首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Peptidoglycans (PG) from Campylobacter coli, Campylobacter jejuni, and Campylobacter fetus were composed of muramic acid, glucosamine, alanine, glutamic acid, and diaminopimelic acid in a molar ratio of 1.1:1:1.7:1.1:09. Thirty percent of the amino groups of diaminopimelic acid were involved in cross-linkages between peptides. During cultivation, C. coli and C. jejuni changed from a spiral to a coccoid form. In C. coli, we could isolate PG only from the spiral forms in yields of 0.8-1.2% by dry weight. C. fetus did not change to a coccoid form, and always contained PG. Thus, it is possible that the morphological transformation from the spirals to the coccoid forms of C. coli and C. jejuni is accompanied by, and probably due to, the degradation of PG.  相似文献   

3.
Campylobacter jejuni is an important human gastro-intestinal pathogen. In hostile environments it may adapt its physiology to prolong survival, potentially including the adoption of a viable, non-culturable form and a change to coccal cell morphology. By independently controlling the individual parameters of continuous cultures of Camp. jejuni (e.g. pH, nutrient limitation, growth rate, etc.), coccal cell formation was shown to be elicited only by high oxygen tension in conjunction with reduced carbon concentration. Electron microscopy revealed degradative changes in these cells. This occurred as a transient response over 48 h coincident with a large reduction in maximum growth rate and viable count. Kinetic analysis of the biomass reduction of the cultures demonstrated that significant underlying growth was maintained, with the subsequent selection of a more oxygen-resistant population of cells and reversion to spiral morphology. Coccal cells appear to be predominantly a degenerate form of Camp. jejuni resulting from oxidative damage. While some of these coccal cells may recover, the more interesting population of cells is probably that which retains, or regains, spiral morphology during adaptation to oxidative stress.  相似文献   

4.
Pieces of fresh beef were inoculated with three strains of Campylobacter jejuni. The meat was then allocated to three treatments: (a) vacuum packaged, (b) packaged in an atmosphere of 20% CO2 + 80% N2, and (c) packaged into sterile Petri dishes in anaerobic cultivation boxes, which were filled with a gas mixture of 5% O2 + 10% CO2 + 85% N2. The packaging material in the first two treatments was PA 80/PE 100-PE 100/PA 80/PE 100. The survival of Campylobacter cells was followed at 37 degrees C, 20 degrees C and 4 degrees C for 48 h, 4 days and 25 days, respectively. At 37 degrees C the counts of two Campylobacter strains increased in each package treatment for 48 h. At 20 degrees C and at 4 degrees C the counts of the same two strains decreased by 1 to 2 log units and 0.5 to 1 log unit, respectively, during storage. The survival of the two strains was about the same in all package treatments. The third strain was the most sensitive of the strains studied. At 37 degrees C its numbers increased only in the optimal gas atmosphere; at 20 degrees C the strain was not detectable after 24 to 48 h storage and at 4 degrees C after 4 days storage. The aerobic plate counts were determined for all samples at the same time as Campylobacter counts. The high indigenous bacterial numbers of the meat samples did not appear to have a great effect on the survival or growth of campylobacters.  相似文献   

5.
The adhesion of Campylobacter jejuni to chicken skin, along with the associated morphological changes under aerobic conditions at 4, 25, and 37 degrees C and microaerobic (O2 5%, CO2 10%, N2 85%) conditions, were investigated using confocal laser scanning microscopy (CLSM), flow cytometry, and plate counting. The morphological change of C. jejuni from a spiral shape to a coccoid form or VBNC form (viable but nonculturable form) progressed rapidly under aerobic conditions at 25, 37, and 4 degrees C. As regards adhesion, the C. jejuni cells were mostly located in the crevices and feather follicles of the chicken skin, where the cells in the feather follicles floated freely in the entrapped water, even after the skin was rinsed quite thoroughly. CLSM also revealed the penetration of some spiral-shaped C. jejuni cells into the chicken skin. Even after changing their shape at various temperatures, coccoid-form C. jejuni cells were still found in the crevices and feather follicles of the chicken skin.  相似文献   

6.
The use of latex agglutination tests for determining Campylobacter species   总被引:1,自引:0,他引:1  
A comparison was made between three commercially available latex agglutination tests for the detection of Campylobacter. All tests showed clear agglutination with pure cultures of several Campylobacter strains in both the spiral and coccoid form. The Microscreen test was able to detect 10 times less cells than the Campyslide and Meritec tests. The latex tests were also applied to enrichment broth cultures of chicken products. Sixty-nine per cent of the Campylobacter positive enrichment broth cultures were positive with the Microscreen test. The Meritec test detected 63% of the positive samples. The Campyslide test detected only 15% of the positive samples and often showed non-specific agglutination.  相似文献   

7.
Campylobacter jejuni is a major cause of infectious diarrhoea worldwide but relatively little is known about its ecology. In this study, we examined its interactions with Acanthamoeba castellanii, a protozoan suspected to serve as a reservoir for bacterial pathogens. We observed rapid degradation of intracellular C.jejuni in A.castellanii 5 h post gentamicin treatment at 25°C. Conversely, we found that A.castellanii promoted the extracellular growth of C.jejuni in co-cultures at 37°C in aerobic conditions. This growth-promoting effect did not require amoebae - bacteria contact. The growth rates observed with or without contact with amoeba were similar to those observed when C.jejuni was grown in microaerophilic conditions. Preconditioned media prepared with live or dead amoebae cultivated with or without C.jejuni did not promote the growth of C.jejuni in aerobic conditions. Interestingly, the dissolved oxygen levels of co-cultures with or without amoebae - bacteria contact were much lower than those observed with culture media or with C.jejuni alone incubated in aerobic conditions, and were comparable with levels obtained after 24 h of growth of C.jejuni under microaerophilic conditions. Our studies identified the depletion of dissolved oxygen by A.castellanii as the major contributor for the observed amoeba-mediated growth enhancement.  相似文献   

8.
Pieces of fresh beef were inoculated with three strains of Campylobacter jejuni . The meat was then allocated to three treatments: (a) vacuum packaged, (b) packaged in an atmosphere of 20% CO2+ 80% N2, and (c) packaged into sterile Petri dishes in anaerobic cultivation boxes, which were filled with a gas mixture of 5% O2+ 10% CO2+ 85% N2. The packaging material in the first two treatments was PA 80/PE 100–PE 100/PA 80/PE 100. The survival of Campylobacter cells was followed at 37°C, 20°C and 4°C for 48 h, 4 days and 25 days, respectively. At 37°C the counts of two Campylobacter strains increased in each package treatment for 48 h. At 20°C and at 4°C the counts of the same two strains decreased by 1 to 2 log units and 0.5 to 1 log unit, respectively, during storage. The survival of the two strains was about the same in all package treatments. The third strain was the most sensitive of the strains studied. At 37°C its numbers increased only in the optimal gas atmosphere; at 20°C the strain was not detectable after 24 to 48 h storage and at 4°C after 4 days storage. The aerobic plate counts were determined for all samples at the same time as Campylobacter counts. The high indigenous bacterial numbers of the meat samples did not appear to have a great effect on the survival or growth of campylobacters.  相似文献   

9.
A direct enrichment procedure was developed to selectively recover small numbers of Campylobacter jejuni, C. coli, and nalidixic acid-resistant thermophilic Campylobacter from foods. The procedure includes an enrichment medium composed of brucella broth, 7% lysed horse blood, 0.3% sodium succinate, 0.01% cysteine hydrochloride, vancomycin (15 micrograms/ml), trimethoprim (5 micrograms/ml), polymyxin B (20 IU/ml), and cycloheximide (50 micrograms/ml) that is inoculated with 10 or 25 g of food and incubated with agitation under microaerophilic conditions at 42 degrees C for 16 to 18 h. After incubation, the medium is plated directly onto Campy-BAP agar plates (M. J. Blaser et al., Ann. Intern. Med. 91:179-185, 1979), and resulting colonies that resemble Campylobacter are identified by conventional tests. The foods evaluated included raw milk, hamburger, and chicken skin which had aerobic plate counts of 10(5) to 10(9) bacteria/g. The procedure was effective in recovering as few as 0.1 cell of Campylobacter per g of food. Of the 50 isolates of Campylobacter evaluated, all were recovered from raw milk and hamburger at a level of 1 to 4 cells/g, and 41 and 40 isolaes were recovered from the hamburger and milk, respectively, at 0.1 to 0.4 cell/g. The enrichment was least effective for recovering campylobacters from chicken skin, as 7 and 26 of 50 isolates were not recovered at 1 to 4 and 0.1 to 0.4 cell/g, respectively. This new procedure is more rapid, direct, and effective than other enrichment or direct plating procedures for recovering small numbers of campylobacters from foods.  相似文献   

10.
A total of 525 specimens from 100 slaughter beef cattle were examined for the presence of Campylobacter jejuni and Campylobacter coli by direct plating and enrichment techniques. Isolates were identified by cultural, biochemical, antibiotic sensitivity, and immunofluorescence tests and further characterized with the aid of recently developed biotyping and serotyping methods. Fifty animals were positive for C. jejuni; only one was positive for C. coli. The distribution pattern of C. jejuni-positive animals, in decreasing order, was steers (55%), bulls (40%), heifers (40%), and cows (22%). Significantly higher isolation rates were obtained from the gall bladders (33%), large intestines (35%), and small intestines (31%) than from the livers (12%) or the lymph nodes (1.4%). C. jejuni isolation by the enrichment technique was 40.2% more frequent than by direct plating; 24-h enrichment resulted in 24% more isolations than 48-h enrichment. Eighty-four of 105 C. jejuni cultures were typable serologically and represented 13 serogroups. Biotype I accounted for 71% of biotyped cultures. Serogroup 7 biotype I was the most commonly encountered (24%) isolate. About one in three positive animals had C. jejuni strains representing more than one serogroup. C. jejuni serogroups encountered in slaughter cattle were similar to those commonly isolated from human sources.  相似文献   

11.
A total of 525 specimens from 100 slaughter beef cattle were examined for the presence of Campylobacter jejuni and Campylobacter coli by direct plating and enrichment techniques. Isolates were identified by cultural, biochemical, antibiotic sensitivity, and immunofluorescence tests and further characterized with the aid of recently developed biotyping and serotyping methods. Fifty animals were positive for C. jejuni; only one was positive for C. coli. The distribution pattern of C. jejuni-positive animals, in decreasing order, was steers (55%), bulls (40%), heifers (40%), and cows (22%). Significantly higher isolation rates were obtained from the gall bladders (33%), large intestines (35%), and small intestines (31%) than from the livers (12%) or the lymph nodes (1.4%). C. jejuni isolation by the enrichment technique was 40.2% more frequent than by direct plating; 24-h enrichment resulted in 24% more isolations than 48-h enrichment. Eighty-four of 105 C. jejuni cultures were typable serologically and represented 13 serogroups. Biotype I accounted for 71% of biotyped cultures. Serogroup 7 biotype I was the most commonly encountered (24%) isolate. About one in three positive animals had C. jejuni strains representing more than one serogroup. C. jejuni serogroups encountered in slaughter cattle were similar to those commonly isolated from human sources.  相似文献   

12.
The effect of temperature and the availability of nutrients on the transition of spiral Campylobacter jejuni cells to coccoid forms was investigated. Ageing of spiral C. jejuni cells in either nutrient-poor or nutrient-rich environments resulted in the formation of nonculturable coccoid cells at 4, 12, and 25 degrees C after different periods, with the cells incubated at 4 degrees C in nutrient-deficient media remaining culturable the longest. To study the phenomenon, ATP levels, protein profiles, and fatty acid compositions were monitored under conditions where the transition from spiral to coccoid cells occurred. During storage, the levels of intracellular ATP were highest in cells incubated at low temperatures (4 and 12 degrees C) and remained constant after a small initial decrease. During the transformation from spiral to coccoid forms, no alteration in protein profiles could be detected; indeed, inhibition of protein synthesis by chloramphenicol did not influence the transition. Furthermore, DNA damage by gamma irradiation had no effect on the process. Membrane fatty acid composition of cocci formed at low temperatures was found to be almost identical to that of spiral cells, whereas that of cocci formed at 25 degrees C was clearly different. Combining these results, it is concluded that the formation of cocci is not an active process. However, distinctions between cocci formed at different temperatures were observed. Cocci formed at 4 degrees C show characteristics comparable to those of spirals, and these cocci may well play a role in the contamination cycle of C. jejuni.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Campylobacter jejuni is often prevalent in turkey and poultry, but the effects of storage temperatures and storage periods and the interruption of the cooling chain on its survival have not been evaluated so far. In this study, 700 samples of turkey meat were artificially contaminated by inoculating their surface with 10(3) CFU of C. jejuni per sample, wrapped in airtight cellophane bags, and stored under different chilling and freezing conditions for various storage periods; this was followed by analysis of the cultures. Subsequent to incubation at 25 degrees C for 48 h, C. jejuni was reisolated in only 7% of the samples. When the samples were stored under refrigerator conditions at 4 degrees C, the organism was reisolated in 42% of the samples after 1 week, and in 28% of the samples after 2 weeks. The recovery rates in the samples that had been stored frozen at -20 degrees C without interruption of the cooling chain were 68% after 2 weeks and 24% after 4 weeks. Different storage conditions were simulated in order to examine the impact of an interruption of the cooling chain on the survival of Campylobacter.  相似文献   

14.
An attempt was made to elucidate in Campylobacter spp. some of the physiologic characteristics that are reflected in the kinetics of CO2 formation from four 14C-labeled substrates. Campylobacter jejuni and C. coli were grown in a biphasic medium, and highly motile spiral cells were harvested at 12 h. Of the media evaluated for use in the metabolic tests, minimal essential medium without glutamine, diluted with an equal volume of potassium sodium phosphate buffer (pH 7.2), provided the greatest stability and least competition with the substrates to be tested. The cells were incubated with 0.02 M glutamate, glutamine, alpha-ketoglutarate, or formate, or with concentrations of these substrates ranging from 0.0032 to 0.125 M. All four substrates were metabolized very rapidly by both species. A feature of many of these reactions, particularly obvious with alpha-ketoglutarate, was an immediate burst of CO2 production followed by CO2 evolution at a more moderate rate. These diphasic kinetics of substrate utilization were not seen in comparable experiments with Escherichia coli grown and tested under identical conditions. With C. jejuni, CO2 production from formate proceeded rapidly for the entire period of incubation. The rate of metabolism of glutamate, glutamine, and alpha-ketoglutarate by both species was greatly enhanced by increased substrate concentration. The approach to the study of the metabolism of campylobacters here described may be useful in detecting subtle changes in the physiology of cells as they are maintained past their logarithmic growth phase.  相似文献   

15.
The culturability of 10 strains of Campylobacter jejuni and Campylobacter coli was studied after the bacteria were exposed to acid conditions for various periods of time. Campylobacter cells could not survive 2 h under acid conditions (formic acid at pH 4). The 10 Campylobacter strains could not be recovered, even when enrichment media were used. Viable cells, however, could be detected by a double-staining (5-cyano-2,3-ditolyl tetrazolium chloride [CTC]-4',6'-diamidino-2-phenylindole [DAPI]) technique, demonstrating that the treated bacteria changed into a viable but nonculturable (VBNC) form; the number of VBNC forms decreased over time. Moreover, some VBNC forms of Campylobacter could be successfully resuscitated in specific-free-pathogen fertilized eggs via two routes, amniotic and yolk sac injecting.  相似文献   

16.
An attempt was made to elucidate in Campylobacter spp. some of the physiologic characteristics that are reflected in the kinetics of CO2 formation from four 14C-labeled substrates. Campylobacter jejuni and C. coli were grown in a biphasic medium, and highly motile spiral cells were harvested at 12 h. Of the media evaluated for use in the metabolic tests, minimal essential medium without glutamine, diluted with an equal volume of potassium sodium phosphate buffer (pH 7.2), provided the greatest stability and least competition with the substrates to be tested. The cells were incubated with 0.02 M glutamate, glutamine, alpha-ketoglutarate, or formate, or with concentrations of these substrates ranging from 0.0032 to 0.125 M. All four substrates were metabolized very rapidly by both species. A feature of many of these reactions, particularly obvious with alpha-ketoglutarate, was an immediate burst of CO2 production followed by CO2 evolution at a more moderate rate. These diphasic kinetics of substrate utilization were not seen in comparable experiments with Escherichia coli grown and tested under identical conditions. With C. jejuni, CO2 production from formate proceeded rapidly for the entire period of incubation. The rate of metabolism of glutamate, glutamine, and alpha-ketoglutarate by both species was greatly enhanced by increased substrate concentration. The approach to the study of the metabolism of campylobacters here described may be useful in detecting subtle changes in the physiology of cells as they are maintained past their logarithmic growth phase.  相似文献   

17.
Campylobacter is one of the leading causes of food-borne gastroenteritis and has a high prevalence in poultry. Campylobacter jejuni subsp. jejuni 327 is a subspecies of the genus Campylobacter of the family Campylobacteraceae in the phylum Proteobacteria. The microaerophilic, spiral shaped, catalase positive bacterium obtains energy from the metabolism of amino acids and Krebs cycle intermediates. Strain 327 was isolated from a turkey slaughter production line and is considered environmentally sensitive to food processing (cold, heat, drying) and storage conditions. The 327 whole genome shotgun sequence of 1,618,613 bp long consists of 1,740 protein-coding genes, 46 tRNA genes and 3 rRNA operons. A protein based BLAST analysis places the turkey isolate 327 close to the human clinical strain 81116 (NCTC 11828).  相似文献   

18.
The influence of the composition of culture media and cultivation conditions on the growth of Campylobacter strains has been studied. Blood-containing media have been found to ensure the most favorable growth conditions. No differences between the use of RCT supplement (rifampicin, cephalothin and trimethoprim in amounts of 10, 15 and 5 mg/l respectively) and DC supplement (0.1% of sodium deoxycholate and 15 mg/l of cephalothin), as well as between different methods used for the creation of microaerophilic conditions, have been established.  相似文献   

19.
We developed a biphasic culture system consisting of 4 ml of brucella agar (BA) and 6 ml of brucella broth (BB) in 25-cm2 tissue culture flasks, which were incubated in air (BB/BAa) or in a gas mixture of 5% O2, 10% CO2, and 85% N2 (BB/BAg). These media were also used with a supplement consisting of ferrous sulfate, sodium metabisulfite, and sodium pyruvate and incubated as above (FB/FAa and FB/FAg, respectively). Highly satisfactory growth of Campylobacter jejuni 301 was obtained with all medium-gas phase combinations provided that the number of viable cells in the inoculum was large (greater than or equal to 10(6)/ml). The use of FB/FAa permitted the inoculum to be reduced to 100 cells per ml. With an adjusted gas phase (BB/BAg and FB/FAg), near-optimal growth was obtained from an inoculum of 1 to 10 cells per ml. Under most of these conditions the generation time was approximately 90 min. During the logarithmic growth phase, the cells retained their typical spiral morphology and high motility. These media also proved to be highly satisfactory for the cultivation of fresh isolates as well as other stock strains of Campylobacter. When the broth phase of the cultures, after addition of 15% glycerol, was quickly frozen and maintained at -70 degrees C, all strains thus far examined were readily recoverable and satisfactorily cultivated without additional passage.  相似文献   

20.
The microaerophilic nature of Campylobacter species implies an inherent sensitivity towards oxygen and its reduction products, particularly the superoxide anion. The deleterious effects of exposure to superoxide radicals are counteracted by the activity of superoxide dismutase (SOD). We have shown previously that Campylobacter coli possesses an iron cofactored SOD. The sodB gene of C. coli UA585 was insertionally inactivated by the site-specific insertion of a tetO cassette. Organisms harboring the inactivated gene failed to produce a biologically functional form of the enzyme. While the ability of this mutant to grow in aerobic conditions was unchanged relative to the parental strain, its survival was severely compromised when nongrowing cells were exposed to air. Accordingly, the SOD-deficient mutant was unable to survive for prolonged periods in model foods. Furthermore, inactivation of the sodB gene decreased the colonization potential in an experimental infection of 1-day-old chicks. In contrast, strain CK100, which is deficient in catalase activity, showed the same survival and colonization characteristics as the parental strain. These results indicate that SOD, but not catalase, is an important determinant in the ability of C. coli to survive aerobically and for optimal colonization within the chicken gut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号