首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
3,4-Di-O-acetyl-2-O-benzyl-α-d-xylopyranosyl bromide (1) reacts with methyl 2,3-anhydro-α-d-ribopyranoside (2) to afford, in high yield, methyl 2,3-anhydro-4-O- (3,4-di-O-acetyl-2-O-benzyl-β-d-xylopyranosyl)-β-d-ribopyranoside (3). Deacetylation of 3 gave 4, which reacted with 2,3,4-tri-O-acetyl-α-d-xylopyranosyl bromide to give the branched tetrasaccharide derivative 5, which, in turn, was converted by a series or conventional reactions into methyl 4-O-[3,4-di-O-(β-d-xylopyranosyl)-β-d- xylopyranosyl]-β-d-xylopyranoside. The reaction of 1 with its hydrolysis product gave 3,4-di-O-acetyl-2-O-benzyl-α-d-xylopyranosyl 3,4-di-O-acetyl-2-O-benzyl-β-d-xylopyranoside, which was also isolated after the reaction of 1 with 2.  相似文献   

2.
3,6-Anhydro-α-D-galactopyranose 1,2-(methyl orthoacetate) and its 4-acetate were synthesized from 2,3,4-tri-O-acetyl-6-O-tosyl-α-D-galactopyranosyl bromide. Condensation of the above-mentioned, acetylated ortho ester with 1,2:3,4-di-O-isopropylidene-α-D-galactopyranose gave 6-O-(2,4-di-O-acetyl-3,6-anhydro-β-D-galactopyranosyl)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose. The same disaccharide derivative was synthesised from 6-O-β-D-galactopyranosyl-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose by mono-O-tosylation followed by treatment with alkali and acetylation.  相似文献   

3.
4,6-Di-O-acetyl-2,3-O-carbonyl-α-d-mannopyranosyl bromide was condensed with benzyl 2-acetamido-3,4-di-O-acetyl-2-deoxy-α-d-glucopyranoside in the presence of silver carbonate to give crystalline benzyl 2-acetamido-3,4-di-O-acetyl-2-deoxy-6-O-(4,6-di-O-acetyl-2,3-O-carbonyl-β-d-mannopyranosyl)-α-d-glucopyranoside in 32% yield. Removal of the protective O-acetyl and cyclic carbonate groups gave the crystalline benzyl α-glycoside of the disaccharide, which was catalytically hydrogenolyzed to yield the crystalline, title compound. Proof of the anomeric configuration of the interglycosidic linkage was obtained by comparison of the physical, spectral, and chromatographic properties of the disaccharide and its derivatives with those of the previously prepared α-d-linked analog.  相似文献   

4.
Silver trifluoromethanesulfonate-promoted condensation of 3,4,6-tri-O-acetyl-2-deoxy-phthalimido-β-d-glucopyranosyl bromide with benzyl 3,6-di-O-benzyl-α-d-mannopyranoside and benzyl 3,4-di-O-benzyl-α-d-mannopyranoside gave the protected 2,4- and 2,6-linked trisaccharides in yields of 54 and 32%, respectively. After exchanging the 2-deoxy-2-phthalimido groups for 2-acetamido-2-deoxy groups and de-blocking, the trisaccharides 2,4-di-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-d-mannose and 2,6-di-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-d-mannose were obtained. Similar condensation of 3,6-di-O-acetyl-2-deoxy-2-phthalimido-4-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-β-d-glucopyranosyl bromide with benzyl 3,4-di-O-benzyl-α-d-mannopyranoside gave a pentasaccharide derivative in 52% yield. After transformations analogous to those applied to the trisaccharides, 2,6-di-O-[β-d-galactopyranosyl-(1→4)-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)]-d-mannose was obtained.  相似文献   

5.
《Carbohydrate research》1988,173(2):235-241
A class of unique sucrose esters that comprise the greater portion of non-volatile constituents in the exudate from type B glandular trichomes of S. neocardenasii Hawkes & Hjerting (PI 498129) were resolved by reversed phase t.l.c. The major components were characterized by a combination of hydrolysis studies and spectroscopic techniques as 2-O-acetyl-3′-O-hexanoyl-3,4-di-O-isobutyryl-sucrose, 2-O-acetyl-3′,4-di-O-hexanoyl-3-O-isobutyrylsucrose, and 2-O-acetyl-3′-O-decanoyl-3,4-di-O-isobutyrylsucrose.  相似文献   

6.
《Carbohydrate research》1987,162(2):199-207
The 2,1′-O-isopropylidene derivative (1) of 3-O-acetyl-4,6-O-isopropylidene-α-d-glucopyranosyl 6-O-acetyl-3,4-anhydro-β-d-lyxo-hexulofuranoside and 2,3,4-tri-O-acetyl-6-O-trityl-α-d-glucopyranosyl 3,4-anhydro-1,6-di-O-trityl-β-d-lyxo-hexulofuranoside have been synthesised and 1 has been converted into 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,6-di-O-acetyl-3,4-anhydro-β-d-lyxo-hexulofuranoside (2). The SN2 reactions of 2 with azide and chloride nucleophiles gave the corresponding 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,3,6-tri-O-acetyl-4-azido-4-deoxy-β-d-fructofuranoside (6) and 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,3,6-tri-O-acetyl-4-chloro-4-deoxy-β-d-fructofuranoside (8), respectively. The azide 6 was catalytically hydrogenated and the resulting amine was isolated as 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 4-acetamido-1,3,6-tri-O-acetyl-4-deoxy-β-d-fructofuranoside. Treatment of 5 with hydrogen bromide in glacial acetic acid followed by conventional acetylation gave 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,3,6-tri-O-acetyl-4-bromo-4-deoxy-β-d-fructofuranoside. Similar SN2 reactions with 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,6-di-O-acetyl-3,4-anhydro-β-d-ribo-hexulofuranoside (12) resulted in a number of 4′-derivatives of α-d-glucopyranosyl β-d-sorbofuranoside. The regiospecific nucleophilic substitution at position 4′ in 2 and 12 has been explained on the basis of steric and polar factors.  相似文献   

7.
The crystalline intermediate 2-acetamido-6-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-D-glucopyranosyl)-3,4-di-O-acetyl-2-deoxy-β-D-glucopyranosyl azide (5), obtained by condensation of 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-D-glucopyranosyl bromide with either 2-acetamido-3,4-di-O-acetyl-2-deoxy-β-D-glucopyranosyl azide or its 6-O-triphenylmethyl derivative, was reduced in the presence of Adams' catalyst to give a disaccharide amine. Condensation with 1-benzyl N-(benzyloxycarbonyl)-L-aspartate afforded crystalline 2-acetamido-6-O-(2-acetamido-3,4 6-tri-O-acetyl-2-deoxy-β-D-glucopyranosyl)-3,4-di-O-acetyl-1-N-[1-benzyl N-(benzyloxycarbonyl)-L-aspart-4-oyl]-2-deoxy-β-D-glucopyranosylamine (9). Catalytic hydrogenation in the presence of palladium-on-charcoal was followed by saponification to give 2-acetamido-6-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-1-N-(L-aspart-4-oyl)-2-deoxy-β-D-glucopyranosylamine (11) in crystalline form. From the mother liquors of the reduction of 5, a further crystalline product was isolated, to which was assigned a bisglycosylamine structure (12).  相似文献   

8.
2-Methyl-[3,6-di-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-α-d-glucopyrano]-[2,1-d]-2-oxazoline (4) was prepared from 2-acetamido-3,6-di-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-α-d- glucopyranosyl chloride. Condensation of 3,4:5,6-di-O-isopropylidene-d-mannose dimethyl acetal with 4 in the presence of a catalytic amount of p-toluenesulfonic acid afforded O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-(1 → 4)-O-(2-acetamido-3,6-di-O-acetyl-2-deoxy-β-d-glucopyranosyl)-(1 → 2)-3,4:5,6-di-O-isopropylidene-d-mannose dimethyl acetal (6) in 8.6% yield. Catalytic deacetylation of 6 with sodium methoxide, followed by hydrolysis with dilute sulfuric acid, gave O-β-d-galactopyranosyl-(1 → 4)-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1 → 2)-d-mannose (7). The inhibitory activities of 7 and related sugars against the hemagglutinating activities of various lectins were assayed, and 7 was found to be a good inhibitor against Phaseolus vulgaris hemagglutinin.  相似文献   

9.
2-Acetamido-2- deoxy-6-O-, -xylopyranosyl-O-D-glucopyranose has been synthesized in crystalline form by condensation of 2,3,4-tri-O-acetyl-α-D-xylopyranosyl chloride (1) with benzyl 2-acetamido-3,4-di-O-acetyl-2-deoxy-β-D-glucopyranoside (2), followed by O-deacetylation and catalytic hydrogenation. Condensation of 2 with 2,3,4-tri-O-chlorosulfonyl-β-D-xylopyranosyl chloride, followed by dechlorosulfonylation and acetylation, gave benzyl 2-acetamido-3,4-di-O-acetyl-2-deoxy-6-O-(2,3,4-tri-O-acetyl-α-D-xylopyranosyl)β-D-glucopyranoside in crystalline form. O-Deacetylation, followed by catalytic hydrogenation, gave 2-acetamido-2-deoxy-6-O-α-D-xylopyranosyl-α-D-glucopyranose in crystalline form.  相似文献   

10.
2-Methyl-(2-acetamido-3,4,6-tri-O-benzyl-1,2-dideoxy-α-D-glucopyrano)-[2,1-d]-2-oxazoline,2-methyl-(2-acetamido-6-O-acetyl-3,4-di-O-benzyl-1,2-dideoxy-α-D-glucopyrano)-[2,1-d]-2-oxazoline,and 2-methyl-(2-acetamido-4-O-acetyl-3,6-di-O-benzyl-1,2-dideoxy-α-D-glucopyrano)-[2,1-d]-2-oxazoline were synthesized from the allyl 2-acetamido-3,4,6-tri-O-benzyl-2-deoxy-D-glucopyranosides, and from the 3,4-di-O-benzyl or 3,6-di-O-benzyl analogs, respectively, both the α and β anomer being used in each case. The preparation of allyl 2-acetamido-3,4,6-tri-O-benzyl- and 3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside is also described. Treatment of the tri-O-benzyl oxazoline with dibenzyl phosphate gave a pentabenzylglycosyl phosphate, from which all the benzyl groups were removed by catalytic hydrogenation, giving 2-acetamido-2-deoxy-α-D-glucopyranosyl phosphate. The corresponding β anomer was not detectable. Treatment of the 3,4-, or 3,6-, di-O-benzyl oxazoline with allyl 2-acetamido-3,4-di-O-benzyl-α-D-glucopyranoside readily gave disaccharide products from which the protecting groups were removed, to give the (1→6)-linked isomer of di-N-acetylchitobiose. Under both acidic and basic conditions, this isomer was less stable than the (1→4)-linked compound.Attempts to employ the 3,6-di-O-benzyl oxazoline for the formation of (1→4)-linked disaccharides, by treatment with either anomer of allyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-D-glucopyranoside, were not very successful, presumably owing to hindrance by the bulky benzyl groups.  相似文献   

11.
1,2,4,6-Tetra-O-acetyl-3-O-benzyl-α-D-mannopyranose (7) was obtained in good yield from 3,4,6-tri-O-benzyl-1,2-O-(1-methoxyethylidene)-β-D-mannopyranose (1) by acetolysis. Hydrogenolysis of 7 afforded 1,2,4,6-tetra-O-acetyl-α-D-mannopyranose which is a versatile intermediate for the preparation of other 3-O-substituted D-mannoses, such as 3-O-methyl-D-mannose and 3-O-α-D-mannopyranosyl-D-mannose. 3,4-Di-O-methyl-D-mannose was readily prepared from 1,2,6-tri-O-acetyl-3,4-di-O-benzyl-α-D-mannopyranose, which was also obtained from 1 by controlled acetolysis.  相似文献   

12.
Methyl 2-acetamido-3-O-allyl-2-deoxy-4-O-methyl-α-D-glucopyranoside, methyl 2-acetamido-2-deoxy-4-O-methyl-α-D-glucopyranoside, and methyl 2-acetamido-3,4-di-O-allyl-2-deoxy-α-D-glucopyranoside, prepared from methyl 2-acetamido-2-deoxy-α-D-glucopyranoside, were coupled with 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate (13), to give the phosphoric esters methyl 2-acetamido-3-O-allyl-2-deoxy-4-O-methyl-α-D-glucopyranoside 6-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate) (16), methyl 2-acetamido-2-deoxy-4-O-methyl-α-D-glucopyranoside 6-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate) (23), and methyl 2-acetamido-3,4-di-O-allyl-2-deoxy-α-D-glucopyranoside 6-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate) (17). Compound 13 was prepared from penta-O-acetyl-β-D-glucopyranose by the phosphoric acid procedure, or by acetylation of α-D-glucopyranosyl phosphate. Removal of the allyl groups from 16 and 17 gave 23 and methyl 2-acetamido-2-deoxy-α-D-glucopyranoside 6-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate) (19), respectively. O-Deacetylation of 23 gave methyl 2-acetamido-2-deoxy-4-O-methyl-α-D-glucopyranoside 6-(α-D-glucopyranosyl phosphate) (26) and O-deacetylation of 19 gave methyl 2-acetamido-2-deoxy-α-D-glucopyranoside 6-(α-D-glucopyranosyl phosphate) (24). Propyl 2-acetamido-2-deoxy-α-D-glucopyranoside 6-(α-D-glucopyranosyl phosphate) (25) was prepared by coupling 13 with allyl 2-acetamido-3,4-di-O-benzyl-2-deoxy-α-D-glucopyranoside, followed by catalytic hydrogenation of the product to give the propyl glycoside, which was then O-deacetylated. Compounds 24, 25, and 26 are being employed in structural studies of the Micrococcus lysodeikticus cell-wall.  相似文献   

13.
1,6-Anhydro-4-S-benzoyl-4-thio-β-D-mannopyranose, obtained by treatment of 1,6:3,4-dianhydro-β-D-talopyranose with pyridinium thiolbenzoate in N,N-di-methylformamide, was converted into its 2,3-di-O-acetyl derivative, which was acetolyzed to give 1,2,3,6-tetra-O-acetyl-4-S-benzoyl-4-thio-D-mannopyranose. Deacylation of the last-named compound with sodium methoxide in methanol gave syrupy 4-thio-D-mannose, which was characterized as 1,2,3,5,6-penta-O-acetyl-4-thio-α- and -β-D-mannofuranose.  相似文献   

14.
Attempts to prepare 1,2:5,6 and 2,3:5,6 di-unsaturated sugars starting from 3,4,6-tri-O-acetyl-1,5-anhydro-1,2-dideo xy-d-arabino-hex-1-enitol or from ethyl 4,6-di-O-acetyl-1,5-anhydro-2,3-dideoxy-α-d-erythro-hex-2-enopyranoside led to 1,5-anhydro-1,2,6-trideoxy-l-threo-hex-5-enitol and its 3,4-diacetate. Hydrogenation and hydrogenolysis of the unsaturated chloro and fluoro derivatives afforded 1,5-anhydro-1,2,6-trideoxy-d-arabino-hexitol and ethyl 4-O-acetyl-2,3,6-trideoxy-α-d-erythro-hexopyranoside.  相似文献   

15.
A new route is described for preparing methyl 4,6-di-O-methyl-α-d-mannopyranoside (5) via methyl 2,3-di-O-p-tolylsulfonyl-α-d-mannopyranoside (3) as an intermediate. The retention of the mannopyranoside configuration and ring form was confirmed by proton n.m.r. spectroscopy and by m.s. of peracetylated aldononitrile derivatives. Mass-spectral fragmentation-pathways previously proposed were confirmed for 5-O-acetyl-2,3,4,6-tetra-O-methyl-, 2,5-di-O-acetyl-3,4,6-tri-O-methyl-, and 3,5-di-O-acetyl-2,4,6-tri-O-methyl-d-mannononitrile.  相似文献   

16.
The reaction of tri-O-acetyl-d-allal or -d-glucal, ethyl 4,6-di-O-acetyl-2,3-dideoxy-α-d)-erythro-hex-2-enopyranoside, or 1,4,6-tri-O-acetyl-α,β-d-erythro-hex-2-enopyranose with sodium azide in acetonitrile under catalysis by boron trifluoride diethyl etherate yields a mixture of 4,6-di-O-acetyl-3-azido-3-deoxy-d-allal and -d-glucal, together with both anomers of 4,6-di-O-acetyl-2,3-dideoxy-d-erythro-hex-2-enopyranosyl azide. The mechanism of these reactions is discussed. 3-Amino-3-deoxy-d-allal and -d-glucal and their derivatives are described.  相似文献   

17.
A convenient method of synthesis of 1,6-anhydro-4-deoxy-2-O-tosyl-4-fluoro-β-D-glucopyranose by fusion of 1,6;3,4-dianhydro-2-O-tosyl-β-D-galactopyranose with 2,4,6-trimethylpyridinium fluoride was found. By a successive action of ammonia, methyl trifluoroacetate, and acetic anhydride, the resulting compound was transformed into 1,6-anhydro-3-O-acetyl-2,4-dideoxy-2-trifluoroacetamido-4-fluoro-β-D-glucopyranose, which was converted into 3,6-di-O-acetyl-2,4-dideoxy-2-trifluoroacetamido-4-fluoro-αD-glucopyranosyl fluoride by the reaction with HF/Py. The resulting fluoride was further used as a glycosyl donor in the synthesis of methylumbelliferyl N-acetyl-4-deoxy-4-fluoro-β-D-glucosaminide.  相似文献   

18.
The reaction of 2,3-di-O-acetyl-4-O-benzyl-α,β-d-xylopyranosyl bromide (2) with methyl 2,3-di-O-acetyl-β-d-xylopyranoside gave methyl O-(2,3-di-O-acetyl-4-O-benzyl-β-d-xylopyranosyl)-(1→4)-2,3-di-O-acetyl-β-d-xylopyranoside (22). Catalytic hydrogenolysis of 22 exposed HO-4′ which was then condensed with 2. This sequence of reactions was repeated three more times to afford, after complete removal of protecting groups, a homologous series of methyl β-glycosides of (1→4)-β-d-xylo-oligosaccharides. 13C-N.m.r. spectra of the synthetic methyl β-glycosides (di- to hexa-saccharide) are presented together with data for six other, variously substituted, homologous series of (1→4)-d-xylo-oligosaccharides.  相似文献   

19.
《Carbohydrate research》1986,146(1):63-72
Partial oxyamination of 4,6-di-O-acetyl-2,3-dideoxy-α-d-erythro-hex-2-enopyranosyl 4,6-di-O-acetyl-2,3-dideoxy-α-d-erythro-hex-2-enopyranoside with chloramine-T and osmium tetraoxide gave 4,6-di-O-acetyl-2-deoxy-2-(p-toluene-sulfonamido)-α-d-mannopyranosyl 4,6-di-O-acetyl-2,3-dideoxy-α-d-erythro-hex-2-enopyranoside and its 3-deoxy-3-(p-toluenesulfonamido) regioisomer, each in 18–19% isolated yield. Osmium tetraoxide-catalyzed cis-hydroxylation of the remaining alkenic residue in these products led in high yields to the corresponding triols having the α-d-manno, α-d-manno configuration. These were N-desulfonylated (and simultaneously O-deacetylated) by the action of sodium in liquid ammonia to furnish 2-amino-2-deoxy-α-d-mannopyranosyl α-d-mannopyranoside and 3-amino-3-deoxy-α-d-mannopyranosyl α-d-mannopyranoside as new, trehalose-type amino sugars.  相似文献   

20.
Condensation of benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-α-D-glucopyranoside with 2,3,4,6-tetra-O-benzyl-1-O-(N-methyl)acetimidoyl-β-D-glucopyranose gave benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-4-O-(2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl)-α-D-glucopyranoside which was catalytically hydrogenolysed to crystalline 2-acetamido-2-deoxy-4-O-α-D-glucopyranosyl-α-D-glucopyranose (N-acetylmaltosamine). In an alternative route, the aforementioned imidate was condensed with 2-acetamido-3-O-acetyl-1,6-anhydro-2-deoxy-β-D-glucopyranose, and the resulting disaccharide was catalytically hydrogenolysed, acetylated, and acetolysed to give 2-acetamido-1,3,6-tri-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl)-α-D-glucopyranose Deacetylation gave N-acetylmaltosamine. The synthesis of 2-acetamido-2-deoxy-4-O-β-D-glucopyranosyl-α-D-glucopyranose involved condensation of benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-α-D-glucopyranoside with 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide in the presence of mercuric bromide, followed by deacetylation and catalytic hydrogenolysis of the condensation product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号