首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
U3 snoRNA may recycle through different compartments of the nucleolus   总被引:6,自引:0,他引:6  
A model is proposed in which U3 small nucleolar RNA (snoRNA) is recruited from an inactive, stored form in the dense fibrillar component (DFC) of the nucleolus to an active form that is associated with the initial ribosomal RNA (rRNA) precursor. The initial steps of rRNA processing occur in the DFC, and then it is proposed that the U3 snoRNA moves with intermediates in rRNA processing from the DFC to the granular component (GC) of the nucleolus. The nucleolar protein fibrillarin is located primarily in the DFC, and it is suggested that the complex of fibrillarin and U3 snoRNA dissociates when U3 snoRNA transits to the GC. Finally, when U3 snoRNA is released from the processed rRNA, the tether holding the rRNA in the nucleolus is broken and rRNA can then be exported from the nucleolus to the cytoplasm. U3 snoRNA is hypothesized to recycle back from the GC to the DFC where it is stored until future association with another initial rRNA precursor. Data supporting this model are summarized. U3 snoRNA is also stored in the coiled body of interphase cells and in the nucleolar remnants and prenucleolar bodies of mitotic cells, and there may be some similarity in the binding sites for stored U3 snoRNA in the DFC and in these structures. Received: 16 September 1996 / Accepted: 11 November 1996  相似文献   

2.
The SSU processome is required for production of the small ribosomal subunit RNA, the 18S rRNA. Specifically, the U3 small nucleolar RNA (snoRNA) component of the SSU processome is essential for the formation of the conserved central pseudoknot and for cleavages of the pre-rRNA, both of which are required for 18S maturation. To further elucidate how these events are mediated, we examined the regulatory and mechanistic roles of the U3 specific proteins: Imp3p, Imp4p, and Mpp10p. We found that these proteins demonstrated an interdependence with respect to their stability and to their association with the U3 snoRNA. Because mutations in the U3 snoRNA that disrupt pre-rRNA processing confer similar defects on growth and pre-rRNA processing as do carboxy-terminal truncations of Mpp10p, we hypothesized that Mpp10p may be involved in maintaining U3 snoRNA-pre-rRNA base pairing. However, combining the two mutations resulted in a more pronounced cleavage defect at site A(2), suggesting that Mpp10p is also required at an additional mechanistic step. Furthermore, heterologous complementation experiments demonstrate that the last 95 amino acids of yeast Mpp10p are specifically required for growth and pre-rRNA processing at low temperatures.  相似文献   

3.
4.
We have examined the ultrastructural localization of U3 RNA in the nucleoli of HeLa and mouse 3T3 cells by in situ hybridization with a biotinylated U3 DNA probe and subsequent detection of hybrids with electron microscopy by direct immunogold labeling. The highest levels of signal density for U3 RNA are detected over the dense fibrillar component (DFC) of the nucleolus, including the interfaces between DFC and the enclosed fibrillar center (FC) on the one hand and DFC and the granular component (GC) on the other hand. Lower but significant signals also are observed over GC, which indicate, taking into account the high relative volume of GC in a nucleolus, that a substantial fraction of U3 RNA is present in this compartment where the more mature forms of pre-rRNA accumulate. In parallel, the localization of fibrillarin was analyzed by immunogold detection, demonstrating that fibrillarin and U3 RNA have a roughly similar distribution, although quantitative measurements reveal that the signal ratio for both molecules exhibit significant differences among the major ultrastructural components of the nucleolus.  相似文献   

5.
In eukaryotes, U3 snoRNA is essential for pre-rRNA maturation. Its 5'-domain was found to form base pair interactions with the 18S and 5'-ETS parts of the pre-rRNA. In Xenopus laevis, two segments of U3 snoRNA form base-pair interactions with the 5'-ETS region and only one of them is essential to the maturation process. In Saccharomyces cerevisiae, two similar U3 snoRNA-5' ETS interactions are possible; but, the functional importance of only one of them had been tested. Surprisingly, this interaction, which corresponds to the non-essential one in X. laevis, is essential for cell growth and pre-rRNA maturation in yeast. In parallel with [Dutca et al. (2011) The initial U3 snoRNA:pre-rRNA base pairing interaction required for pre-18S rRNA folding revealed by in vivo chemical probing. Nucleic Acids Research, 39, 5164-5180], here we show, that the second possible 11-bp long interaction between the 5' domain of S. cerevisiae U3 snoRNA and the pre-rRNA 5'-ETS region (helix VI) is also essential for pre-rRNA processing and cell growth. Compensatory mutations in one-half of helix VI fully restored cell growth. Only a partial restoration of growth was obtained upon extension of compensatory mutations to the entire helix VI, suggesting sequence requirement for binding of specific proteins. Accordingly, we got strong evidences for a role of segment VI in the association of proteins Mpp10, Imp4 and Imp3.  相似文献   

6.
The function of the U3 small nucleolar ribonucleoprotein (snoRNP) is central to the events surrounding pre-rRNA processing, as evidenced by the severe defects in cleavage of pre-18S rRNA precursors observed upon depletion of the U3 RNA and its unique protein components. Although the precise function of each component remains unclear, since U3 snoRNA levels remain unchanged upon genetic depletion of these proteins, it is likely that the proteins themselves have significant roles in the cleavage reactions. Here we report the identification of two previously undescribed protein components of the U3 snoRNP, representing the first snoRNP components identified by using the two-hybrid methodology. By screening for proteins that physically associate with the U3 snoRNP-specific protein, Mpp10p, we have identified Imp3p (22 kDa) and Imp4p (34 kDa) (named for interacting with Mpp10p). The genes encoding both proteins are essential in yeast. Genetic depletion reveals that both proteins are critical for U3 snoRNP function in pre-18S rRNA processing at the A0, A1, and A2 sites in the pre-rRNA. Both Imp proteins associate with Mpp10p in vivo, and both are complexed only with the U3 snoRNA. Conservation of RNA binding domains between Imp3p and the S4 family of ribosomal proteins suggests that it might associate with RNA directly. However, as with other U3 snoRNP-specific proteins, neither Imp3p nor Imp4p is required for maintenance of U3 snoRNA integrity. Imp3p and Imp4p are therefore novel protein components specific to the U3 snoRNP with critical roles in pre-rRNA cleavage events.  相似文献   

7.
The synthesis of ribosomal subunits in the nucleolus is a conserved, essential process that results in cytoplasmic ribosomes with precisely processed and folded rRNAs assembled with ribosomal proteins. It has been proposed, but never directly demonstrated, that the U3 small nucleolar RNA (snoRNA), a nucleolar component required for ribosome biogenesis, is a chaperone for pre-18S rRNA folding. To test this, we used in vivo chemical probing with dimethyl sulfate to detect changes in pre-rRNA structure upon genetic manipulation of the yeast, Saccharomyces cerevisiae. Based on changes in nucleotide reactivity, we found that the U3 snoRNA is indeed required for folding of the pre-18S rRNA. Furthermore, we detected a new essential base pairing interaction that is likely the initial anchor that recruits the U3 snoRNA to the pre-rRNA, is a prerequisite for the subsequent interactions, and is required for the small subunit processome formation. Substitution of the 5'-ETS nucleotides of the pre-rRNA involved in this initial base pairing interaction is lethal, but growth is restored when a complementary U3 snoRNA is expressed. The U3 snoRNP, via base pairing, and its associated proteins, are part of the required machinery that orchestrates the folding of pre-rRNA that results in the assembly of the small ribosomal subunit.  相似文献   

8.
9.
The nucleolus, the site of pre-ribosomal RNA (pre-rRNA) synthesis and processing in eukaryotic cells, contains a number of small nucleolar RNAs (snoRNAs). Yeast U3 snoRNA is required for the processing of 18S rRNA from larger precursors and contains a region complementary to the pre-rRNA. Substitution mutations in the pre-rRNA which disrupt this base pairing potential are lethal and prevent synthesis of 18S rRNA. These mutant pre-rRNAs show defects in processing which closely resemble the effects of genetic depletion of components of the U3 snoRNP. Co-expression of U3 snoRNAs which carry compensatory mutations allows the mutant pre-rRNAs to support viability and synthesize 18S rRNA at high levels. Pre-rRNA processing steps which are blocked by the external transcribed spacer region mutations are largely restored by expression of the compensatory U3 mutants. Pre-rRNA processing therefore requires direct base pairing between snoRNA and the substrate. Base pairing with the substrate is thus a common feature of small RNAs involved in mRNA and rRNA maturation.  相似文献   

10.
We have isolated and characterized Mpp10p, a novel protein component of the U3 small nucleolar ribonucleoprotein (snoRNP) from the yeast Saccharomyces cerevisiae. The MPP10 protein was first identified in human cells by its reactivity with an antibody that recognizes specific sites of mitotic phosphorylation. To study the functional role of MPP10 in pre-rRNA processing, we identified the yeast protein by performing a GenBank search. The yeast Mpp10p homolog is 30% identical to the human protein over its length. Antibodies to the purified yeast protein recognize a 110-kDa polypeptide in yeast extracts and immunoprecipitate the U3 snoRNA, indicating that Mpp10p is a specific protein component of the U3 snoRNP in yeast. As a first step in the genetic analysis of Mpp10p function, diploid S. cerevisiae cells were transformed with a null allele. Sporulation and tetrad analysis indicate that MPP10 is an essential gene. A strain was constructed where Mpp10p is expressed from a galactose-inducible, glucose- repressible promoter. After depletion of Mpp10p by growth in glucose, cell growth is arrested and levels of 18S and its 20S precursor are reduced or absent while the 23S and 35S precursors accumulate. This pattern of accumulation of rRNA precursors suggests that Mpp10p is required for cleavage at sites A0, A1, and A2. Pulse-chase analysis of newly synthesized pre-rRNAs in Mpp10p-depleted yeast confirms that little mature 18S rRNA formed. These results reveal a novel protein essential for ribosome biogenesis and further elucidate the composition of the U3 snoRNP.  相似文献   

11.
12.
13.
U8 small nucleolar RNA (snoRNA) is essential for metazoan ribosomal RNA (rRNA) processing in nucleoli. The sequences and structural features in Xenopus U8 snoRNA that are required for its nucleolar localization were analyzed. Fluorescein-labeled U8 snoRNA was injected into Xenopus oocyte nuclei, and fluorescence microscopy of nucleolar preparations revealed that wild-type Xenopus U8 snoRNA localized to nucleoli, regardless of the presence or nature of the 5' cap on the injected U8 snoRNA. Nucleolar localization was observed when loops or stems in the 5' portion of U8 that are critical for U8 snoRNA function in rRNA processing were mutated. Therefore, sites of interaction in U8 snoRNA that potentially tether it to pre-rRNA are not essential for nucleolar localization of U8. Boxes C and D are known to be nucleolar localization elements (NoLEs) for U8 snoRNA and other snoRNAs of the Box C/D family. However, the spatial relationship of Box C to Box D was not crucial for U8 nucleolar localization, as demonstrated here by deletion of sequences in the two stems that separate them. These U8 mutants can localize to nucleoli and function in rRNA processing as well. The single-stranded Cup region in U8, adjacent to evolutionarily conserved Box C, functions as a NoLE in addition to Boxes C and D. Cup is unique to U8 snoRNA and may help bind putative protein(s) needed for nucleolar localization. Alternatively, Cup may help to retain U8 snoRNA within the nucleolus.  相似文献   

14.
The sequences and structural features of Xenopus laevis U3 small nucleolar RNA (snoRNA) necessary for pre-rRNA cleavage at sites 1 and 2 to form 18 S rRNA were assayed by depletion/rescue experiments in Xenopus oocytes. Mutagenesis results demonstrated that the putative stem of U3 domain I is unnecessary for 18 S rRNA processing. A model consistent with earlier experimental data is proposed for the structure of domain I when U3 is not yet bound to pre-rRNA. For its function in rRNA processing, a newly discovered element (5' hinge) was revealed to be important but not as critical as the 3' hinge region in Xenopus U3 snoRNA for 18 S rRNA formation. Base-pairing is proposed to occur between the U3 5' hinge and 3' hinge and complementary regions in the external transcribed spacer (ETS); these interactions are phylogenetically conserved, and are homologous to those previously described in yeast (5' hinge-ETS) and trypanosomes (3' hinge-ETS). A model is presented where the base-pairing of the 5' hinge and 3' hinge of U3 snoRNA with the ETS of pre-rRNA helps to correctly position U3 boxes A'+A for their function in rRNA processing. Like an earlier proposal for yeast, boxes A' and A of Xenopus may base-pair with 18 S sequences in pre-rRNA. We present the first direct experimental evidence in any system that box A' is essential for U3 snoRNA function in 18 S rRNA formation. The analysis of insertions and deletions indicated that the spacing between the U3 elements is important, suggesting that they base-pair with the ETS and 18 S regions of pre-rRNA at the same time.  相似文献   

15.
Small nucleolar RNAs (snoRNAs) orchestrate the modification and cleavage of pre-rRNA and are essential for ribosome biogenesis. Recent data suggest that after nucleoplasmic synthesis, snoRNAs transiently localize to the Cajal body (in plant and animal cells) or the homologous nucleolar body (in budding yeast) for maturation and assembly into snoRNPs prior to accumulation in their primary functional site, the nucleolus. However, little is known about the trans-acting factors important for the intranuclear trafficking and nucleolar localization of snoRNAs. Here, we describe a large-scale genetic screen to identify proteins important for snoRNA transport in Saccharomyces cerevisiae. We performed fluorescence in situ hybridization analysis to visualize U3 snoRNA localization in a collection of temperature-sensitive yeast mutants. We have identified Nop4, Prp21, Tao3, Sec14, and Htl1 as proteins important for the proper localization of U3 snoRNA. Mutations in genes encoding these proteins lead to specific defects in the targeting or retention of the snoRNA to either the nucleolar body or the nucleolus. Additional characterization of the mutants revealed impairment in specific steps of U3 snoRNA processing, demonstrating that snoRNA maturation and trafficking are linked processes.  相似文献   

16.
17.
The SSU processome is a large ribonucleoprotein complex consisting of the U3 snoRNA and at least 43 proteins. A database search, initiated in an effort to discover additional SSU processome components, identified the uncharacterized, conserved and essential yeast nucleolar protein YIL091C/UTP25 as one such candidate. The C-terminal DUF1253 motif, a domain of unknown function, displays limited sequence similarity to DEAD-box RNA helicases. In the absence of the conserved DEAD-box sequence, motif Ia is the only clearly identifiable helicase element. Since the yeast homolog is nucleolar and interacts with components of the SSU processome, we examined its role in pre-rRNA processing. Genetic depletion of Utp25 resulted in slowed growth. Northern analysis of pre-rRNA revealed an 18S rRNA maturation defect at sites A0, A1, and A2. Coimmunoprecipitation confirmed association with U3 snoRNA and with Mpp10, and with components of the t-Utp/UtpA, UtpB, and U3 snoRNP subcomplexes. Mutation of the conserved motif Ia residues resulted in no discernable temperature-sensitive or cold-sensitive growth defects, implying that this motif is dispensable for Utp25 function. A yeast two-hybrid screen of Utp25 against other SSU processome components revealed several interacting proteins, including Mpp10, Utp3, and Utp21, thereby identifying the first interactions among the different subcomplexes of the SSU processome. Furthermore, the DUF1253 domain is required and sufficient for the interaction of Utp25 with Utp3. Thus, Utp25 is a novel SSU processome component that, along with Utp3, forms the first identified interactions among the different SSU processome subcomplexes.  相似文献   

18.
Nucleolin functions in the first step of ribosomal RNA processing.   总被引:24,自引:1,他引:23       下载免费PDF全文
H Ginisty  F Amalric    P Bouvet 《The EMBO journal》1998,17(5):1476-1486
The first processing step of precursor ribosomal RNA (pre-rRNA) involves a cleavage within the 5' external transcribed spacer. This processing requires sequences downstream of the cleavage site which are perfectly conserved among human, mouse and Xenopus and also several small nucleolar RNAs (snoRNAs): U3, U14, U17 and E3. In this study, we show that nucleolin, one of the major RNA-binding proteins of the nucleolus, is involved in the early cleavage of pre-rRNA. Nucleolin interacts with the pre-rRNA substrate, and we demonstrate that this interaction is required for the processing reaction in vitro. Furthermore, we show that nucleolin interacts with the U3 snoRNP. Increased levels of nucleolin, in the presence of the U3 snoRNA, activate the processing activity of a S100 cell extract. Our results suggest that the interaction of nucleolin with the pre-rRNA substrate might be a limiting step in the primary processing reaction. Nucleolin is the first identified metazoan proteinaceous factor that interacts directly with the rRNA substrate and that is required for the processing reaction. Potential roles for nucleolin in the primary processing reaction and in ribosome biogenesis are discussed.  相似文献   

19.
20.
U3 small nucleolar RNA (snoRNA) is one of the members of the box C/D class of snoRNA and is essential for ribosomal RNA (rRNA) processing to generate 18S rRNA in the nucleolus. Although U3 snoRNA is abundant, and is well conserved from yeast to mammals, the genes encoding U3 snoRNA in C. elegans have long remained unidentified. A recent RNomics study in C. elegans predicted five distinct U3 snoRNA genes. However, characterization of these candidates for U3 snoRNA has yet to be performed. In this study, we isolated and characterized four candidate RNAs for U3 snoRNA from the immunoprecipitated RNAs of C. elegans using an antibody against the 2,2,7-trimethylguanosine (TMG) cap. The sequences were identical to the predicted U3 sequences in the RNomics study. Here, we show the several lines of evidence that the isolated RNAs are the true U3 snoRNAs of C. elegans. Moreover, we report the novel expression pattern of U3 snoRNA and fibrillarin, which is an essential component of U3 small nucleolar ribonucleoprotein complex, during early embryo development of C. elegans. To our knowledge, this is the first observation of the inconsistent localization U3 snoRNA and fibrillarin during early embryogenesis, providing novel insight into the mechanisms of nucleologenesis and ribosome production during early embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号