首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resistance of tomato plants to the bacterial pathogen Pseudomonas syringae pv. tomato race 0 is controlled by the locus Pto. A bacterial avirulence gene was cloned by constructing a cosmid library from an avirulent P. syringae pv. tomato race, conjugating the recombinants into a strain of P. syringae pv. maculicola virulent on a tomato cultivar containing Pto, and screening for those clones that converted the normally virulent phenotype to avirulence. The cloned gene, designated avrPto, reduced multiplication of P. syringae pv. tomato transconjugants specifically on Pto tomato lines, as demonstrated by bacterial growth curve analyses. Analysis of F2 populations revealed cosegregation of resistance to P. syringae pv. tomato transconjugants carrying avrPto with resistance to P. syringae pv. tomato race 0. Surprisingly, mutation of avrPto in P. syringae pv. tomato race 0 does not eliminate the avirulent phenotype of race 0, suggesting that additional, as yet uncharacterized, avirulence genes and/or resistance genes may contribute to specificity in the avrPto-Pto interaction. Genetic analysis indicates that this resistance gene(s) would be tightly linked to Pto. Interestingly, P. syringae pv. glycinea transconjugants carrying avrPto elicit a typical hypersensitive resistant response in the soybean cultivar Centennial, suggesting conservation of Pto function between two crop plants, tomato and soybean.  相似文献   

2.
Plant disease resistance loci have been used successfully in breeding programs to transfer traits from resistant germplasm to susceptible plant cultivars. The molecular cloning of plant disease resistance genes now permits the transfer of such traits across species boundaries by genetic transformation of recipient hosts. The tomato disease resistance gene Pto confers resistance to strains of the bacterial pathogen Pseudomonas syringae pv tomato expressing the avirulence gene avrPto. Transformation of Nicotiana benthamiana with Pto results in specific resistance to P. s. pv tabaci strains carrying avrPto. The resistant phenotype is manifested by a strong inhibition of bacterial growth and the ability to exhibit a hypersensitive response. Resistance cosegregates with the Pto gene in transgene selfings and testcrosses. Our results demonstrate the conservation of disease resistance functions across genus boundaries and suggest that the utility of host-specific resistance genes can be extended by intergeneric transfer.  相似文献   

3.
The nonpathogenic bacteria Pseudomonas fluorescens and Escherichia coli can elicit a genotype-specific hypersensitive response (HR) in plants if they express both the HR and pathogenesis (Hrp) protein secretion system and the HrpZ harpin from P. syringae pv syringae 61 and a P. syringae avirulence (avr) gene whose presence is recognized by a corresponding disease resistance gene in the plant. We have found that the recognition event appears to require transfer of the Avr protein into the plant cell. Elicitation of a genotype-specific HR was observed with avrB+ P. fluorescens in soybean and Arabidopsis plants carrying resistance genes RPG1 and RPM1, respectively, and with avrPto+ E. coll in tomato plants carrying resistance gene PTO, but only if the Hrp secretion system, HrpZ, and the appropriate Avr proteins were produced in the same bacterial cell. The failure of avrB hyperexpression and exogenous AvrB or HrpZ to alleviate these requirements in soybean and Arabidopsis suggests that the site of AvrB action is not in the bacterial cell or plant apoplast. An Arabidopsis rps3 (rpm1) glabrous1 mutant was transformed with constructs expressing avrB and was crossed with an Arabidopsis ecotype Columbia (RPM1 GLABROUS1) plant. F1 seedlings (identified by their kanamycin-resistant, pubescent phenotype) exhibited extensive necrosis on cotyledon leaves 10 days postgermination. Ecotype Columbia and rps3-1 leaves biolistically cobombarded with plasmids expressing the beta-glucuronidase (GUS) gene and avrB failed to produce GUS activity (indicative of cell death) only when RPM1 and avrB were present in the leaf. Thus, both stable and transient expression of avrB in Arabidopsis resulted in RPM1-dependent necrosis, and the only demonstrable site of action for AvrB was inside plant cells.  相似文献   

4.
Elicitation of hypersensitive cell death and induction of plant disease resistance by Pseudomonas syringae pv. tomato (Pst) is dependent on activity of the Pst Hrp secretion system and the gene-for-gene interaction between the tomato resistance gene Pto and the bacterial avirulence gene avrPto. AvrPto was expressed transiently in resistant or susceptible plant lines via a potato virus X (PVX) vector. We found that while PVX is normally virulent on tomato, a PVX derivative expressing avrPto was only capable of infecting plants lacking a functional Pto resistance pathway. Mutations in either the Pto or Prf genes allowed systemic spread of the recombinant virus. These results indicate that recognition of AvrPto by Pto in resistant plant lines triggers a plant defense response that can confer resistance to a viral as well as a bacterial pathogen.  相似文献   

5.
Many gram-negative bacterial pathogens rely on a type III secretion system to deliver a number of effector proteins into the host cell. Though a number of these effectors have been shown to contribute to bacterial pathogenicity, their functions remain elusive. Here we report that AvrPto, an effector known for its ability to interact with Pto and induce Pto-mediated disease resistance, inhibited the hypersensitive response (HR) induced by nonhost pathogen interactions. Pseudomonas syringae pv. tomato T1 causes an HR-like cell death on Nicotiana benthamiana. This rapid cell death was delayed significantly in plants inoculated with P. syringae pv. tomato expressing avrPto. In addition, P. syringae pv. tabaci expressing avrPto suppressed nonhost HR on tomato prf3 and ptoS lines. Transient expression of avrPto in both N. benthamiana and tomato prf3 plants also was able to suppress nonhost HR. Interestingly, AvrPto failed to suppress cell death caused by other elicitors and nonhost pathogens. AvrPto also failed to suppress cell death caused by certain gene-for-gene disease resistance interactions. Experiments with avrPto mutants revealed several residues important for the suppression effects. AvrPto mutants G2A, G99V, P146L, and a 12-amino-acid C-terminal deletion mutant partially lost the suppression ability, whereas S94P and 196T enhanced suppression of cell death in N. benthamiana. These results, together with other discoveries, demonstrated that suppression of host-programmed cell death may serve as one of the strategies bacterial pathoens use for successful invasion.  相似文献   

6.
Several bacterial avr genes have been shown to contribute to virulence on susceptible plants lacking the corresponding resistance (R) gene. The mechanisms by which avr genes promote parasitism and disease, however, are not well understood. We investigated the role of the Pseudomonas syringae pv. tomato avrRpt2 gene in pathogenesis by studying the interaction of P. syringae pv. tomato strain PstDC3000 expressing avrRpt2 with several Arabidopsis thaliana lines lacking the corresponding R gene, RPS2. We found that PstDC3000 expressing avrRpt2 grew to significantly higher levels and often resulted in the formation of more severe disease symptoms in ecotype No-0 plants carrying a mutant RPS2 allele, as well as in two Col-0 mutant lines, cpr5 rps2 and coil rps2, that exhibit enhanced resistance. We also generated transgenic A. thaliana lines expressing avrRpt2 and demonstrated, by using several different assays, that expression of avrRpt2 within the plant also promotes virulence of PstDC3000. Thus, AvrRpt2 appears to promote pathogen virulence from within the plant cell.  相似文献   

7.
Harpins are a subset of type III secretion system (T3SS) substrates found in all phytopathogenic bacteria that utilize a T3SS. Pseudomonas syringae pv. tomato DC3000 was previously reported to produce two harpins, HrpZ1 and HrpW1. DC3000 was shown here to deploy two additional proteins, HopAK1 and HopP1, which have the harpin-like properties of lacking cysteine, eliciting the hypersensitive response (HR) when partially purified and infiltrated into tobacco leaves, and possessing a two-domain structure similar to that of the HrpW1 class of harpins. Unlike the single-domain harpin HrpZ1, the two-domain harpins have C-terminal enzyme-like domains: pectate lyase for HopAK1 and lytic transglycosylase for HopP1. Genetic techniques to recycle antibiotic markers were applied to DC3000 to generate a quadruple harpin gene polymutant. The polymutant was moderately reduced in the elicitation of the HR and translocation of the T3SS effector AvrPto1 fused to a Cya translocation reporter, but the mutant was unaffected in the secretion of AvrPto1-Cya. The DC3000 hrpK1 gene encodes a putative translocator in the HrpF/NopX family and was deleted in combination with the four harpin genes. The hrpK1 quadruple harpin gene polymutant was strongly reduced in HR elicitation, virulence, and translocation of AvrPto1-Cya into plant cells but not in the secretion of representative T3SS substrates in culture. HrpK1, HrpZ1, HrpW1, and HopAK1, but not HopP1, were independently capable of restoring some HR elicitation to the hrpK1 quadruple harpin gene polymutant, which suggests that a consortium of semiredundant translocators from three protein classes cooperate to form the P. syringae T3SS translocon.  相似文献   

8.
Soybean mosaic virus (SMV) was adapted for transgene expression in soybean and used to examine the function of avirulence genes avrB and avrPto of Pseudomonas syringae pvs. glycinea and tomato, respectively. A cloning site was introduced between the P1 and HC-Pro genes in 35S-driven infectious cDNAs of strains SMV-N and SMV-G7. Insertion of the uidA gene or the green fluorescent protein gene into either modified cDNA and bombardment into primary leaves resulted in systemic expression that reflected the pattern of viral movement into uninoculated leaves. Insertion of avrB blocked symptom development and detectable viral movement in cv. Harosoy, which carries the Rpg1-b resistance gene corresponding to avrB, but not in cvs. Keburi or Hurrelbrink, which lack Rpg1-b. In Keburi and Hurrelbrink, symptoms caused by SMV carrying avrB appeared more quickly and were more severe than those caused by the virus without avrB. Insertion of avrPto enhanced symptoms in Harosoy, Hurrelbrink, and Keburi. This result was unexpected because avrPto was reported to confer avirulence on P. syringae pv. glycinea inoculated to Harosoy. We inoculated Harosoy with P syringae pv. glycinea expressing avrPto, but observed no hypersensitive reaction, avrPto-dependent induction of pathogenesis-related protein la, or limitation of bacterial population growth. In Hurrelbrink, avrPto enhanced bacterial multiplication and exacerbated symptoms. Our results establish SMV as an expression vector for soybean. They demonstrate that resistance triggered by avrB is effective against SMV, and that avrB and avrPto have general virulence effects in soybean. The results also led to a reevaluation of the reported avirulence activity of avrPto in this plant.  相似文献   

9.
The Pto gene encodes a serine/threonine protein kinase that confers resistance in tomato (Lycopersicon esculentum) to Pseudomonas syringae pv tomato strains that express the type III effector protein AvrPto. Constitutive overexpression of Pto in tomato, in the absence of AvrPto, activates defense responses and confers resistance to several diverse bacterial and fungal plant pathogens. We have used a series of gene discovery and expression profiling methods to examine the effect of Pto overexpression in tomato leaves. Analysis of the tomato expressed sequence tag database and suppression subtractive hybridization identified 600 genes that were potentially differentially expressed in Pto-overexpressing tomato plants compared with a sibling line lacking Pto. By using cDNA microarrays, we verified changes in expression of many of these genes at various time points after inoculation with P. syringae pv tomato (avrPto) of the resistant Pto-overexpressing line and the susceptible sibling line. The combination of these three approaches led to the identification of 223 POR (Pto overexpression responsive) genes. Strikingly, 40% of the genes induced in the Pto-overexpressing plants previously have been shown to be differentially expressed during the human (Homo sapiens) and/or fruitfly (Drosophila melanogaster) immune responses.  相似文献   

10.
Resistance in tomato to Pseudomonas syringae pv tomato (avrPto) is conferred by the gene Pto in a gene-for-gene relationship. A hypersensitive disease resistance response (HR) is elicited when Pto and avrPto are expressed experimentally within the same plant cell. The kinase capability of Pto was required for AvrPto-dependent HR induction. Systematic mutagenesis of the activation segment of Pto kinase confirmed the homologous P+1 loop as an AvrPto-binding determinant. Specific amino acid substitutions in this region led to constitutive induction of HR upon expression in the plant cell in the absence of AvrPto. Constitutively active Pto mutants required kinase capability for activity, and were unable to interact with proteins previously shown to bind to wild-type Pto. The constitutive gain-of-function phenotype was dependent on a functional Prf gene, demonstrating activation of the cognate disease resistance pathway and precluding a role for Prf upstream of Pto.  相似文献   

11.
The plant pathogenic species Pseudomonas syringae is divided into numerous pathovars based on host specificity. For example, P. syringae pv. tomato DC3000 is pathogenic on tomato and Arabidopsis, whereas P. syringae pv. syringae 61 is pathogenic on bean. The ability of P. syringae strains to elicit the hypersensitive response (HR) in non-hosts or be pathogenic (or parasitic) in hosts is dependent on the Hrp (type III secretion) system and effector proteins this system is thought to inject into plant cells. To test the role of the Hrp system in determining host range, the hrp/hrc gene cluster (hrpK through hrpR) was deleted from DC3000 and complemented in trans with the orthologous cluster from strain 61. Mutant CUCPB5114 expressing the bean pathogen Hrp system on plasmid pCPP2071 retained the ability of wild-type DC3000 to elicit the HR in bean, to grow and cause bacterial speck in tomato, and to elicit a cultivar-specific (gene-for-gene) HR in tomato plants carrying the Pto resistance gene. However, the symptoms produced in compatible tomato plants involved markedly reduced chlorosis, and CUCPB5114(pCPP2071) did not grow or produce symptoms in Arabidopsis Col-0 although it was weakly virulent in NahG Arabidopsis. A hypersensitive-like collapse was produced by CUCPB5114(pCPP2071) in Arabidopsis Col-0 at 1 x 10(7) CFU/ml, but only if the bacteria also expressed AvrB, which is recognized by the RPM1 resistance gene in Col-0 and confers incompatibility. These observations support the concept that the P. syringae effector proteins, rather than secretion system components, are the primary determinants of host range at both the species and cultivar levels of host specificity.  相似文献   

12.
Pseudomonas syringae is a plant pathogen whose pathogenicity and host specificity are thought to be determined by Hop/Avr effector proteins injected into plant cells by a type III secretion system. P. syringae pv. syringae B728a, which causes brown spot of bean, is a particularly well-studied strain. The type III secretion system in P. syringae is encoded by hrp (hypersensitive response and pathogenicity) and hrc (hrp conserved) genes, which are clustered in a pathogenicity island with a tripartite structure such that the hrp/hrc genes are flanked by a conserved effector locus and an exchangeable effector locus (EEL). The EELs of P. syringae pv. syringae B728a, P. syringae strain 61, and P. syringae pv. tomato DC3000 differ in size and effector gene composition; the EEL of P. syringae pv. syringae B728a is the largest and most complex. The three putative effector proteins encoded by the P. syringae pv. syringae B728a EEL--HopPsyC, HopPsyE, and HopPsyV--were demonstrated to be secreted in an Hrp-dependent manner in culture. Heterologous expression of hopPsyC, hopPsyE, and hopPsyV in P. syringae pv. tabaci induced the hypersensitive response in tobacco leaves, demonstrating avirulence activity in a nonhost plant. Deletion of the P. syringae pv. syringae B728a EEL strongly reduced virulence in host bean leaves. EELs from nine additional strains representing nine P. syringae pathovars were isolated and sequenced. Homologs of avrPphE (e.g., hopPsyE) and hopPsyA were particularly common. Comparative analyses of these effector genes and hrpK (which flanks the EEL) suggest that the EEL effector genes were acquired by horizontal transfer after the acquisition of the hrp/hrc gene cluster but before the divergence of modern pathovars and that some EELs underwent transpositions yielding effector exchanges or point mutations producing effector pseudogenes after their acquisition.  相似文献   

13.
The molecular basis underlying the ability of pathogens to infect certain plant species and not others is largely unknown. Pseudomonas syringae is a useful model species for investigating this phenomenon because it comprises more than 50 pathovars which have narrow host range specificities. Tomato (Solanum lycopersicum) is a host for P. syringae pv. tomato, the causative agent of bacterial speck disease, but is considered a nonhost for other P. syringae pathovars. Host resistance in tomato to bacterial speck disease is conferred by the Pto protein kinase which acts in concert with the Prf nucleotide-binding lucine-rich repeat protein to recognize P. syringae pv. tomato strains expressing the type III effectors AvrPto or AvrPtoB (HopAB2). The Pto and Prf genes were isolated from the wild tomato species S. pimpinellifolium and functional alleles of both of these genes now are known to exist in many species of tomato and in other Solanaceous species. Here, we extend earlier reports that avrPto and avrPtoB genes are widely distributed among pathovars of P. syringae which are considered nonhost pathogens of tomato. This observation prompted us to examine the possibility that recognition of these type III effectors by Pto or Prf might contribute to the inability of many P. syringae pathovars to infect tomato species. We show that 10 strains from presumed nonhost P. syringae pathovars are able to grow and cause pathovar-unique disease symptoms in tomato leaves lacking Pto or Prf, although they did not reach the population levels or cause symptoms as severe as a control P. syringae pv. tomato strain. Seven of these strains were found to express avrPto or avrPtoB. The AvrPto- and AvrPtoB-expressing strains elicited disease resistance on tomato leaves expressing Pto and Prf. Thus, a gene-for-gene recognition event may contribute to host range restriction of many P. syringae pathovars on tomato species. Furthermore, we conclude that the diverse disease symptoms caused by different Pseudomonas pathogens on their normal plant hosts are due largely to the array of virulence factors expressed by each pathovar and not to specific molecular or morphological attributes of the plant host.  相似文献   

14.
AvrPto was introduced into three tomato genotypes with two biotic agents to study its role in compatible interactions. avrPto enhanced the capacity of the Pseudomonas syringae pv. tomato strain T1 to induce necrotic symptoms on tomato plants that lacked either Pto or Prf genes. The enhanced necrosis correlated with a small increase in bacterial growth. In planta expression of avrPto in isolation did not elicit necrosis in the absence of a functional Prf gene.  相似文献   

15.
Plants, in general, appear to be able to detect the presence of incompatible Pseudomonas syringae strains by a hypothetical cell-cell recognition process to initiate inducible defense mechanisms that contribute to disease resistance. A 25-kb hrp/hrm gene cluster isolated from P. syringae pv. syringae 61(pHIR11) enables Escherichia coli to elicit a hypersensitive response (HR), a plant response generally considered to be a manifestation of recognition and resistance. To identify the nature of the HR-eliciting signal produced by E. coli cells carrying pHIR11, bacterial surface features were surveyed by immunological and biochemical procedures. No immunoreactive epitopes or outer membrane proteins were detected that were associated with expression of the P. syringae pv. syringae 61 hrp/hrm cluster in E. coli MC4100. Phenotypic expression of the P. syringae pv. syringae 61 hrp/hrm cluster in E. coli MC4100, however, was found to be dependent upon ompC and ompF, which control outer membrane permeability to hydrophilic solutes. The results suggest that deployment of the HR-eliciting signal occurs via outer membrane porins and imply that a low-molecular-weight, hydrophilic factor mediates signal exchange between the bacterium and the responding plant cell.  相似文献   

16.
Phytopathogenic bacteria possess a large number of genes that allow them to grow and cause disease on plants. Many of these genes should be induced when the bacteria come in contact with plant tissue. We used a modified in vivo expression technology (IVET) approach to identify genes from the plant pathogen Pseudomonas syringae pv. tomato that are induced upon infection of Arabidopsis thaliana and isolated over 500 in planta-expressed (ipx) promoter fusions. Sequence analysis of 79 fusions revealed several known and potential virulence genes, including hrp/hrc, avr and coronatine biosynthetic genes. In addition, we identified metabolic genes presumably important for adaptation to growth in plant tissue, as well as several genes with unknown function that may encode novel virulence factors. Many ipx fusions, including several corresponding to novel genes, are dependent on HrpL, an alternative RNA polymerase sigma factor that regulates the expression of virulence genes. Expression analysis indicated that several ipx fusions are strongly induced upon inoculation into plant tissue. Disruption of one ipx gene, conserved effector locus (CEL) orf1, encoding a putative lytic murein transglycosylase, resulted in decreased virulence of P. syringae. Our results demonstrate that this screen can be used successfully to isolate genes that are induced in planta, including many novel genes potentially involved in pathogenesis.  相似文献   

17.
The tomato disease resistance (R) gene Pto specifies race-specific resistance to the bacterial pathogen Pseudomonas syringae pv tomato carrying the avrPto gene. Pto encodes a serine/threonine protein kinase that is postulated to be activated by a physical interaction with the AvrPto protein. Here, we report that overexpression of Pto in tomato activates defense responses in the absence of the Pto-AvrPto interaction. Leaves of three transgenic tomato lines carrying the cauliflower mosaic virus 35S::Pto transgene exhibited microscopic cell death, salicylic acid accumulation, and increased expression of pathogenesis-related genes. Cell death in these plants was limited to palisade mesophyll cells and required light for induction. Mesophyll cells of 35S::Pto plants showed the accumulation of autofluorescent compounds, callose deposition, and lignification. When inoculated with P. s. tomato without avrPto, all three 35S::Pto lines displayed significant resistance and supported less bacterial growth than did nontransgenic lines. Similarly, the 35S::Pto lines also were more resistant to Xanthomonas campestris pv vesicatoria and Cladosporium fulvum. These results demonstrate that defense responses and general resistance can be activated by the overexpression of an R gene.  相似文献   

18.
Shan L  Thara VK  Martin GB  Zhou JM  Tang X 《The Plant cell》2000,12(12):2323-2337
The avrPto gene of Pseudomonas syringae pv tomato triggers race-specific resistance in tomato plants carrying Pto, a resistance gene encoding a protein kinase. When introduced into P. s. tabaci, avrPto triggers resistance in tobacco W38 plants that carry the corresponding R gene. The AvrPto protein is believed to be secreted into host cells through the bacterial type III secretion pathway, where it activates disease resistance in tomato by interacting with Pto. We report here the identification of two distinct regions in AvrPto that determine the recognition specificity of this protein in tomato and tobacco. Point mutations in the central region disrupted the avirulence activity in tomato but not in tobacco. Conversely, point mutations in the C-terminal region abolished the avirulence in tobacco but not in tomato. We further report that AvrPto was localized to the plasma membrane of plant cells. Disrupting the membrane association by mutating a putative myristoylation motif of AvrPto abolished the avirulence activity in both tomato and tobacco. These findings demonstrate that AvrPto is recognized differently by the R genes in tomato and tobacco and that the recognition of AvrPto probably is associated with the plasma membrane.  相似文献   

19.
大豆细菌性斑点病菌harpin编码基因的克隆与表达   总被引:1,自引:0,他引:1  
摘要:【方法、目的】利用PCR方法从丁香假单胞菌大豆致病变种(Pseudomonas syringae pv. glycinea)Psg12菌株中克隆到1026bp的hrp基因。将其定向插入到表达载体pGEX-4T-1上,并转化宿主菌BL21,IPTG诱导表达后,SDS-PAGE显示其表达产物为分子量为61 kDa的融合蛋白质。【结果】该蛋白质在性质与功能上类似于已发现的harpins,即富含甘氨酸、不含半胱氨酸,热稳定以及对蛋白酶K敏感,能够在烟草上引起典型的过敏性反应,过敏性反应还可被真核生物代谢抑制  相似文献   

20.
Systemic acquired resistance (SAR) is an inducible plant defense response and is effective against a broad spectrum of pathogens. Biological induction of SAR usually follows plant cell death resulting from the plant hypersensitive response (HR) elicited by an avirulent pathogen or from disease necrosis caused by a virulent pathogen. The elicitation of the HR and disease necroses by pathogenic bacteria is controlled by hrp genes. Previously, it was shown that the Pseudomonas syringae 61 (Pss61) HrpZPss protein (formally harpinPss) elicited the HR in plants. In this study, it is shown that HrpZPss induced SAR in cucumber to diverse pathogens, including the anthracnose fungus ( Colletotrichum lagenarium ), tobacco necrosis virus and the bacterial angular leaf spot bacterium ( P. s. pv. lachrymans ). A hrpH mutant of Pss61, which is defective in the secretion of HrpZPss and, possibly, other protein elicitors, failed to elicit SAR. Pathogenesis-related (PR) proteins, including peroxidase, β-glucanase and chitinases, were induced in cucumber plants inoculated with Pss61, C. lagenarium or HrpZPss. The induction patterns of PR proteins by HrpZPss and Pss61 were the same, but were different from that induced by C. lagenarium . Interestingly, the hrpH mutant induced two of the three identified PR proteins, despite its failure to induce SAR. These results suggest that proteinaceous elicitors, such as HrpZPss, that traverse the bacterial Hrp secretion pathway are involved in the biological induction of SAR and that at least some PR proteins can be induced by bacterial factors that are not controlled by hrp genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号