on picosecond time scales. This may serve to explain the explosions of “hot points” in a current-carrying plasma.  相似文献   

9.
Turbulent dynamics of the edge plasma in the T-10 tokamak is simulated numerically by solving nonlinear MHD equations in the framework of the four-field {?, n, p e , p i } reduced two-fluid Braginskii hydro-dynamics. It is shown that the transition from ohmic to electron-cyclotron heating is accompanied by a decrease in the amplitudes of turbulent fluctuations in plasma. This is caused by the enhancement of longitudinal dissipation due to the increase in the electron temperature. However, phase relations between potential fluctuations of different modes change in such a way that the Reynolds turbulent force increases, which leads to an increase in the poloidal velocity in the direction of ion diamagnetic drift. Since the poloidal and ion diamagnetic drift velocities enter into the equation of the radial force balance for ions with different signs, the radial electric field decreases. The simulation results agree qualitatively with the results of experiments in the T-10 tokamak. The dependence of the radial electric field on the plasma density, ion pressure, and neutral density is also calculated.  相似文献   

10.
Acinetobacter baumannii is a species of non fermentative Gram-negative bacteria commonly found in water and soil. This organism was susceptible to most antibiotics in the 1970s. It has now become a major cause of hospital-acquired infections worldwide due to its remarkable propensity to rapidly acquire resistance determinants to a wide range of antibacterial agents. Herein we have determined the mutation frequency of two hot spot residue 83 in gyrA of gyrase and residue 80 in parC of topoisomerase IV and performed a comparative screen the drug resistance ability in 128 clinical isolates ofAcinetobacter baumannii in Taiwan region. Low frequency of mutation was found (11.7%, 11.7%, and 10.2% ingyrA, parC, or both, respectively). Mutation of these sites was not correlated with drug resistance. Our study suggested that mutation ofgyrA andparC may play a minor role in quinolone resistance and other mechanisms may contribute to the drug resistance ofA. Baumannii.  相似文献   

11.
The transverse oscillations of a coronal magnetic loop whose ends are rigidly fixed in the photosphere are investigated. The loop is assumed to be inhomogeneous and to comprise two internal structural components: a central dense hot filament and a coaxial rarefied shell around it, in which the plasma density is lower than the density of the surrounding coronal plasma. The Alfvén speed in the shell, VAm, is higher than that in the central filament and in the corona: VAm>VAe>VAi. It is shown that, in the perfectly conducting plasma approximation, such a loop can generate two fast magnetosonic waves. The higher velocity wave is emitted in a radial direction, thereby ensuring the effect of the radiative damping of oscillations at the frequency of the m=1 cylindrical mode. The results of calculating the effect of radiative losses show that, for typical loop parameters (corresponding to those of the loops observed in the solar corona), the quality factor of oscillations may be fairly low (Q≈40). Under the conditions in question, the second (lower velocity) fast magnetosonic wave is not emitted (in contrast to the first) but rather turns out to be trapped in the magnetic flux tube.  相似文献   

12.
Ionization and recombination processes accompanying collisions of free electrons with plasma ions are considered using a statistical atomic model in which ionization and recombination are regarded as the processes of pair electron collisions in the electron gas of an atom. An expression for the ionization rate as a function of the ionization energy I and temperature T is derived. According to this expression, the ionization rate at I ? T is proportional to exp(?I/T). The statistical atomic model provides an estimate of the recombination rate for an ion with an arbitrary nuclear charge number Z, whereas more exact calculations of the recombination rate can be performed only for large Z. The model explains relatively low values of I/T (as compared to those given by the Saha equation) under the coronal equilibrium conditions and predicts a reduction in I/T with increasing Z. The values of I/T and the average ion charge number obtained from the balance equation for multielectron ions with the use of one fitting coefficient agree with the tabulated data calculated in the multilevel coronal model.  相似文献   

13.
The spatial distributions of the magnetic field, plasma density, and current at distances of (20–400)RS from the Sun (where RS is the solar radius) are investigated within a stationary axisymmetric MHD model of the solar wind (SW) at all latitudes in the inertial frame of reference with the origin at the center of the Sun. The model takes into account differential (with respect to the heliolatitude) rotation of the Sun and full corotation of plasma inside a boundary sphere of radius 20RS, which breaks down beyond this sphere. Self-consistent distributions of the plasma density, current, and magnetic field in the SW are obtained by numerically solving a set of time-independent MHD equations in spherical coordinates. It is demonstrated that the calculated results do not contradict observational data and describe a gradual transition from the fast SW at high heliolatitudes to the slow SW at low heliolatitudes, as well as the steepening of the profiles of the main SW characteristics with increasing distance from the Sun. The obtained dependences extend understanding of the SW structure at low and high latitudes and agree with the well-known Parker model in the limit of a small Ampère force.  相似文献   

14.
Results are presented from experiments on the X-ray backlighting of the axial region of an imploding high-current multiwire liner. Backlighting was performed with the use of an X-pinch serving as a source of soft X-ray emission, which was recorded by pin diodes. The use of several filters with different passbands in front of the pin diodes allowed the interpretation of the results of measurements in experiments with cascade composite liners. The sensitivity of the diagnostics was ≈125 µg/cm2 for a plasma of high-Z elements (W) and ≈220 µg/cm2 for a plasma of low-Z elements (C, O, N) at a photon energy of the probing radiation of 1.0–1.5 keV. An advantage of the method is its high time resolution (≈1 ns) and the possibility of the separation in time of the emission bursts from Z-and X-pinches on the liner axis. The method does not impose restrictions on the pulse duration of the backlighting radiation source.  相似文献   

15.
A helical MHD perturbation in a finite-conductivity tokamak plasma has been considered in the straight-cylinder model in a situation where there is no resonance surface q = m/n in plasma. The radial eigenfunction of the helical mode, in addition to the large-scale component described at σ||→ ∞ by the ideal MHD equation, contains a small-scale component localized near the wall and near discontinuities in the radial profiles of the unperturbed quantities. At smooth profiles, the small-scale component is attached to the wall and is smaller in magnitude than the large-scale component. Therefore, beyond a thin near-wall plasma layer, the mode is close to the large-scale ideal MHD mode. The presence of the small-scale component is necessary to satisfy the boundary conditions for the perturbed field on the wall.  相似文献   

16.
The possibility of generating dense multicharged ion beams with a current density as high as ~1 A/cm2 from an ECR plasma confined in a quasi-gas-dynamic cusp trap is studied both theoretically and experimentally. The most important advantages of this type of ion source are that the plasma in the cusp is stabile against MHD perturbations and that a trap intended to operate at fairly high pump-field frequencies (above 30 GHz) is relatively inexpensive. A theoretical model of confinement of a high-density nonequilibrium ECR plasma (T e ? T i ) in an open magnetic trap is proposed and results are presented from model experiments with an ~30-cm-long cusp trap (here, by the cusp length is meant the volume of a paraxial magnetic tube divided by the area of its cross sections in magnetic mirrors) pumped by a pulsed microwave field with a frequency of 37.5 GHz and power of 100 kW. The possibility of achieving a quasi-gas-dynamic regime of plasma confinement of an ECR plasma in a cusp trap is demonstrated. Ion beams with a average ion charge number of 2–4 (depending on the sort of working gas) and current densities unprecedented for ECR sources are obtained. Good agreement between theoretical and experimental results makes it possible to reliably predict the ion beam parameters that can be achieved at even higher microwave frequencies.  相似文献   

17.
We investigated the bacterial community structure of Soldhar hot spring with extreme high temperature 95°C located in Uttarakhand, India using high throughput sequencing. Bacterial phyla Proteobacteria (88.8%), Deinococcus-Thermus (7.5%), Actinobacteria (2.3%), and Firmicutes (1.07%) were predominated in the sequencing survey, whereas Bacteroidetes, Verrucomicrobia, Aquificae and Acidobacteria were detected in relatively lower abundance in Soldhar hot spring. At the family level, Comamonadaceae (52.5%), Alteromonadaceae (15.9%), and Thermaceae (7.5%) were mostly dominated in the ecosystem followed by Chromatiaceae, Microbacteriaceae, and Cyclobacteriaceae. Besides, members of Rhodobacteraceae, Moraxellaceae, Xanthomonadaceae, Aquificaceae, Enterobacteriaceae, Bacillaceae, Methylophilaceae, etc. were detected as a relatively lower abundance. In the present study we discuss the overall microbial community structure and their relevance to the ecology of the Soldhar hot spring environment.  相似文献   

18.
Impurity injection into plasma caused by the sputtering of the wall coating in the L-2M stellarator during auxiliary electron cyclotron resonance heating leads to a change in the level of plasma density fluctuations with frequencies above 0.25 MHz: suppression of long-wavelength (k = 2 cm–1) density fluctuations in the edge plasma, intensification of short-wavelength (k = 30 cm–1) and long-wavelength (k = 1 cm–1) fluctuations at the midradius of the plasma column, and intensification of short-wavelength fluctuations (k = 20 cm–1) in the plasma center (including the gyroresonance region). At the same time, the level of fluctuations with frequencies below 0.25 MHz remains unchanged. In the edge plasma, a decrease in the plasma potential and suppression of its fluctuations is observed during impurity injection, which also causes an increase in MHD activity.  相似文献   

19.
In experiments on lower hybrid current drive (LHCD) carried out at the FT-2 tokamak, a substantial increase in the central electron temperature T e (r = 0 cm) from 550 to 700 eV was observed. A complex simulation procedure is used to explain a fairly high LHCD efficiency and the observed additional heating, which can be attributed to a transition into the improved core confinement (ICC) mode. For numerical simulations, data obtained in experiments with deuterium plasma at 〈n e 〉 = 1.6 × 1019 m–3 were used. Simulations by the GRILL3D, FRTC, and ASTRA codes have shown that the increase in the density and central temperature is apparently caused by a significant suppression of heat transport in the electron component. The mechanism for transition into the improved confinement mode at r < 3 cm can be associated with the broadening of the plasma current channel due to the lower hybrid drive of the current carried by superthermal and runaway electrons. In this case, the magnetic shear s = (r/q)(dq/dr) in the axial region of the plasma column almost vanishes during the RF pulse. In this study, the effect of lower hybrid waves on the plasma parameters, resulting in a transition into the ICC mode, is considered. New experimental and calculated data are presented that evidence in favor of such a transition. Special attention is paid to the existence of a threshold for the transition into the ICC mode in deuterium plasma.  相似文献   

20.
Two questions are of interest concerning the male reproductive system in Gordiida: (1) is the epithelium surrounding the testis continuous or discontinuous and (2) is the type of spermatozoon as described at the transmission electron-microscopical level for the two species of Gordius typical for all Gordiida? An examination of the South American species Pseudochordodes bedriagae has allowed us to add new information to this poorly studied phylum. Testicular tubes are large, filled with spermatozoa, and surrounded by a continuous epithelium. The epithelial cells that line the posterior testes occasionally overlap, and their cytoplasm is narrow and contains dense granules, abundant endoplasmic reticulum, and vesicles. The plasma membrane possesses microvilli with many filaments. This epithelium rests on a basement membrane. The spermatozoa in P. bedriagae resemble the known spermatozoa of two Gordius species but differ in presenting a uniform halo layer of less dense chromatin that surrounds the dense chromatin in the nucleus. The finding that a similar type of spermatozoa occurs in both genera (Pseudochordodes and Gordius) makes it likely that it is present in all other Gordiida and is therefore an autapomorphy of the Gordiida.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号