共查询到20条相似文献,搜索用时 15 毫秒
1.
Barbara Thelma; Martinelli Gustavo; Palma-Silva Clarisse; Fay Michael F.; Mayo Simon; Lexer Christian 《Annals of botany》2009,103(1):65-77
Background and Aims: Bromeliads (Bromeliaceae) adapted to rock outcrops or inselbergsin neotropical rain forests have been identified as suitableplant models for studying population divergence and speciationduring continental plant radiations. Little is known about geneticrelationships and variation in reproductive strategies withinand among inselberg-adapted species, yet knowledge of theseparameters is important for understanding divergence processesand for conservation planning. Methods: Nuclear microsatellites were used to assess the role of clonalreproduction, estimate genetic diversity and explore geneticrelationships and variation in reproductive strategies for atotal of 15 populations of four closely related Alcantarea inselbergspecies in south-eastern Brazil: A. glaziouana, A. regina, A.geniculata and A. imperialis. Key Results: Clonal propagation is frequent in coastal populations of A.glaziouana and A. regina, but absent in the high-altitude speciesA. geniculata and A. imperialis. Considerable variation in clonaldiversity, gene diversity (He), allelic richness, and Wright'sinbreeding coefficient (FIS) exists within and between speciesof Alcantarea. A Bayesian analysis of coastal inselberg speciesindicated pronounced genetic structure. A neighbor-joining analysisgrouped populations of each species together with moderate bootstrapsupport, except for the high altitude species A. imperialis. Conclusions: The coastal inselberg species A. glaziouana and A. regina tendto propagate asexually via vegetative clonal growth, and bothreproductive strategies and breeding systems vary greatly betweenpopulations and species of Alcantarea. The microsatellite dataindicate a history of hybridization and reticulation involvingthe high-altitude species A. geniculata and A. imperialis inareas of co-occurrence. The results highlight the need to understandsimilarities and differences in reproductive strategies bothwithin and between related species for conservation planningand as a basis for understanding evolutionary processes in tropicalradiations. 相似文献
2.
Studies of organisms on 'terrestrial islands' can improve our understanding of two unresolved issues in evolutionary genetics: the likely long-term effects of habitat fragmentation and the genetic underpinnings of continental species radiations in island-like terrestrial habitats. We have addressed both issues for four closely related plant species of the adaptive radiation Bromeliaceae, Alcantarea imperialis, A. geniculata, A. regina and A. glaziouana. All four are adapted to ancient, isolated inselberg rock outcrops in the Brazilian Atlantic rainforest and are thus long-term fragmented by nature. We used eight nuclear microsatellites to study within-population spatial genetic structure (SGS) and historical gene dispersal in nine populations of these species. Within-population SGS reflected known between-species differences in mating systems. The strongest SGS observed in A. glaziouana (Sp=0.947) was stronger than literature estimates available for plants. Analysis of short- and long-distance components of SGS identified biparental inbreeding, selfing and restricted seed dispersal as main determinants of SGS, with restricted pollen dispersal by bats contributing in some localities. The ability of Alcantarea spp. to colonize isolated inselbergs probably stems from their flexible mating systems and an ability to tolerate inbreeding. Short-ranging gene dispersal (average sigma=7-27 m) is consistent with a loss of dispersal power in terrestrial island habitats. Population subdivision associated with sympatric colour morphs in A. imperialis is accompanied by between-morph differences in pollen and seed dispersal. Our results indicate a high potential for divergence with gene flow in inselberg bromeliads and they provide base-line data about the long-term effects of fragmentation in plants. 相似文献
3.
C. PALMA‐SILVA M. M. CAVALLARI T. BARBAR C. LEXER M. A. GIMENES F. BERED M. H. BODANESE‐ZANETTINI 《Molecular ecology resources》2007,7(4):654-657
Fifteen polymorphic microsatellite markers were isolated and characterized in two species of Bromeliaceae: Vriesea gigantea and Alcantarea imperialis. The number of alleles observed for each locus ranged from three to 16. The loci will be used for studies of the genetic structure of natural populations, reproductive biology, and evolutionary relationships among and within these genera. A cross‐amplification test in 22 taxa suggests that the markers will be useful for similar applications in numerous other bromeliad species. 相似文献
4.
5.
Begonia is one of the ten largest plant genera, with over 1500 species. This high species richness may in part be explained by weak species cohesion, which has allowed speciation by divergence in allopatry. In this study, we investigate species cohesion in the widespread Central American Begonia heracleifolia and Begonia nelumbiifolia, by genotyping populations at microsatellite loci. We then test for post-zygotic reproductive barriers using experimental crosses, and assess whether sterility barriers are related to intraspecific changes in genome size, indicating major genome restructuring between isolated populations. Strong population substructure was found for B. heracleifolia (FST=0.364, F′ST=0.506) and B. nelumbiifolia (FST=0.277, F′ST=0.439), and Bayesian admixture analysis supports the division of most populations into discrete genetic clusters. Moderate levels of inferred selfing (B. heracleifolia s=0.40, B. nelumbiifolia s=0.62) and dispersal limitation are likely to have contributed to significant genetic differentiation (B. heracleifolia Jost''s D=0.274; B. nelumbiifolia D=0.294). Interpopulation crosses involving a divergent B. heracleifolia population with a genome size ∼10% larger than the species mean had a ∼20% reduction in pollen viability compared with other outcrosses, supporting reproductive isolation being polymorphic within the species. The population genetic data suggest that Begonia populations are only weakly connected by gene flow, allowing reproductive barriers to accumulate between the most isolated populations. This supports allopatric divergence in situ being the precursor of speciation in Begonia, and may also be a common speciation mechanism in other tropical herbaceous plant groups. 相似文献
6.
Palma-Silva C Wendt T Pinheiro F Barbará T Fay MF Cozzolino S Lexer C 《Molecular ecology》2011,20(15):3185-3201
The roles of intra- and interspecific gene flow in speciation and species evolution are topics of great current interest in molecular ecology and evolutionary biology. Recent modelling studies call for new empirical data to test hypotheses arising from the recent shift from a 'whole-genome reproductive isolation' view to a 'genic' view of species and speciation. Particularly scarce (and thus of particular interest) are molecular genetic data on recently radiated, naturally hybridizing species in strongly structured and species-rich environments. Here, we studied four sympatric plant species (Pitcairnia spp.; Bromeliaceae) adapted to Neotropical inselbergs (isolated outcrops resembling habitat 'islands' in tropical rainforests) using nuclear and plastid DNA. Patterns of plastid DNA haplotype sharing and nuclear genomic admixture suggest the presence of both, incomplete lineage sorting and interspecific gene flow over extended periods of time. Integrity and cohesion of inselberg species of Pitcairnia are maintained despite introgression and in the face of extremely low within-species migration rates (N(e)m < 1 migrant per generation). Cross-evaluation of our genetic data against published pollination experiments indicate that species integrity is maintained by the simultaneous action of multiple prezygotic barriers, including flowering phenology, pollinator isolation and divergent mating systems. Postzygotic Bateson-Dobzhansky-Muller incompatibilities appear to contribute to isolation, as suggested by asymmetric introgression rates of single loci. Our results suggest that incomplete lineage sorting, hybridization and introgression form integral aspects of adaptive radiation in Neotropical inselberg 'archipelagos'. Inselbergs with multiple closely related co-occurring species should be of special interest to students of speciation in mountain systems, and to ongoing conservation programmes in the Atlantic Rainforest biodiversity hotspot. 相似文献
7.
Barr KR Lindsay DL Athrey G Lance RF Hayden TJ Tweddale SA Leberg PL 《Molecular ecology》2008,17(16):3628-3639
Black-capped vireos ( Vireo atricapilla ), an endangered, migratory species dependent upon early successional habitat, have experienced significant recovery since its protection. In light of its vagility and known increase in population size and range, limited genetic differentiation would be expected in the species. Using 15 microsatellite loci and an extensive sampling regime, we detected significant overall genetic differentiation ( F ST = 0.021) and high interpopulation differentiation compared to other migratory birds. Although proximate sites (separated by < 20 km) tended to be genetically similar, there was no apparent association of either geographical distance or landscape attributes with differentiation between sites. Evidence of a population bottleneck was also detected in a site located near other large concentrations of birds. Although black-capped vireos are capable of large-scale movements and the population has experienced a recent expansion, dispersal appears too insufficient to eliminate the genetic differentiation resulting from restricted colonization of ephemeral habitats. 相似文献
8.
ERIK WESTBERG HANS‐HELMUT POPPENDIECK JOACHIM W. KADEREIT 《Biological journal of the Linnean Society. Linnean Society of London》2010,101(3):526-535
Oenanthe conioides is a lower Elbe endemic plant species growing in the freshwater tidal zone around Hamburg (Germany). Its closest relative Oenanthe aquatica is widely distributed in Eurasia and grows in calm and shallow freshwater. The two species differ in habitat requirements but are otherwise sympatrically distributed, suggesting that ecological divergence has to be maintained in the face of gene flow. In the present study, we investigated ecological differentiation and reproductive isolation in these two species. An amplified fragment length polymorphism analysis found clear genetic differentiation between the two species implying reproductive isolation. A reciprocal transplantation experiment including artificial F1 hybrids showed strong selection against immigrants. In the two parental habitats, the non‐native species are less fit than the native species. Hybrids are less fit in the habitat of Oe. aquatica but perform as well as the native species in the habitat of Oe. conioides. We hypothesize that selection against immigrants is the most important component of reproductive isolation between the two species, and that selection against immigrants is the result of exposure to cold and wind in the tidal habitat of Oe. conioides and to herbivory in the habitat of Oe. aquatica. These results are congruent with a role for differential ecological selection in the formation and maintenance of these two species. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 526–535. 相似文献
9.
Ecological divergence plays a prominent role in the process of speciation, but how divergence occurs in the face of gene flow is still less clear, and remains controversial among evolutionists. Here we investigated the nucleotide diversity, divergence and gene flow between Oryza nivara and O. rufipogon using sequences of seven chloroplast and nuclear loci. By analysing samples from 26 wild populations across the geographic ranges of the two species, we showed that both species were highly structured and O. rufipogon maintained a higher level of species‐wide diversity than O. nivara. Notably, phylogenetic, amova and FST analyses were unable to detect significant nucleotide differentiation between the two species. We estimated that the two species began to diverge at c. 0.16 million years ago. Our coalescent‐based simulations strongly rejected the simple isolation model of zero migration between species, but rather provided unambiguous evidence of bidirectional gene flow between species, particularly from O. rufipogon to O. nivara. Our simulations also indicated that gene flow was recurrent during the divergence process rather than arising from secondary contact after allopatric divergence. In conjunction with different morphological and life‐history traits and habitat preference in the two species, this study supports the hypothesis that these Oryza species are better treated as ecotypes that diverged quite recently and are still under the process of divergence. Importantly, we demonstrate the ecological divergence between O. rufipogon and O. nivara in the presence of significant gene flow, implying that natural selection plays a primary role in driving the divergence of the two Oryza species. 相似文献
10.
11.
A. FALNIOWSKI J. HELLER K. MAZAN-MAMCZARZ & M. SZAROWSKA 《Journal of Zoological Systematics and Evolutionary Research》2002,40(2):92-104
Population genetic structure in the species of Melanopsis were studied by means of cellulose acetate gel allozyme electrophoresis, on 26 Melanopsis populations from Israel: six of Melanopsis buccinoidea Olivier, 1801, eight of Melanopsis saulcyi Bourguignat, 1853, one of Melanopsis meiostoma Heller et Sivan, 2000 , 11 of Melanopsis costata Olivier, 1804, represented by two subspecies: M. costata costata Olivier, 1804 and M. costata jordanica Roth, 1839. 14 loci (nine polymorphic) were scorable: Aat, Alp, Est-1, Est-2, Gpi, Hbdh, Idh-1, Idh-2, Iddh, Mdh, Mdhp, Mpi, Pgdh, Pgm. Gametic disequilibrium was postulated. D-statistics was computed, indicating limited migration, not epistatic selection as the source of disequilibrium. Exact multilocus and multipopulation tests showed a statistically significant heterozygote deficit in 18 populations and seven polymorphic loci. Inbreeding, Wahlund's effect and codominant mode of selection were postulated as causing homozygote excess. Mantel test indicated a statistically significant association between the pairwise θ and geographic distance, and no association between Nm and the geographic distance. The mean gene flow estimates Nm, derived from either θ or private alleles technique, were consistent. Hierarchical F-statistics showed slight differences between the taxa. The process of speciation within the genus seems not yet completed. 相似文献
12.
To investigate the relative importance of homogenizing factors, such as gene flow, and diversifying factors, such as drift, genetic variation in pikeperch ( Sander lucioperca ) in two Fennoscandian regions (North and South) was analysed with microsatellites. Allelic richness and the degree of differentiation were significantly higher in the North ( F ST = 0·20) than in the South ( F ST = 0·064). In northern areas, assignments of genotypes were almost exclusively to the population of origin, but in southern areas, the proportion of correct assignments was significantly lower. Most samples exhibited significant heterozygote deficits, and the level of relatedness was higher than expected from randomness. These combined results suggest that there has been more gene flow between populations in southern areas than in northern areas, where the importance of genetic drift has been greater. Effective population sizes were small ( c. 100) and did not differ between areas. The effect of a common history appears minor, and thus processes such as genetic drift and gene flow have been more influential in shaping the patterns of genetic diversity in this species. 相似文献
13.
North American Enallagma damselflies radiated during the Pleistocene, and species differ mainly by reproductive structures. Although morphologically very different, Enallagma hageni and Enallagma ebrium are genetically very similar. Partitioning of genetic variation (AFLP), isolation by distance and clustering analyses indicate that these morphospecies are locally differentiated genetically. Spatial analyses show that they are rarely sympatric at local sites, and their distributions form a mosaic of patches where one is clearly dominant over hundreds of square kilometers. However, these morphospecies are also not genetically more similar when they are sympatric, indicating that hybridization is probably not occurring. Given that these morphospecies are ecologically equivalent, strong assortative mating, reproductive interference and fast post-glacial recolonization may explain the origin and maintenance of these distributional patches across eastern North America. By limiting opportunities for gene flow, reproductive interference may play an unsuspected role in accelerating genetic differentiation in the early phases of nonecological speciation. 相似文献
14.
FRAUKE M. MUENZEL MATTHIAS SANETRA WALTER SALZBURGER AXEL MEYER 《Molecular ecology resources》2007,7(6):1048-1050
Eleven microsatellites were isolated from the vairone Leuciscus souffia (Risso 1826), an endangered fish that inhabits river systems in and around the Alps in Europe. The level of genetic diversity was assessed in 29 individuals of the subspecies L. s. souffia, and their variability was further estimated in seven individuals of a different subspecies, L. s. muticellus. Eight of these microsatellite loci were also applied to seven closely related cyprinid species. Availability of the reported microsatellite loci will facilitate the investigation of population genetic structure of these species with applications for the development of conservation strategies and phylogeographical approaches. 相似文献
15.
P. Matter C. J. Kettle J. Ghazoul T. Hahn A. R. Pluess 《Plant biology (Stuttgart, Germany)》2013,15(3):583-592
Pollen flow is a key biological process that connects plant populations, preventing genetic impoverishment and inbreeding. Pollen‐mediated long‐distance dispersal (LDD) events are especially important for plant species in increasingly fragmented landscapes. Patterns of pollen dispersal were directly estimated and dispersal kernels modelled in an experimental population of Ranunculus bulbosus and Trifolium montanum to determine the potential for LDD. Eight and 11 microsatellite markers were used for R. bulbosus and T. montanum, respectively, to run a likelihood‐based paternity analysis on randomly chosen offspring (Ntotal = 180 per species) from five maternal plants. High rates of selfing were found in R. bulbosus (average 45.7%), while no selfing was observed in T. montanum. The majority (60%) of mating events occurred at very short distances: the median of the observed dispersal distances was 0.8 m in both species, and the average distances were 15.9 and 10.3 m in R. bulbosus and T. montanum, respectively. Modelling the pollen dispersal kernel with four different distribution functions (exponential‐power, geometric, 2Dt and Weibull) indicated that the best fit for both species was given by a Weibull function. Yet, the tail of the T. montanum pollen dispersal kernel was thinner than in R. bulbosus, suggesting that the probability for LDD is higher in the latter species. Even though the majority of pollen dispersal occurred across short distances, the detection of several mating events up to 362 m (R. bulbosus) and 324 m (T. montanum) suggests that pollen flow may be sufficient to ensure population connectivity in these herb species across fragmented grasslands in Swiss agricultural landscapes. 相似文献
16.
A. Schreiber R. Engelhorn 《Journal of Zoological Systematics and Evolutionary Research》1998,36(1-2):85-99
Horizontal agarose gel electrophoresis of 24 allozyme loci in four species of Central European lampreys (321 Lampetra planeri , 83 L. fluviatilis , 11 Eudontomyzon mariae and nine Petromyzon marinus ) was used to study the 'paired species' L. fluviatilis and L. planeri . The genetic differentiation of the anadromous river lamprey ( L. fluviatilis ) from the stationary brook lamprey ( L. planeri ) was within the range of ingroup differentiation of the latter, but L. fluviatilis exhibited much greater population cohesion over a more extended geographic range: G ST = 0.0537 versus G ST = 0.3398, N e m = 4.402 versus N e m = 0.4856, mean genetic among-stock distances D = 0.0047 versus D = 0.0257. L. planeri populations coexisting geographically with L. fluviatilis in the Rhine and Elbe river systems were genetically more cohesive than L. planeri stocks from the Danubian basin where L. fluviatilis is absent. Danubian L. planeri populations exhibit a lower degree of heterozygosity than brook lampreys from the Rhine river system, but comprise deeper genetic lineages ( G ST = 0.4629 versus G ST = 0.2434), despite being sampled from a much more restricted area. Isolation-by-distance is observed for L. planeri from the Danubian but not from the Atlantic drainage basins. Transspecific gene flow between L. planeri from Atlantic drainage basins and the long-distant migrating L. fluviatilis is inferred, raising doubt on the validity of two separate biospecies. E. mariae and P. marinus are clearly differentiated from Lampetra spp. at several allozyme loci. 相似文献
17.
水稻是我国最重要的粮食作物之一,我国有8亿以上的人口以稻米作为主食。但在水稻生产中,由于病、虫、草害及不良气候等逆境因子的影响,严重制约了水稻的高产、稳产。转基因生物技术的迅速发展,为水稻抗性育种提供了新途径。自20世纪80年代以来,我国全方位地开展了转基因水稻的研发,目前已经培育出大量的抗病、抗虫、抗除草剂和抗逆的转基因水稻品种,这将为提高我国水稻的生产力和确保粮食安全做出重要的贡献。但转基因水稻的基因漂流及其可能带来的生物安全问题备受关注。已有报道证明,外源转基因可以通过异交向非转基因品种和野生近缘种漂流。在不同的试验条件下,抗除草剂基因有0.05%-0.53%逃逸的可能,其向不育系的最大漂移频率可达4.518%。抗虫基因向相邻非转基因水稻的平均漂移频率最高为0.875%。因此,本文对水稻与其近缘野生种的杂交情况,转基因水稻外源基因向非转基因品种、野生近缘种以及野生非近缘种的漂流和渐渗及其潜在的生态环境风险等方面进行了简要分析,并对转基因水稻的发展进行了展望,以期为转基因水稻的安全应用提供参考。 相似文献
18.
Novel microsatellite markers for Dalechampia scandens (Euphorbiaceae) and closely related taxa: application to studying a species complex
下载免费PDF全文

Mohsen Falahati‐Anbaran Hans K. Stenøien Geir H. Bolstad Thomas F. Hansen Rocío Pérez‐Barrales W Scott Armbruster Christophe Pélabon 《Plant Species Biology》2017,32(2):179-186
We developed novel microsatellite markers for D alechampia scandens L. (Euphorbiaceae). The target plants belong to a distinct, but undescribed, species in the D . scandens species complex, characterized by small resin‐producing glands. In total, 110 alleles over 36 novel markers were identified across 39 individuals from three populations. The number of alleles varied from one to seven, with an average of 3.06 ± 0.26 alleles per locus. The developed markers, along with previously developed ones for a large‐glanded D . scandens species, were tested for amplification in 11 additional species of the genus D alechampia. Four markers did not produce any detectable allele in 37 individuals from two populations of the large‐glanded species. Average expected heterozygosity across all small‐ and large‐glanded specific loci was 0.36 and 0.15, for the small and large glanded populations, respectively. Cross‐species amplification showed that 89% of all markers were successfully amplified in at least one of the 11 other D alechampia species. These microsatellite markers may be useful for detecting undescribed species in the D . scandens species complex, and can be used for comparative analyses of genetic structure, mating system and phylogeography of other D alechampia species. 相似文献
19.
The impact of gene flow and population size fluctuations in shaping genetic variation during adaptive radiation, at both the genome-wide and gene-specific levels, is very poorly understood. To examine how historical population size and gene flow patterns within and between loci have influenced lineage divergence in the Hawaiian silversword alliance, we have investigated the nucleotide sequence diversity and divergence patterns of four floral regulatory genes (ASAP1-A, ASAP1-B, ASAP3-A, ASAP3-B) and a structural gene (ASCAB9). Levels and patterns of molecular divergence across these five nuclear loci were estimated between two recently derived species (Dubautia ciliolata and Dubautia arborea) which are presumed to be sibling species. This multilocus analysis of genetic variation, haplotype divergence and historical demography indicates that population expansion and differential gene flow occurred subsequent to the divergence of these two lineages. Moreover, contrasting patterns of allele- sharing for regulatory loci vs. a structural locus between these two sibling species indicate alternative histories of genetic variation and partitioning among loci where alleles of the floral regulatory loci are shared primarily from D. arborea to D. ciliolata and alleles of the structural locus are shared in both directions. Taken together, these results suggest that adaptively radiating species can exhibit contrasting allele migration rates among loci such that allele movement at specific loci may supersede genetic divergence caused by drift and that lineage divergence during adaptive radiation can be associated with population expansion. 相似文献
20.
Crematogaster fraxatrix Forel, 1911 and two new species, C. chhangi
sp. n. and C. simboloni
sp. n., are described from Cambodia and Indonesia, respectively. DNA sequences were generated for C. fraxarix and the two newly described species using 3 amplications of two regions of the mitochondrial gene COI with a total of 1129 bp. The mean interspecific divergences are 9.4% and 23.5% for C. fraxatrix vs. C. chhangi, C. simboloni, respectively. DNA sequences reveal that C. simboloni is found to be genetically distinct from the other two species, but C. chhangi is not distinct from C. fraxatrix. 相似文献