首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Rat liver nuclear ribonucleoprotein particles were prepared by two different methods and defined as 40S ribonucleoprotein (40S RNP) and heterogeneous nuclear ribonucleoprotein (HnRNP) particles. The RNP particles were either solubilized in 8 M urea--6 mM 2-mercaptoethanol--20 mM glycine--20 mM Tris--HCl (pH 8.4) or subjected to removal of RNA by phenol extraction prior to solubilizing the proteins in the urea buffer. The proteins associated with 40S RNP and HnRNP were heterogeneous and very similar in their electrophoretic patterns when analyzed by two-dimensional PAGE, except a protein with molecular weight of 62 000 and an isoelectric point (pI) of 6.2 was present only in HnRNP particles. At least 12 major and 22 minor components could be identified in both preparations. The major proteins were found at pI values varying from 6.0 to 8.5 and with molecular weights from 32 000 to 42 000, and a group of proteins with molecular weight approximately 65 000 were more prominent in HnRNP than in 40S RNP. The other components were found mainly at pI ranges from 5.0 to 6.5 with molecular weights from 43 000 to 65 000. The phenol method extracted essentially all proteins associated with either 40S RNP and HnRNP, but was less effective in extracting a group of proteins with pI values from 5.0 to 5.5 and more efficient for proteins with pI values from 7.5 to 8.5. When chromatin proteins isolated by phenol extraction were compared with HnRNP particle proteins isolated by the same method, the electrophoretic mobilities of the HnRNP particle proteins were found to be identical with a fraction nonhistone chromatin proteins. The 40S RNP particles were further purified by metrizamide isopycnic density gradient centrifugation. The electrophoretic patterns of these proteins were very similar to those prepared by sucrose density gradient centrifugation. Therefore, we concluded that the proteins of RNP particles constituted part of the chromatin proteins.  相似文献   

3.
U1 small nuclear RNA is thought to be involved in messenger RNA splicing by binding to complementary sequences in pre-mRNA. We have investigated intermolecular base-pairing between pre-mRNA (hnRNA) and U1 small nuclear RNA by psoralen crosslinking in situ, with emphasis on ribonucleoprotein structure. HeLa cells were pulse-labeled with [3H]uridine under conditions in which hnRNA is preferentially labeled. Isolated nuclei were treated with aminomethyltrioxsalen , which produces interstrand crosslinks at sites of base-pairing between hnRNA and U1 RNA. hnRNA-ribonucleoprotein (hnRNP) particles were isolated in sucrose gradients containing 50% formamide, to dissociate non-crosslinked U1 RNA, and then analyzed by immunoaffinity chromatography using a human autoantibody that is specific for the ribonucleoprotein form of U1 RNA (anti-U1 RNP). After psoralen crosslinking, pulse-labeled hnRNA in hnRNP particles reproducibly bound to anti-U1 RNP. The amount of hnRNA bound to anti-U1 RNP was reduced 80 to 85% when psoralen crosslinking of nuclei was omitted, or if the crosslinks between U1 RNA and hnRNA were photo-reversed prior to immunoaffinity chromatography. Analysis of the proteins bound to anti-U1 RNP after crosslink reversal revealed polypeptides having molecular weights similar to those previously described for U1 RNP. These proteins did not bind to control, non-immune human immunoglobulin G. These results indicate that the subset of nuclear U1 RNA that is base-paired with hnRNA at a given time in the cell is a ribonucleoprotein. This raises the possibility that these proteins, as well as U1 RNA itself, may participate in pre-mRNA splice site recognition by U1 RNP.  相似文献   

4.
Proteins associated with heterogeneous nuclear RNA in eukaryotic cells   总被引:55,自引:0,他引:55  
When HeLa cell nuclei axe mechanically disrupted in either hypotonic or isotonic buffers, heterogeneous nuclear RNA is recovered from the post-nucleolar fraction in the form of EDTA-resistant ribonucleoprotein particles, which sediment between 40 S and 250 S in sucrose gradients containing 0.01 m or 0.15 m-NaCl. That the RNA in these particles is HnRNA2 is indicated by its heterodisperse sedimentation (20 to 80 S) and its continued synthesis in concentrations of actinomycin D that selectively inhibit the synthesis of ribosomal RNA. The specificity of the HnRNA-protein complexes is evidenced by the failure of deliberate attempts to generate artificial RNP by the addition of deproteinized HnRNA to intact or disrupted nuclei at low ionic strength.The proteins bound to HnRNA are complex. In HeLa cells, HnRNP particles contain proteins with molecular weights from 39,000 to approximately 180,000 (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and isoelectric points between 4.9 and 8.3 (analytical isoelectric focusing). They are readily distinguishable from proteins in other cell fractions, including those in chromatin.Exposure of HeLa HnRNP particles to 0.5 m-NaCl reduces their average sedimentation velocity by approximately 30%. CsCl density-gradient analysis reveals that this is accompanied by the loss of a major portion of the proteins. However, a significant fraction of the HnRNP (25 to 30%) is resistant to high salt concentrations and continues to band at the same density as native HnRNP (1.43 g/cm3). This is true even after prolonged exposure (24 h) to high salt. The salt-resistant HnRNP is enriched for proteins above 60,000 molecular weight. In at least these two respects, this sub-class of HnRNP resembles “messenger RNP” prepared from cytoplasmic polyribosomes, which is also salt-stable and contains relatively high molecular weight proteins.HnRNP particles can also be recovered from HeLa cell nuclei lysed in high salt but these contain many extra proteins, notably histones, and sediment much faster in sucrose gradients than particles prepared as above. HnRNP is not liberated by extracting HeLa nuclei in 0.14 m-NaCl, pH 8.0 (Samarina et al., 1967) unless the temperature is 20 °C or higher. In this case the particles are converted to 45 S structures, which contain partially degraded HnRNA. 45 S particles can also be produced by subjecting 40 to 250 S HnRNP to a very limited digestion with pancreatic ribonuclease (1 to 2 hits/molecule).HnRNP particles have similar sedimentation velocities (40 to 300 S) when isolated under physiological ionic conditions from a variety of mammalian cells, including WI38 human diploid fibroblasts, mouse L-cells, monkey kidney cells and rat liver. However, electrophoresis reveals a distinct pattern of HnRNP proteins for each cell type. It is proposed that this cell-specificity reflects a situation in which HnRNA molecules that differ in nucleotide sequence are complexed with different sets of proteins, so that the resulting HnRNP particles are biochemically distinct at each genetic locus. This hypothesis is discussed in relation to the cytology of lampbrush and polytene chromosomes.  相似文献   

5.
In vitro reconstitution of hnRNP particles   总被引:1,自引:0,他引:1  
The assembly of hnRNP-like particles was studied by in vitro reconstitution, UV-crosslinking and CsCl-equilibrium centrifugation. Using total nuclear protein and RNA extracts from HeLa cells for RNP reconstitution, RNP particles sedimenting with the same buoyant density of p = 1.4 g/cm3 as 'native' 40 S core hnRNPs were obtained. Under the stringent reconstitution conditions used, hnRNP complexes containing only the Cl-core hnRNP protein could be identified.  相似文献   

6.
HnRNP proteins have been implicated in most stages of cellular mRNA metabolism, including processing, nucleocytoplasmic transport, stability, and localization. Several hnRNP proteins are also known to participate in key early developmental decisions. In order to facilitate functional studies of these pre-mRNA- and mRNA-binding proteins in a vertebrate organism amenable to developmental studies and experimental manipulation, we identified and purified the major hnRNP proteins and isolated the hnRNP complex from Xenopus laevis oocytes and somatic cells. Using affinity chromatography and immunological methods, we isolated a family of >15 abundant single-stranded nucleic acid-binding proteins, which range in apparent molecular weight from approximately 20 kDa to >150 kDa, and with isoelectric points from <5 to >8. Monoclonal antibodies revealed that a subset of these proteins are major hnRNP proteins in both oocytes and somatic cells in culture, and include proteins related to human hnRNP A2/B1/B2 and hnRNP K. UV crosslinking in living cells demonstrated that these proteins bind poly(A)+ RNA in vivo. Immunopurification using a monoclonal antibodyto X. aevishnRNPA2 resulted in the isolation of RNP complexes that contain a specific subset of single-stranded nucleic acid-binding proteins. The protein composition of complexes isolated from somatic cells and from oocyte germinal vesicles was similar, suggesting that the overall properties and functions of hnRNP proteins in these two cell types are comparable. These findings, together with the novel probes generated here, will also facilitate studies of the function of vertebrate RNA-binding proteins using the well characterized X. laevis oocyte and early embryo as experimental systems.  相似文献   

7.
Purification and visualization of native spliceosomes   总被引:38,自引:0,他引:38  
R Reed  J Griffith  T Maniatis 《Cell》1988,53(6):949-961
Mammalian spliceosomes were purified in preparative amounts by gel filtration chromatography and shown to be functional by in vitro complementation experiments. The column fractions containing spliceosomes are enriched in the snRNAs U1, U2, U4, U5, and U6 and a subset of proteins present in the nuclear extract. Splicing intermediates, the entire set of snRNAs, and the enriched proteins can be immunoprecipitated with three different monoclonal antibodies that recognize snRNP determinants. At least one U1 snRNP is present in each spliceosome since the particles are quantitatively immunoprecipitated by an anti-U1 snRNP monoclonal antibody. Examination of the spliceosome fractions by EM revealed a relatively homogeneous population of 40-60 nm particles with a striking morphology. Evidence that these particles are spliceosomes is their sensitivity to micrococcal nuclease, their ATP-dependent assembly, and their immunoprecipitation with a trimethyl cap monoclonal antibody. In addition, pre-mRNA was visualized in the particles by EM.  相似文献   

8.
Two structurally distinct RNP complexes (MI and MII), each with a sedimentation value of approx. 40S, were isolated from rat liver nuclear extracts by sucrose gradient centrifugation and subsequent native gel electrophoresis of the 40S hnRNP-containing fractions. MII RNP contained the bulk of hnRNA and hnRNP proteins (i.e. the 32-45KD core proteins and polypeptides of 60-80 and 110-130KD). MI RNP was characterized by the exclusive presence of U-snRNAs (U1, U2, U4, U5 and U6), their well known snRNP polypeptides and a number of Sm-associated proteins in the range of 50-210KD. Immunoselection experiments employing a monoclonal antibody with an established specificity for the U2-snRNP-specific B" polypeptide proved that the RNA and protein components characteristic of MI were part of a single multi-snRNP unit. The prominent 200/210KD protein doublet of MI was identified immunochemically as the rat homologue of the yeast PRP8 protein, a known U5-associated splicing component. Based on the major biochemical and immunochemical features of MI and MII RNP complexes, we conclude that MII represents the monomeric 40S hnRNP structure, whereas MI defines a novel multi-snRNP entity.  相似文献   

9.
Heterogeneous nuclear RNA and polyribosomal messenger RNA are both complexed with specific sets of proteins in the cell, forming ribonucleoprotein complexes known as hnRNP and mRNP, respectively. In the present investigation, the nucleoprotein structures of globin mRNA sequences in hnRNP and mRNP were probed by digestion with nuclease, under conditions in which RNA-protein rearrangements were shown not to occur. Mild digestion with pancreatic RNAase of a Friend erythroleukemia cell RNP fraction containing both hnRNP and mRNP resulted in a preferential depletion of globin mRNA-homologous sequences, as measured by hybridization of the surviving RNA with globin complementary DNA. Hypersensitivity to nuclease typifies 65% of the globin mRNA-homologous sequences, with the other 35% remaining relatively nuclease-resistant. Removal of polyribosomal mRNP by release with EDTA, followed by re-isolation of hnRNP on a sucrose gradient eliminated the nuclease-hypersensitive class of globin mRNA sequences in favor of the relatively nuclease-resistant class. These results suggest that mRNA sequences are more nuclease-sensitive in polyribosomal mRNP than they are in nuclear hnRNP particles. The implication is that mRNA sequences undergo a significant change in RNP structure at some point during their movement from nucleus to cytoplasm.  相似文献   

10.
The distribution of U snRNAs during mitosis was studied by indirect immunofluorescence microscopy with snRNA cap-specific anti-m3G antibodies. Whereas the snRNAs are strictly nuclear at late prophase, they become distributed in the cell plasm at metaphase and anaphase. They re-enter the newly formed nuclei of the two daughter cells at early telophase, producing speckled nuclear fluorescent patterns typical of interphase cells. While the snRNAs become concentrated at the rim of the condensing chromosomes and at interchromosomal regions at late prophase, essentially no association of the snRNAs was observed with the condensed chromosomes during metaphase and anaphase. Independent immunofluorescent studies with anti-(U1)RNP autoantibodies, which react specifically with proteins unique to the U1 snRNP species, showed the same distribution of snRNP antigens during mitosis as was observed with the snRNA-specific anti-m3G antibody. Immunoprecipitation studies with anti-(U1)RNP and anti-Sm autoantibodies, as well as protein analysis of snRNPs isolated from extracts of mitotic cells, demonstrate that the snRNAs remain associated in a specific manner with the same set of proteins during interphase and mitosis. The concept that the overall structure of the snRNPs is maintained during mitosis also applies to the coexistence of the snRNAs U4 and U6 in a single ribonucleoprotein complex. Particle sedimentation studies in sucrose gradients reveal that most of the snRNPs present in sonicates of mitotic cells do not sediment as free RNP particles, but remain associated with high molecular weight (HMW) structures other than chromatin, most probably with hnRNA/RNP.  相似文献   

11.
The 5' ends of U1, U2, U3, U4, and U5 small nuclear RNAs (snRNA) are capped by a structure which contains N2,N2-7-trimethylguanosine (m2,2,7 G). m2,2,7 G was used as hapten to raise antibodies in rabbits, and these antibodies were linked to Sepharose. When deproteinized RNA was passed through this antibody column, these snRNA species were retained by the column. Conversely, 4 S, 5 S, 5.8 S, U6, and 7 S RNA, whose 5' termini do not contain m2,2,7 G, were not recognized. After a nuclear extract was loaded on the column, U1 RNA and some U2 RNA were retained. Therefore, the 5' ends of at least U1 RNA are accessible when this RNA species is in small nuclear ribonucleoprotein particle (snRNP) form. This is of interest, since it has been proposed that the 5' terminus sequence of U1 RNA may hybridize with splice junctions in heterogeneous nuclear ribonucleoprotein particles (hnRNP) during mRNA splicing. The retention of m2,2,7 G-containing RNA species by these antibodies is not due to association of snRNAs or snRNPs with heterogeneous nuclear RNA (hnRNA) or hnRNP (and antibody recognition of 7-monomethylguanosine residues in hnRNA), since the reaction still occurs after removal of hnRNA or hnRNP by sucrose gradient centrifugation.  相似文献   

12.
J P Fuchs  M Jacob 《Biochemistry》1979,18(19):4202-4208
A method of fractionation of hnRNP constituents adaptable to large-scale preparation is presented. It is based on differential resistance to salt dissociation of the two classes of units of hnRNP, the 30--50S monoparticles and the heterogeneous complexes. The monoparticle proteins were released from hnRNP by 0.4 M NaCl. They were separated from the salt-resistant RNP corresponding to the heterogeneous complexes in three steps: chromatography on DEAE-cellulose, high-speed centrifugation, and Bio-Gel chromatography. The latter chromatography permitted a first fractionation of monoparticle proteins according to molecular weight. Such fractions may serve for purification of individual proteins of molecular weight below 80 000. After the two first steps, two fractions of salt-resistant RNP were obtained. In addition to heterogeneous RNA up to 30 S, small nuclear RNAs were detected which represented 6% of total RNA. The protein pattern was complex, and no clear-cut segregation of groups of proteins could be observed between the two fractions. They were both highly enriched in phosphoproteins as compared to nomoparticle proteins. In another fraction corresponding to the void volume of Bio-Gel chromatography, one-third of the RNA was small nuclear RNA. It is suggested that this fraction contains snRNP in addition to free proteins of molecular weight above 80 000 and to salt-resistant RNP similar to those described above but of small size.  相似文献   

13.
Small nuclear ribonucleoprotein particles (snRNPs) from eucaryotic cells can be fractionated on affinity columns prepared with antibodies of high affinity for 2,2,7-trimethyl-guanosine (m3G), which is present in the 5'-terminal caps of the snRNAs. While the snRNPs U1, U2 and U5 are eluted with the nucleoside m3G in the presence of 0.1 M salt, the snRNP species U4 and U6 are only desorbed when the salt concentration is increased. The same fractionation pattern was likewise observed for snRNPs from HeLa or Ehrlich ascites tumor cells. Since U6 RNA lacks the m3G residue and its RNA does not react with anti-m3G, its co-chromatography with U4 RNP on anti-m3G affinity columns suggests either that discrete snRNPs U4 and U6 are intimately associated in nuclear extracts or that both RNAs are organized in one ribonucleoprotein particle. Further evidence for a U4/U6 RNP particle is obtained by sedimentation studies with purified snRNPs in sucrose gradients. Gel fractionation of RNAs shows identical distributions of snRNAs U4 and U6 in the gradient, and the U4/U6 RNP particle sediments faster than the snRNPs U1 or U2. Physical association between snRNPs U4 and U6 during sedimentation is shown by their co-precipitation with anti-m3G IgG from the gradient fractions. Finally, experimental evidence is provided that snRNAs U4 and U6 are associated by intermolecular base pairing in the U4/U6 RNP particle, as demonstrated by our finding that anti-m3G IgG co-precipitates U6 RNA with U4 RNA following phenolization of U4/U6 RNPs at 0 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
16.
Nascent pre-mRNAs associate with hnRNP proteins in hnRNP complexes, the natural substrates for mRNA processing. Several lines of evidence indicate that hnRNP complexes undergo substantial remodeling during mRNA formation and export. Here we report the isolation of three distinct types of pre-mRNP and mRNP complexes from HeLa cells associated with hnRNP A1, a shuttling hnRNP protein. Based on their RNA and protein compositions, these complexes are likely to represent distinct stages in the nucleocytoplasmic shuttling pathway of hnRNP A1 with its bound RNAs. In the cytoplasm, A1 is associated with its nuclear import receptor (transportin), the cytoplasmic poly(A)-binding protein, and mRNA. In the nucleus, A1 is found in two distinct types of complexes that are differently associated with nuclear structures. One class contains pre-mRNA and mRNA and is identical to previously described hnRNP complexes. The other class behaves as freely diffusible nuclear mRNPs (nmRNPs) at late nuclear stages of maturation and possibly associated with nuclear mRNA export. These nmRNPs differ from hnRNPs in that while they contain shuttling hnRNP proteins, the mRNA export factor REF, and mRNA, they do not contain nonshuttling hnRNP proteins or pre-mRNA. Importantly, nmRNPs also contain proteins not found in hnRNP complexes. These include the alternatively spliced isoforms D01 and D02 of the hnRNP D proteins, the E0 isoform of the hnRNP E proteins, and LRP130, a previously reported protein with unknown function that appears to have a novel type of RNA-binding domain. The characteristics of these complexes indicate that they result from RNP remodeling associated with mRNA maturation and delineate specific changes in RNP protein composition during formation and transport of mRNA in vivo.  相似文献   

17.
Erythroid precursor cells lose the capacity for mRNA synthesis due to exclusion of the nucleus during maturation. Therefore, the stability and translation of mRNAs that code for specific proteins, which function in late stages of maturation when reticulocytes become erythrocytes, are controlled tightly. Reticulocyte 15-lipoxygenase (r15-LOX) initiates the breakdown of mitochondria in mature reticulocytes. Through the temporal restriction of mRNA translation, the synthesis of r15-LOX is prevented in premature cells. The enzyme is synthesized only in mature reticulocytes, although r15-LOX mRNA is already present in erythroid precursor cells. Translation of r15-LOX mRNA is inhibited by hnRNP K and hnRNP E1, which bind to the differentiation control element (DICE) in its 3' untranslated region (3'UTR). The hnRNP K/E1-DICE complex interferes with the joining of the 60S ribosomal subunit to the 40S subunit at the AUG. We took advantage of the inducible human erythroid K562 cell system that fully recapitulates this process to identify so far unknown factors, which are critical for DICE-dependent translational regulation. Applying RNA chromatography with the DICE as bait combined with hnRNP K immunoprecipitation, we specifically purified the DEAD-box RNA helicase 6 (DDX6) that interacts with hnRNP K and hnRNP E1 in a DICE-dependent manner. Employing RNA interference and fluorescence in situ hybridization, we show that DDX6 colocalizes with endogenous human (h)r15-LOX mRNA to P-body-like RNP granules, from which 60S ribosomal subunits are excluded. Our data suggest that in premature erythroid cells translational silencing of hr15-LOX mRNA is maintained by DDX6 mediated storage in these RNP granules.  相似文献   

18.
Heterogeneous nuclear ribonucleoprotein particles (HnRNP) were separated in metrizamide density gradients, into two fractions migrating to 1.31 g ml-1 and 1.18 g ml-1, respectively. Proteins associated with each of these fractions were analysed by SDS-acrylamide gel electrophoresis. It is shown that the whole proteins extracted from these two metrizamide fractions exhibit clearly different electrophoretic patterns: 1.31 HnRNP particles contain as major polypeptide chains molecules with molecular weights ranging from 40 000 to 65 000, while major polypeptides of 1.18 HnRNP are banding in the 30 000–40 000 molecular weight region of the gels. Both fractions contain numerous other associated polypeptide chains whose molecular weights are above 65 000. A possible kinetic relationship between these two HnRNP classes was investigatedin vivo by performing chase experiments. No clear evidence for a precursor-product relationship was found. Implications arising from these structural and kinetic observations, and problems relating to nuclear maturation of pre-messenger RNA, are discussed.  相似文献   

19.
Recent knowledge on snRNPs is reviewed in this paper. The relevant findings of our laboratory were essentially as follows:Particles containing small nuclear RNAs (snRNAs) were characterized ten years ago. More recently Lerner et al. have shown that particles containing snRNAs react with antibody produced in autoimmune desease. Furthermore, the snRNA (some of them are probably involved in splicing) were found associated with hnRNP. In the present work we have studied structures, extracted from hnRNP that contain snRNAs. We were able to obtain and purify ribonucleoproteins complexes containing some of the snRNAs. These particles (snRNPs) are very stable. They were purified by three different successive cycles of centrifugation under denaturing conditions. The particles are characterized by a density of 1,43 g/cm3 in CsCl and a sedimentation coefficient of 11–12S. They contain five species of snRNAs (U1, U2, U4, (U5), U6 according to the nomenclature of Lerner et al.) and at least one polypettide with a molecular weight of about 15 000 daltons.An other particle containing only U5 was also isolated. These snRNPs are not disaggregated in media destabilizing ionic forces, hydrophobic interaction or hydrogens bonds and seem to be different from the snRNPs described by Lerner et al.  相似文献   

20.
A cytoplasmic 10S ribonucleoprotein particle (iRNP), which is isolated from chick embryonic muscle, is a potent inhibitor of mRNA translation in vitro and contains a 4S translation inhibitory RNA species (iRNA). The iRNP particle shows similarity in size to the small nuclear ribonucleoprotein (snRNP) particles. Certain autoimmune disease patients contain antibodies directed against snRNP antigenic determinants. The possibility that iRNP may be related to the small nuclear particles was tested by immunoreactivity with monospecific autoimmune antibodies to six antigenic determinants (Sm, RNP, PM-1, SS-A (Ro), SS-B (La), and Scl-70). By Ouchterlony immunodiffusion assays, the cytoplasmic 10S iRNP did not show any immunoreactivity. Also, a more sensitive hemagglutination inhibition assay for detecting Sm and RNP antigens failed to show reactivity with the 10S iRNP. Thus, the 10S iRNP particles are distinct from the similarly sized snRNP. However, free and polysomal messenger ribonucleoprotein (mRNP) particles and polysomes also isolated from chick embryonic muscle and analyzed by Ouchterlony immunodiffusion and hemagglutination inhibition for the presence of the antigenic determinants showed reactivity to Sm and RNP autoantibodies, but were not antigenic for the other four antibodies. Some of the Sm antigenic peptides of mRNP particles and polysomes were identical to those purified from calf thymus nuclear extract, as judged by Western blot analysis. The association of Sm with free and polysomal mRNP and polysomes suggests that Sm may be involved in some cytoplasmic aspects of mRNA metabolism, in addition to a nuclear function in mRNA processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号