首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
17beta-Estradiol (E2), diethylstilbestrol (DES) and several synthetic (or xenoestrogenic) compounds induced transactivation in MCF-7 or MDA-MB-231 cells transfected with wild-type estrogen receptor alpha (ERalpha) and a construct (pERE(3)) containing three tandem estrogen responsive elements (EREs) linked to a luciferase gene. In contrast, the antiestrogens ICI 182,780 and 4-hydroxytamoxifen (4-OHT) were inactive in this assay. We have investigated the effects of these compounds and several structurally-diverse estrogenic compounds on transactivation in cells transfected with pERE(3) and wild-type ERalpha, mutant ERalpha (1-553), and ERalpha (1-537) containing deletions of amino acids 595-554 and 595-538, respectively. These constructs were used to develop an in vitro assay to distinguish between different structural classes of estrogenic compounds. The results obtained using these constructs were highly cell context- and structure-dependent. Neither E2- nor diethylstilbestrol-induced transactivation in MCF-7 (or MDA-MB-231) cells transfected with pERE(3)/ERalpha (1-537) due to partial deletion of helix 12; however, octylphenol and nonlylphenol, resveratrol (a phytoestrogen), kepone and 2',3',4',5'-tetrachloro-4-biphenylol were "estrogenic" in MCF-7 cells transfected with pERE(3)/ERalpha (1-537). Moreover, the structure-dependent estrogenic activities of several synthetic estrogens (xenoestrogens) in MDA-MB-231 cells were different than those observed in MCF-7 cells. These results demonstrate that the estrogenic activity of many synthetic compounds do not require activation function 2 (AF-2) of ERalpha and are mechanistically different from E2. These data suggest that xenoestrogens are selective ER modulators (SERMs).  相似文献   

2.
We investigated the effects of estrogen-related compounds including xenoestrogens [17beta-estradiol (E2), 17alpha-ethynylestradiol (EE), diethylstilbestrol (DES), p-nonylphenol (PNP), bisphenol A (BPA) and 17alpha-estradiol (17alpha)] on l-glu uptake by cultured astrocytes via glutamate-aspartate transporter (GLAST). After 24 h treatment, E2 inhibited the l-glu uptake at 1 micro m and higher concentrations. EE and DES also inhibited the l-glu uptake at 1 nm and higher concentrations. The other four compounds had no effect. The effects of E2, EE and DES were completely blocked by 10 nm of ICI182 780 (ICI). beta-Estradiol 17-hemisuccinate : bovine serum albumin (E2-BSA), a membrane-impermeable conjugate of E2, also elicited the inhibition of l-glu uptake at 1 nm and higher concentrations, and the effect was blocked by ICI. 16alpha-Iodo-17beta-estradiol (16alphaIE2), an estrogen receptor alpha (ERalpha) selective ligand, revealed an inhibitory effect at 10 nm, while genistein, an ERbeta selective ligand, failed to reveal such an effect at this concentration. Western blot analysis showed that the predominant ER of cultured astrocytes was ERalpha. The colocalization of ERalpha with GLAST on plasma membranes was immunohistochemically detected in these cells. From these results, we concluded that estrogens down-regulate l-glu uptake activity of astrocytes via membrane ERalpha.  相似文献   

3.
The synthetic estrogens, diethylstilbestrol (DES) and ethynylestradiol (EE2), are more potent than 17 beta-estradiol (E2) in inducing uterine weight gain in the neonatal rat, due to the binding of E2 to serum alpha-fetoprotein (AFP). However, all three hormones are equipotent in inducing neonatal uterine ornithine decarboxylase (ODC) activity. The present study assessed estrogen potency in fetal rats. Pregnant CD rats were injected sc daily on gestation days (GD) 16-20 with DES, EE2, or E2 in sesame oil. Both DES and EE2, but not E2, significantly increased uterine weight at birth, to more than twice that of controls. In addition, implants which continuously release E2 only slightly increased uterine weight at birth. Alternatively, dams were given a single estrogen injection on GD 20 and were sacrificed at various times after injection. Peak fetal uterine ODC activity occurred at 6-8 hours after maternal injection for all three estrogens. E2 had a relative potency about tenfold less than either DES or EE2 in stimulating fetal ODC activity, in contrast to equal potencies of the three estrogens in the postnatal rat uterus. Similar patterns were found following direct fetal injection with E2 or DES. In summary, these data demonstrate a transplacental induction of fetal uterine ODC activity and uterine weight gain by both DES and EE2. In addition, the lack of correlation between these endpoints in response to E2 suggests that they may be useful as selective indicators of potential toxicity of both natural and synthetic estrogens.  相似文献   

4.
Vitellogenin (VTG)-inducing activities of natural estrogens (E1: estrone, E2:17beta-estradiol, E3: estriol, alpha-E2: 17alpha-estradiol), synthetic estrogens (EE2: 17alpha-ethynyl estradiol, DES: diethylstilbestrol,), phytoestrogen (GEN: genistein), and xeno-estrogens (BPA: bisphenol A, NP: nonylphenol, OP: octylphenol) were investigated by an assay system using primary-cultured hepatocytes of Xenopus laevis. An enzyme-linked immunoabsorbent assay (ELISA) was able to detect VTG at a minimum detection limit of 0.06 ng/mL. Relative estrogenic activities of the compounds were determined from their dose-response curves. The activities relative to E2 activity were 138% for DES, 121% for EE2, 6.1% for E3, 0.33% for E1, 0.29% for alpha-E2, 0.037% for GEN, 0.008% for BPA, 0.005% for NP, and 0.002% for OP. Comparison with data reported for other bioassay systems revealed that there were significant interspecies-and cell-type-differences in the activities of DES, E3, E1 and alpha-E2. BPA was found to have a substantial antagonistic activity (approximately 0.8% of tamoxifen activity) under the influence of physiological concentrations of E2. Complex-effects of endocrine disrupters on aquatic animals will be discussed.  相似文献   

5.
Estradiol (E2) and other steroids have recently been shown to initiate various intracellular signaling cascades from the plasma membrane, including those stimulating mitogen-activated protein kinases (MAPKs), and particularly extracellular-regulated kinases (ERKs). In this study we demonstrated the ability of E2 to activate ERKs in the GH3/B6/F10 pituitary tumor cell line, originally selected for its enhanced expression of membrane estrogen receptor-alpha (mERalpha). We compared E2 to its cell-impermeable analog (E2 conjugated to peroxidase, E2-P), and to the synthetic estrogen diethylstilbestrol (DES). Time-dependent ERK activation was quantified with a novel fixed cell-based immunoassay developed to efficiently determine activation by multiple compounds over multiple parameters. Both E2 and DES produced bimodal responses, but with distinctly different time courses of enzyme phosphorylation (activation) and inactivation; E2-P induced a monophasic ERK activation. E2 also phosphorylated ERKs in concentration-dependent manner with two concentration optima (10(-14) and 10(-8)M). Inhibitors were employed to determine pathway (ER, EGFR, membrane organization, PI3 kinase, Src kinase, Ca2+) involvement and timing of pathway activations; all affected ERK activation as early as 3-6 min, suggesting simultaneous, not sequential, activation. Therefore, E2 and other estrogenic compounds can produce rapid ERK phosphorylations via nongenomic pathways, using more than one pathway for signal generation.  相似文献   

6.
Different estrogens vary in their carcinogenic potential despite having similar hormonal potencies; however, mechanisms of estrogen-induced carcinogenesis remain to be fully elucidated. It has been hypothesized that generation of reactive estrogen-quinones and oxidative stress, both of which result from metabolic activation of estrogens, play an essential role in estrogen-induced carcinogenesis. This hypothesis was tested using the estrogen-receptor (ER)-alpha-positive hamster kidney tumor (H301) and the human breast cancer (MCF-7) cell lines. Estrogens with differing carcinogenic potentials were compared in terms of their capacities to induce 8-iso-prostaglandin F(2alpha) (8- iso-PGF(2alpha)), a marker of oxidative stress. Tumor cells were treated with either 17beta-estradiol (E2), a carcinogenic estrogen or 17-alpha-ethinylestradiol (EE), a weakly-carcinogenic estrogen. Tumor cells were also treated with alpha-naphthoflavone, a cytochrome P450 inhibitor, or a combination of alpha-naphthoflavone and E2 to study the effect of metabolic activation of E2 on E2-induced oxidative stress. H301 cells treated with E2 displayed time- and dose-dependent increases in 8-iso-PGF(2alpha), compared to controls; treatment with 10 nM E2 resulted in a maximal 4-fold induction following 48 h of treatment. In contrast, H301 cells treated with EE did not display an increase in 8-iso-PGF(2alpha) compared with controls. In H301 cells cotreated with alpha-naphthoflavone and E2, alpha-naphthoflavone inhibited the E2-induced increase in 8-iso-PGF(2alpha). These data indicate that a carcinogenic estrogen shows strong oxidant potential, whereas a weakly-carcinogenic estrogen shows poor oxidant potential. Furthermore, inhibiting metabolic activation of a carcinogenic estrogen blocks its oxidant potential. Our data support the hypothesis that metabolic activation and subsequent generation of oxidative stress may play critical roles in estrogen-induced carcinogenesis.  相似文献   

7.
Steroid sulfatase (STS) hydrolyzes inactive estrone sulfate (E1-S) to estrone (E1), while estrogen sulfotransferase (EST; SULT 1E1 or STE gene) sulfonates estrogens to estrogen sulfates. They are considered to play important roles in the regulation of local estrogenic actions in various human tissues, however, their biological significance remains largely unknown. Therefore, we examined the expression of STS and EST in non-pathologic human tissues and breast carcinomas. STS expression was very weak except for the placenta, while EST expression was markedly detected in various tissues examined. In breast carcinoma tissues, STS and EST immunoreactivity was detected in carcinoma cells in 74 and 44% of cases, respectively, and was significantly associated with their mRNA levels and enzymatic activities. STS immunoreactivity was significantly correlated with the tumor size, and an increased risk of recurrence. EST immunoreactivity was inversely correlated with the tumor size or lymph node status. Moreover, EST immunoreactivity was significantly associated with a decreased risk of recurrence or improved prognosis. Our results suggest that EST is involved in protecting various peripheral tissues from excessive estrogenic effects. In the breast carcinoma, STS and EST are suggested to play important roles in the regulation of in situ estrogen production in the breast carcinomas.  相似文献   

8.
9.
17beta-Estradiol (E2) activates non-genomic pathways in MCF-7 cells, and this study investigates the effects of structurally-diverse estrogenic compounds on activation of mitogen-activated protein kinase (MAPK), phosphatidylinositol-3-kinase (PI3-K), protein kinase C (PKC), PKA, and calcium calmodulin-dependent kinase IV (CaMKIV). Activation of kinases was determined by specific substrate phosphorylation and transactivation assays that were diagnostic for individual kinases. The compounds investigated in this study include E2, diethylstilbestrol (DES), the phytoestrogen resveratrol, and the following synthetic xenoestrogens, bisphenol-A (BPA), nonylphenol, octylphenol, endosulfan, kepone, 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE), and 2',3',4',5'-tetrachloro-4-biphenylol (HO-PCB-Cl(4)). With the exception of resveratrol, all the compounds activated PI3-K and MAPK. Activation of PKC by the xenoestrogens was structure-dependent since resveratrol, kepone and HO-PCB-Cl(4) were inactive and only minimal activation of PKA was observed. CaMKIV was activated only by E2 and DES, and HO-PCB-Cl(4) was a potent inhibitor of CaMKIV-dependent activity. These results demonstrate that activation of estrogen receptor-alpha-mediated non-genomic pathways by estrogenic compounds in MCF-7 cells is structure-dependent and can result in activation or inhibition of kinase activities.  相似文献   

10.
The pivotal role of estrogens in the pain sensitivity has been investigated in many ways. Traditionally, it is ascribed to the slow genomic changes mediated by classical nuclear estrogen receptors (ER), ER?? and ER??, depending on peripheral estrogens. Recently, it has become clear that estrogens can also signal through membrane ERs (mERs), such as G-protein-coupled ER1 (GPER1), mediating the non-genomic effects. However, the spinal specific role played by ERs and the underlying cellular mechanisms remain elusive. The present study investigated the rapid estrogenic regulation of nociception at the spinal level. Spinal administration of 17??-estradiol (E2), the most potent natural estrogen, acutely produced a remarkable mechanical allodynia and thermal hyperalgesia without significant differences among male, female and ovariectomized (Ovx) rats. E2-induced the pro-nociceptive effects were partially abrogated by ICI 182,780 (ERs antagonist), and mimicked by E2-BSA (a mER agonist). Inhibition of local E2 synthesis by 1,4,6-Androstatrien-3,17-dione (ATD, a potent irreversible aromatase inhibitor), or blockade of ERs by ICI 182,780 produced an inhibitory effect on the late phase of formalin nociceptive responses. Notably, lumbar puncture injection of G15 (a selective GPER1 antagonist) resulted in similar but more efficient inhibition of formalin nociceptive responses as compared with ICI 182,780. At the cellular level, the amplitude and decay time of spontaneous inhibitory postsynaptic currents were attenuated by short E2 or E2-BSA treatment in spinal slices. These results indicate that estrogen acutely facilitates nociceptive transmission in the spinal cord via activation of membrane-bound estrogen receptors.  相似文献   

11.
12.
Estrogen sulfotransferase (EST/SULT1E1) is known to catalyze the sulfoconjugation and deactivation of estrogens. The goal of this study is to determine whether and how EST plays a role in human adipogenesis. By using human primary adipose-derived stem cells (ASCs) and whole-fat tissues from the abdominal subcutaneous fat of obese and nonobese subjects, we showed that the expression of EST was low in preadipocytes but increased upon differentiation. Overexpression and knockdown of EST in ASCs promoted and inhibited differentiation, respectively. The proadipogenic activity of EST in humans was opposite to the antiadipogenic effect of the same enzyme in rodents. Mechanistically, EST promoted adipogenesis by deactivating estrogens. The proadipogenic effect of EST can be recapitulated by using an estrogen receptor (ER) antagonist or ERα knockdown. In contrast, activation of ER in ASCs inhibited adipogenesis by decreasing the recruitment of the adipogenic peroxisome proliferator-activated receptor γ (PPARγ) onto its target gene promoters, whereas ER antagonism increased the recruitment of PPARγ to its target gene promoters. Linear regression analysis revealed a positive correlation between the expression of EST and body mass index (BMI), as well as a negative correlation between ERα expression and BMI. We conclude that EST is a proadipogenic factor which may serve as a druggable target to inhibit the turnover and accumulation of adipocytes in obese patients.  相似文献   

13.
Cultured female-derived human bone cells (hObs) responded by different parameters to different phytoestrogenic and vitamin D compounds. Pre- and post-menopausal hObs express ERα and ERβ mRNA with higher abundance of ERα. Pre-treatment with the less-calcemic vitamin D analog JKF 1624F(2)-2 (JKF) upregulated responsiveness to estrogens via modulation of ERs expression. These estrogenic compounds induce the expression and activity of 25 hydroxy-vitamin D(3)-1α hydroxylase (1OHase). We now analyzed the effects of carboxy-genistein (cG), carboxy-biocainin A (cBA) and carboxy-daidzein (cD), of BA, D or G and of licorice derived compounds glabridin (Glb) and glabrene (Gla) and estradiol-17β (E(2)) on DNA synthesis, creatine kinase specific activity (CK), intracellular and membranal E(2) binding and their modulations by JKF in hObs. We also analyzed modulation by phytoestrogenic compounds of 1OHase mRNA expression and activity. We showed that: (1) all compounds stimulated DNA synthesis and CK. (2) JKF and all estrogenic compounds modulated ERα and ERβ mRNA expression. (3) Pre-treatment with JKF increased DNA synthesis and CK responses only to E(2), D, G and Gla. (4) JKF increased the intracellular competitive binding only of E(2), D and G. (5) JKF abolished the membranal binding of all protein-bound estrogens. (6) JKF and all estrogenic compounds except the protein-bound ones up-regulated 1OHase expression and activity. In conclusion phytoestrogens and their analogs increase DNA synthesis and CK, and lead to increased production of 1,25(OH)(2)D(3) in hObs, while pre-treatment with JKF modulates the effect of estrogenic compounds via regulation of ERs mRNA expression in a yet unclear mechanism.  相似文献   

14.
《Gene》1996,179(2):205-210
The yeast URA3 gene was used as a reporter to investigate the activities of estrogenic and antiestrogenic compounds in yeast Saccharomyces cerevisiae. The control sequences of the wild type (wt) URA3 promoter were replaced with zero, two, or six copies of estrogen-response elements (ERE). Insertion of two and six copies of ERE rendered the expression of the URA3 gene to be dependent on the presence of the human estrogen receptor (ER) and the hormone 17β-estradiol (E2). Two versions of the ER genes were constructed: a full-length wild-type ER (ERa-f) and a truncated ER with domains C, D, and E (ERcde). Both forms of the ER were able to activate the ERE-URA3 reporter in a hormone-dependent manner. The growth of yeast transformants were hormone-dependent when the reporter constructs were inserted into chromosomes using yeast integrating vectors (YIp) but not with the 2μ-based episomal (high-copy number, YEp) or centromeric (low-copy number, YCp) vectors. The integrated transformants were employed to investigate the effects of estrogenic and antiestrogenic compounds. The estrogenic compounds, E2, diethylstilbestrol (DES), and estrone (EST), activated expression of the reporter genes at 1 nM concentration, which is the same concentration exhibiting activity in mammalian cells. None of the antiestrogens, at concentrations up to 1 μM, including tamoxifen (TAM), raloxifene (RAL), and ICI 164,384 (ICI) antagonized 1 nM of E2 against either form of the ER. In fact, TAM, RAL, and ICI displayed slight agonistic activity at high concentrations of 300 nM or greater to the ERcde. This system can be used to investigate or clone the missing factor(s) that is responsible for the antagonistic activity of the ER in yeast, and is also suitable for screening for the effectors of the ER.  相似文献   

15.
16.
17.
18.
Structure-dependent estrogen receptor alpha (ER alpha) agonist and antagonist activities of synthetic and natural estrogenic compounds were investigated in human HepG2, MDA-MB-231 and U2 cancer cell lines. Compounds used in this study include 4'-hydroxytamoxifen, ICI 182,780, bisphenol-A (BPA), 2',4',6'-trichloro-4-biphenylol (3Cl-PCB-OH), 2',3',4',5'-tetrachloro-4-biphenylol (4Cl-PCB-OH), p-t-octylphenol, p-nonylphenol, naringenin, kepone, resveratrol, and 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE). Cells were transfected with a construct (pERE(3)) containing three tandem estrogen responsive elements (EREs) and either wild-type estrogen receptor alpha (ER-wt) or variants expressing activation function-1 (ER-AF1) or AF-2 (ER-AF2). The ER agonist activities of the synthetic mono and dihydroxy aromatic compounds are comparable in all three-cell lines, whereas the activities of naringenin, kepone and resveratrol are dependent on cell context and expression of wild-type or variant forms of ER alpha. In contrast, the ER antagonist activities for these compounds were highly complex and, with the exception of 3Cl-PCB-OH, all compounds inhibited E2-induced wild-type or variant ER action. Results of this in vitro study suggest that the estrogenic and antiestrogenic activity of structurally diverse synthetic and natural estrogenic compounds is complex, and this is consistent with published data that often give contradictory results for these compounds.  相似文献   

19.
20.
Despite the historical use of estrogens in the treatment of prostate cancer (PCa) little is known about their direct biological effects on the prostate, their role in carcinogenesis, and what mechanisms mediate their therapeutic effects on PCa. It is now known that estrogens alone, or in synergism with an androgen, are potent inducers of aberrant growth and neoplastic transformation in the prostate. The mechanisms of estrogen carcinogenicity could be mediated via induction of unscheduled cell proliferation or through metabolic activation of estrogens to genotoxic metabolites. Age-related changes and race-/ethnic-based differences in circulating or locally formed estrogens may explain differential PCa risk among different populations. Loss of expression of estrogen receptor (ER)-beta expression during prostate carcinogenesis and prevention of estrogen-mediated oxidative damage could be exploited in future PCa prevention strategies. Re-expression of ER-beta in metastatic PCa cells raises the possibility of using ER-beta-specific ligands in triggering cell death in these malignant cells. A variety of new estrogenic/anti-estrogenic/selective estrogen receptor modulator (SERM)-like compounds, including 2-methoxyestradiol, genistein, resveratrol, licochalcone, Raloxifene, ICI 182,780, and estramustine are being evaluated for their potential in the next generation of PCa therapies. Increasing numbers of patients self-medicate with herbal formulations such as PC-SPES. Some of these compounds are selective ER-beta ligands, while most of them have minimal interaction with ER-alpha. Although many may inhibit testosterone production by blockade of the hypothalamal-pituitary-testis axis, the most effective agents also exhibit direct cytostatic, cytotoxic, or apoptotic action on PCa cells. Some of them are potent in interfering with tubulin polymerization, blocking angiogenesis and cell motility, suppressing DNA synthesis, and inhibiting specific kinase activities. Further discovery of other compounds with potent apoptotic activities but minimal estrogen action should promote development of a new generation of effective PCa preventive or treatment regimens with few or no side-effects due to estrogenicity. Further advancement of our knowledge of the role of estrogens in prostate carcinogenesis through metabolic activation of estrogens and/or ER-mediated pathways will certainly result in better preventive or therapeutic modalities for PCa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号