首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The capsular polysaccharide of Klebsiella SK1 was investigated by methylation analysis, Smith degradation, and 1H NMR spectroscopy. The oligosaccharides (P1 and P2) obtained by bacteriophage ΦSK1 degradation of the polymer were studied by methylation analysis, and 1D- and 2D-NMR spectroscopy. The resulting data showed that the patent repeating unit is a branched pentasaccharide having a structure identical to the revised structure recently proposed for Klebsiella serotype K8 capsular polysaccharide.
The 2D-NMR data showed that one third of the glucuronic acid residues in the SK1 polymer are acetylated at O-2, O-3, or O-4. FABMS studies confirmed the presence of monoacetylated glucuronic acid residues. Thus, the relationship between the Klebsiella K8 and SK1 polymers is akin to that found for Klebsiella polysaccharides K30 and K33, which have been typed as serologically distinct yet their structures differ only in the degree of acetylation.  相似文献   

2.
The structure of the extracellular polysaccharide of Rhizobium trifolii has been investigated. Methylation analysis, sequential degradations by oxidation and elimination of oxidized residues, uronic acid degradation, and degradation by oxidation of the acetylated polysaccharide with chromium trioxide in acetic acid were the main methods used. It is proposed that the polysaccharide is composed of heptasaccharide repeating-units having the following structure:
An unusual feature is that some of the repeating units are incomplete and lack the terminal β-d-galactopyranosyl group. The polysaccharide contains O-acetyl groups (somewhat more than 1 mol. per unit), linked to O-2 and O-3 of 4-O-substituted d-glucopyranosyl chain-residues. A previous finding that the polysaccharide contains 2-deoxy-d-arabino-hexose (2-deoxy-d-glucose) residues is erroneous.  相似文献   

3.
Neisseria meningitidis expresses a heterogeneous populationof lipooligosaccharide (LOS) inner cores variously substitutedwith 1-3-linked glucose and O-3, O-6, and O-7 linked phosphoethanolamine(PEA), as well as glycine, attached to HepII. Combinations ofthese attachments to the LOS inner core represent immunodominantepitopes that are being exploited as future vaccine candidates.Historically, each LOS immunotype was structurally assessedand prescribed a certain unique inner core epitope. We reportthat a single isolate, strain NMB, possesses the capacity toproduce all of the known neisserial LOS inner core immunotypestructures. Analysis of the inner cores from parental LOS revealedthe presence or absence of 1,3-linked glucose, O-6 and/or O-7linked PEA, in addition to glycine attached at the 7 positionof the HepII inner core. Identification and inactivation oflpt-6 in strain NMB resulted in the loss of both O-6 and O-7linked PEA groups from the LOS inner core, suggesting that Lpt-6of strain NMB may have bifunctional transferase activities orthat the O-6 linked PEA groups once attached to the inner coreundergo nonenzymatic transfer to the O-7 position of HepII.Although O-3 linked PEA was not detected in parental LOS innercores devoid of 1-3-linked glucose residues, LOS glycoformsbearing O-3 PEA groups accumulated in a truncated mutant, NMBlgtK(Hep2Kdo2-lipid A). Because these structures disappeared uponinactivation of the lpt-3 locus, strain NMB expresses a functionalO-3 PEA transferase. The LOS glycoforms expressed by NMBlgtKwere also devoid of glycine attachments, indicating that glycinewas added to the inner core after the completion of the -chainby LgtK. In conclusion, strain NMB has the capability to expressall known inner core structures, but in in vitro culture L2and L4 immunotype structures are predominantly expressed.  相似文献   

4.
The structure of the capsular antigen from Haemophilus influenza type c has been investigated, n.m.r. spectroscopy being the principal method used. It is concluded that the antigen is composed of repeating-units having the following structure:
O-Acetyl groups are present in ~90% of the repeating-units.  相似文献   

5.

Background

The two typhoid vaccines, the parenteral Vi capsular polysaccharide and the oral live whole-cell Salmonella Typhi Ty21a vaccine, provide similar levels of protection in field trials. Sharing no antigens, they are thought to confer protection by different mechanisms. This is the first head-to-head study to compare the humoral immune responses to these two vaccines.

Methods

50 age- and gender-matched volunteers were immunized, 25 with the Vi and 25 with the Ty21a vaccine. Circulating plasmablasts reactive with whole-cell Salmonella Typhi or one of the typhoidal antigenic structures, Vi, O-9,12, and H-d antigens, were identified as antibody-secreting cells (ASC) with ELISPOT. Homing receptor (HR) expressions were determined. These results were compared with ASC in four patients with typhoid fever. Antibodies to S. Typhi lipopolysaccharides were assessed in cultures of ALS (antibodies in lymphocyte supernatants) and in serum with ELISA.

Results

In 49 out of 50 vaccinees, no typhoid-specific plasmablasts were seen before vaccination. On day 7, response to Vi antigen was mounted in 24/25 volunteers in the Vi, and none in the Ty21a group; response to S. Typhi and O-9,12 was mounted in 49/50 vaccinees; and to H-d in 3/50. The numbers of typhoid-specific plasmablasts (total of ASC to Vi, O-9,12 and H-d antigens) proved equal in the vaccination groups. The HR expressions indicated a mainly systemic homing in the Vi and intestinal in the Ty21a group, the latter resembling that in natural infection. Plasmablasts proved more sensitive than serum and ALS in assessing the immune response.

Conclusions

The typhoid-specific humoral responses to Vi and Ty21a vaccines are similar in magnitude, but differ in expected localization and antigen-specificity. The unforeseen O antigen-specific response in the Vi group is probably due to lipopolysaccharide contaminating the vaccine preparation. Only the response to Ty21a vaccine was found to imitate that in natural infection.

Trial Registration

Current Controlled Trials Ltd. c/o BioMed Central ISRCTN68125331 http://www.controlled-trials.com/ISRCTN68125331/  相似文献   

6.
WE have determined the crystal structure and absolute configuration of the monohydrate of O-(L-α-glycerylphosphoryl)-ethanolamine (GPE) and have found that there are close relationships between the conformation of the zwitterion of GPE and those which have been reported for O-(L-α-glyceryl-phosphoryl)-choline (GPC) in two previous crystal structure determinations1,2. The recurrent features in the observed stereochemistry of GPE (Fig. 1a) and the three conformers of GPC (Fig. 1b, c and d) suggest configurations for the polar moieties of the parent phosphatidyl ethanolamines and cholines which may be involved in the functioning of these molecules as major components of biological membranes. Because of difficulties in growing suitable crystals, the structures of the intact phospholipids have not yet been determined by X-ray methods.  相似文献   

7.
The antichymotrypsin, antitrypsin, and anticholinesterase potencies of four homologous series of organophosphorus inhibitors are compared: O-(n-alkyl) methylthiophosphonates, O-(n-alkyl)-S-(n-butyl) methylthiophosphonates, O-(n-alkyl)-S-(β-ethylmercaptoethylene) methylth-iophosphonates, and their methylsulfomethylates. As sources of α-chymotrypsin and trypsin, commercial preparations from Worthington Biochemical Corporation and Leningrad Myasokombinat were tested. Bimolecular constant of the reaction rate was used as the measure of antienzyme potency. In all cases, the antichymotrypsin efficiency was lower, while the antitrypsin-essentially higher than the anticholinesterase activity of the studied inhibitors. These differences were found to much depend both on the inhibitor structure and on the nature of the cholinesterase preparations.  相似文献   

8.
Recently, ether-linked diastereomeric 2,4-dihydroxypentanoic acids have been reported as new components of bacterial glycans [Shashkov, A. S. et al.Nat. Prod. Commun.2008, 3, 1625-1630]. In this work, an ether of (2R,4R)-2,4-dihydroxypentanoic acid (Dhpa) with d-mannose was identified in the O-polysaccharide of Providencia alcalifaciens O31, and the polysaccharide structure was elucidated. Studies by NMR spectroscopy confirmed the ether linkage between O-2 of Dhpa and O-4 of Man, and the absolute configuration of Man was determined after ether cleavage with boron trichloride. In the polysaccharide, Dhpa was found to exist partially in the form of 1,4-lactone. Using sugar and methylation analyses along with 1H and 13C NMR spectroscopy, including 2D 1H,1H COSY, TOCSY, ROESY, H-detected 1H,13C HSQC, and gHMBC experiments, the following structure of the tetrasaccharide repeating unit of the polysaccharide was established:  相似文献   

9.
10.
Ultracentrifugically homogeneous glucomannan acetate derived from konjac mannan was subjected to acetolysis. Besides β-1,4-linked oligosaccharides composed of D-mannose and/or D-glucose, three oligosaccharides corresponding to the branching point of the polysaccharide were isolated and identified as (1) 3-O-β-D-mannopyranosyl-D-mannose, (2) O-β-D-mannopyranosyl-(1→4)-O-β-D-mannopyranosyl-(1→3)-D-mannose, and (3) O-β-D- mannopyranosyl-(1→3)-O-β-D-mannopyranosyl-(1→4)-D-glucose. The average chain length (CL) was, moreover, determined to be about 46 by methylation analysis. The structural pattern of the glucomannan, including the branching point, is discussed.  相似文献   

11.
The O antigen of serotype 1c differs from the unmodified O antigen of serotype Y by the addition of a disaccharide (two glucosyl groups) to the tetrasaccharide repeating unit. It was shown here that addition of the first glucosyl group is mediated by the previously characterized gtrI cluster, which is found within a cryptic prophage at the proA locus in the bacterial chromosome. Transposon mutagenesis was performed to disrupt the gene responsible for addition of the second glucosyl group, causing reversion to serotype 1a. Colony immunoblotting was used to identify the desired revertants, and subsequent sequencing, cloning, and functional expression successfully identified the gene encoding serotype 1c-specific O-antigen modification. This gene (designated gtrIC) was present as part of a three-gene cluster, similar to other S. flexneri glucosyltransferase genes. Relative to the other S. flexneri gtr clusters, the gtrIC cluster is more distantly related and appears to have arrived in S. flexneri from outside the species. Analysis of surrounding sequence suggests that the gtrIC cluster arrived via a novel bacteriophage that was subsequently rendered nonfunctional by a series of insertion events.Shigella flexneri is a pathovar of Escherichia coli that is the main causative agent of endemic bacillary dysentery (shigellosis). It is estimated that S. flexneri is responsible for approximately 100 million shigellosis cases annually, resulting in hundreds of thousands of deaths, predominantly in young children (11). Currently no vaccine is available, although there is evidence to suggest that serotype-specific immunity occurs following infection and that induction of immunity can be replicated with vaccines (9). Shigella serotype diversity arises due to differences in the chemical structure of the O-antigen repeating unit in the lipopolysaccharide, which is the main target of the adaptive host immune response following infection.Because immunity to S. flexneri can be conferred by the induction of antibodies directed against the O antigen, an understanding of the prevalence of different serotypes and the underlying basis of serotype diversity can inform appropriate vaccine design. All S. flexneri serotypes (with the exception of serotype 6) share a common O-antigen backbone, consisting of a repeating tetrasaccharide unit that is comprised of one N-acetylglucosamine residue (GlcNAc) and three rhamnose residues (RhaI, RhaII, and RhaIII) (14). The 12 traditionally recognized S. flexneri serotypes differ by the presence or absence of just six different chemical modifications (glucosylations or O acetylations) of the O antigen. The genes responsible for these O-antigen modifications are introduced into the bacterial genome via bacteriophages (3). Glucosylation of the S. flexneri O antigen is mediated by three genes [gtrA, gtrB, and gtr(type)] that are arranged in a single operon known as a gtr cluster. gtrA and gtrB are highly conserved between different gtr clusters and encode proteins involved in transferring the glucosyl group from the cytoplasm into the periplasm, where O-antigen modification is thought to take place. gtr(type) is unique to each gtr cluster and encodes a glucosyltransferase that is responsible for attaching the glucosyl group to a specific sugar unit of the O antigen via a specific linkage (3).Investigations of S. flexneri have typically focused on serotypes for which commercially available typing sera are available. More recently, it has become clear that other serotypes are also epidemiologically important. In Bangladesh in the late 1980s, two novel S. flexneri strains that did not agglutinate with antibodies specific for the traditionally recognized serotypes were isolated (4). Chemical analysis of the O antigen revealed that these strains belonged to a new serotype, which was named serotype 1c due to the similarity its O antigen shares with the O antigens of serotype 1a and 1b strains (19). Serotype 1c has since been isolated in Egypt, Indonesia, Pakistan, and Vietnam (6, 15, 18). Serotype 1c was shown to be the most prevalent S. flexneri serotype in a northern province of Vietnam, accounting for more than a third of all S. flexneri strains isolated from 1998 to 1999 (15). Identification of serotype 1c currently relies on agglutination testing using monoclonal antibody MASF Ic (19).The O antigen of serotype 1c is distinguished by the presence of a disaccharide (two glucosyl groups) linked to the GlcNAc in the tetrasaccharide repeating unit of the O antigen. The first glucosyl group is joined to GlcNAc via an α1→4 linkage, as occurs in the O antigen of serotype 1a and serotype 1b strains (type I modification). The O antigen of serotype 1c is distinguished by the presence of a second glucosyl group that is linked to the first via an α1→2 linkage (Fig. (Fig.1).1). Type Ia modification is prerequisite to type Ic modification.Open in a separate windowFIG. 1.Chemical structure of the tetrasaccharide repeat units in the O antigens of S. flexneri serotypes 1a and 1c. Note that the O antigen of serotype 1b (not shown) differs from that of serotype 1a by the O acetylation of l-RhaIII.In this study, the genetic basis of O-antigen modification in serotype 1c was elucidated. Serotype 1c strains isolated from different locations and times were compared to gain insight into the evolution of this serotype. This is the first report of the identification of a glucosyltransferase gene that is responsible for addition of the second glucosyl group, causing serotype conversion from serotype 1a to serotype 1c.  相似文献   

12.
13.
Holmes  Eric H. 《Glycobiology》1993,3(1):77-81
Biosynthesis of the Lex series of carbohydrate antigens proceedsby fucose transfer in 13-linkage to the penultimate GlcNAc residueof a neolacto-series oligosaccharide acceptor, a reaction catalysedby multiple enzymes expressed in human tissues. Particularlybroad acceptor specificity, including the ability to catalysefucose transfer to both lacto- and neolacto-series acceptorsas well as the precursor Lc3 structure (where Lc3 lactotriaosylceramide,is GlcNAcß13Galß14Glcß1Cer), existsfor one human fucosyltransferase form, the Lewis 13/4fucosyltransferase(FucT-III). To determine if fucose transfer to Lc3may representan alternate early step in Lexor Lea antigen biosynthesis withthis enzyme, the chemical structure of the fucosylated Lc3 reactionproduct formed by the Lewis 13/4fucosyltransferase from Colo205 cells has been defined. Transfer of [14C]fucose to Lc3 yieldeda labelled product migrating as a tetrasaccharide on thin layerchromatography plates. This product remained an acceptor forboth ß13- and ß14-galactosyl transfer onthe terminal GlcNAc residue. The product was degraded to a fucosylatedtrisaccharide derivative by bovine kidney ß-N-acetylglucosaminidase.Fast atom bombardment mass spectrometry and methylation analysisconfirmed that the product was composed exclusively of the followingstructure containing a fucose linked to the 3-position of theinternal Glc residue: GlcNAcß13Galß14Glcß11Cer Such a structure does not represent an intermdiate in LexorLea antigen biosynthesis. Thus, the evidence suggests that Lexor Lea antigen synthesis results exclusively from fucosylationof complete core chains. fucosyltransferase lacto-series LcOse3Cer Lewis antigen transfer specificity  相似文献   

14.
Simian virus 40 large T antigen (TAg) transforms cells in culture and induces tumors in rodents. Genetic studies suggest that TAg interaction with the chaperone hsp70 and tumor suppressors pRb and p53 may not be sufficient to elicit complete transformation of cells. In order to identify additional cellular factors important for transformation, we designed mutations on the solvent-exposed surface of TAg. We hypothesized that surface residues would interact directly with cellular targets and that the mutation of these residues might disrupt this interaction without perturbing TAg''s global structure. Using structural data, we identified 61 amino acids on the surface of TAg. Each surface amino acid was changed to an alanine. Furthermore, five patches containing clusters of charged amino acids on the surface of TAg were identified. Within these patches, we selectively mutated three to four charged amino acids and thus generated five mutants (patch mutants 1 to 5). We observed that while patch mutants 3 and 4 induced foci in REF52 cells, patch mutants 1 and 2 were deficient in focus formation. We determined that the patch 1 mutant is defective in p53 binding, thus explaining its defect in transformation. The patch 2 mutant can interact with the Rb family members and p53 like wild-type TAg but is unable to transform cells, suggesting that it is defective for action on an unknown cellular target essential for transformation. Our results suggest that the histone acetyltransferase CBP/p300 is one of the potential targets affected by the mutations in patch 2.Simian virus 40 (SV40) large T antigen is a multifunctional protein that is essential for productive viral infection and for cellular transformation (26). T antigen possesses several biochemical activities, some of which map to discrete domains that can act independently and/or coordinately. To effect replication and transformation, T antigen binds to several cellular targets via different domains/regions. For example, during replication, T antigen associates with components of the cellular replication apparatus such as DNA polymerase α, replication protein A, and topoisomerase I (11, 14, 24, 31, 39). Three regions of T antigen are essential to elicit cellular transformation (1, 2, 36). The LXCXE motif mediates binding to the members of the Rb family (pRb, p107, and p130) and in conjunction with the J domain results in the inactivation of the Rb family function. While these domains reside in the N terminus of T antigen, a third transforming function in the C terminus of T antigen is essential for inactivation of the tumor suppressor p53. Genetic studies suggest that inactivation of pRb and p53 is not always sufficient to induce T-antigen-mediated transformation (7, 30, 38), thus indicating the presence of additional targets of T antigen contributing to transformation. In the past few years, several additional targets of T antigen, including CBP/p300, Bub1, Cul7, Fbw7, and IRS-1, have been discovered (8, 9, 12, 17, 29, 40, 42); however, their roles in T-antigen-mediated transformation are not clear. T antigen also targets the DNA-damage-sensing and -processing complex Mre11-Rad50-Nbs1 and may induce genetic instability that contributes to transformation (10, 42). The issue is complicated further by the observation that T antigen has redundant functions, that is, it can act on critical targets via multiple mechanisms (7, 37).One of the key strategies to delineate functions of T antigen required for transformation is the use of amino acid substitution and truncation mutants. However, a caveat to this approach is the production of mutants that are defective in transformation due to a loss of integrity of the secondary, or even local, structure. In this study, we combined available sequence data with structural information to design mutants. Sequence alignments allow the identification of conserved amino acid residues, while structural data provide information about amino acid residues on the surface of the molecule. This approach allows us to combine structural elements and target binding sites. In addition, identification of residues conserved across species, followed by mutation of these conserved residues, will likely yield better insights into common biological pathways. Using this method, we have generated four mutants, of which two are defective in transformation and, thus, of great interest for the identification of novel cellular pathways regulating cell growth and proliferation.  相似文献   

15.
Accurate modelling of rotamer equilibria for the primary hydroxyl groups of monosaccharides continues to be a great challenge of computational glycochemistry. The metadynamics technique was applied to study the conformational free energy surfaces of methyl α-d-glucopyranoside and methyl α-d-galactopyranoside, employing the glycam06 force field. For both molecules, seven to eight conformational free-energy minima, differing in the ω (O-5–C-5–C-6–O-6) and χ (C-3–C-4–O-4–HO-4) dihedral angles, were identified in vacuum or in a water environment. The calculated rotamer equilibrium of the primary hydroxyl group is significantly different in vacuum than in water. The major effect of a water environment is the destabilisation of a hydrogen bond between O-4–HO-4 and O-6–HO-6 groups. It was possible to calculate the free-energy differences of individual rotamers with an accuracy of better than 2 kJ/mol. The calculated gg, gt and tg rotamer populations in water are in close agreement with experimental measurements, and therefore support the theoretical background of metadynamics.  相似文献   

16.
The structure of the polysaccharide antigen produced by Eubacterium saburreum, strain L 452, has been investigated. Methylation analysis, graded hydrolysis with acid, and n.m.r. spectroscopy were the principal methods used. The polysaccharide is composed of trisaccharide repeating-units having the following structure:
The assignment of the β configuration to the d-ribofuranosyl residue is tentative.  相似文献   

17.
Transgalactosylation of chitobiose and chitotriose employing -galactosidase from bovine testes yielded mixtures with 1-3 linked galactose (type I) and 1-4 linked galactose (type II) in a final ratio of 1:1 for the tri- and 1:1.4 for the tetrasaccharide. After 24 h incubations of the two purified oligosaccharide mixtures with large amounts (20-fold increase compared with standard conditions) of human 1, 3/4-fucosyltransferase III (FucT III), the type I tri-/tetrasaccharides were completely converted to the Lewisa structure, whereas approximately 10% fucosylation of the type II isomers to the Lewisx oligosaccharides was observed in long-term incubations.Employing large amounts of human 1, 3-fucosyltransferase VI (FucT VI), the type I trisaccharide substrate was exclusively fucosylated at the proximal O-4 substituted N-acetylglucosamine (GlcNAc) (20%) whereas almost all of the type II isomers was converted to the corresponding Lewisx product. 45% of the type I tetrasaccharide was fucosylated at the second GlcNAc solely by FucT VI. The type II isomer was almost completely 1-3 fucosylated to yield the Lewisx derivative with traces of a structure that contained an additional fucose at the reducing GlcNAc. The results obtained in the present study employing high amounts of enzyme confirmed our previous results that FucT III acts preponderantly as a 1-4 fucosyltransferase onto GlcNAc in vitro. Human FucT VI attaches fucose exclusively in an 1-3 linkage to 4-substituted GlcNAc in vitro and does not modify any 3-substituted GlcNAc to yield Lewisa oligosaccharides. With 8-methoxycarbonyloctyl glycoside acceptors used under standard conditions, FucT III acts exclusively on the type I and FucT VI only on the type II derivative. With lacto-N-tetraose, lacto-N-fucopentraose I, or LS-tetrasaccharide as substrates, FucT III modified the 3-substituted GlcNAc and the reducing glucose; FucT VI recognized only lacto-N-neotetraose as a substrate.  相似文献   

18.
Monoclonal antibody 33.1 defines a non-DR, class 11, human major histocompatibility complex antigen, 33.1, which appears to be distinct from other class II antigens in its cellular distribution and primary structure. To characterize the structure more fully and to determine the degree of polymorphism within 33.1, a comparative N-terminal sequence study has been undertaken using a series of ten B lymphoblastoid cell lines with different DR and MB types. The results confirm that both the and chains of 33.1 are homologues of the corresponding chains of the murine I-A antigen and indicate that while 33.1 does not appear to be identical with MB, it is closely related. Sequence analyses revealed two major variants of 33.1, corresponding to cells with specificities MB1 and MB 3, respectively. Within each MB type, other polymorphisms have been detected. Cells that are MB2 do not react with monoclonal antibody 33.1. Suggestive evidence is presented that monoclonal antibody 33.1 reacts predominantly with the chain of the antigen. The preferential expression of 33.1 on activated B cells suggests that expression of at least the 33.1 chain gene is greatly enhanced in the course of B-cell activation, but the specific function of 33.1 remains to be determined.Abbreviations used in this paper McAb monoclonal antibody - BLCL B lymphoblastoid cell lines - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - NP-40 Nonidet P-40 Fellow of the Arthritis Foundation  相似文献   

19.
20.
A human cell membrane antigen that is highly T-cell specific among a number of leukocyte cell lines was isolated from cells of a human T-cell leukemia cell line, SKW-3. In addition to the high specificity to T-cell-type cell lines, the isolated antigen showed the following characteristics: (1) It is an acidic glycoprotein of approximately 30 000 daltons that has a charge heterogeneity and probably a disulfide bond(s); (2) Its antigenicity is stable when treated with heat, acid, and various protein denaturants; (3) It is widely distributed in lymphoid and nonlymphoid tissues but is most predominant in brain. These features are similar, if not identical, to those reported for the Thy-1 antigen of mouse or rat and have raised the possibility that this cell membrane antigen may correspond to human lymphocyte Thy-1 antigen, the counterpart of human brain Thy-I antigen.A unit of the New York State Department of Health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号