首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 740 毫秒
1.
With the continuous discovery of new alternative sources containing mesenchymal stem cells (MSCs), regenerative medicine therapies may find tailored applications in the clinics. Although these cells have been demonstrated to express specific mesenchymal markers and are able to differentiate into mesenchymal lineages in ad hoc culture conditions, it is still critical to determine the yield and differentiation potential of these cells in comparative studies under the same standardized culture environment. Moreover, the opportunity to use MSCs from bone marrow (BM) of multiorgan donors for cell banking is of relevant importance. In the attempt to establish the relative potential of alternative MSCs sources, we analyzed and compared the yield and differentiation potential of human MSCs from adipose and BM tissues of cadaveric origins, and from fetal annexes (placenta and umbilical cord) after delivery using standardized isolation and culture protocols. BM contained a significantly higher amount of mononuclear cells (MNCs) compared to the other tissue sources. Nonetheless, a higher cell seeding density was needed for these cells to successfully isolate MSCs. The MNCs populations were highly heterogeneous and expressed variable MSCs markers with a large variation from donor to donor. After MSCs selection through tissue culture plastic adhesion, cells displayed a comparable proliferation capacity with distinct colony morphologies and were positive for a pool of typical MSCs markers. In vitro differentiation assays showed a higher osteogenic differentiation capacity of adipose tissue and BM MSCs, and a higher chondrogenic differentiation capacity of BM MSCs.  相似文献   

2.
Bone marrow mesenchymal stem cells (MSC) are multipotent cells. To explain their plasticity, we postulated that undifferentiated MSC may express proteins from other tissues such as neuronal tissues. MSC are obtained by two different approaches: plastic adhesion or negative depletion (RosetteSep and magnetic beads CD45/glycophorin A). MSC are evaluated through FACS analysis using a panel of antibodies (SH2, SH3, CD14, CD33, CD34, CD45, etc.). To confirm the multipotentiality in vitro, we have differentiated MSC into adipocytes, chondrocytes, osteocytes, and neuronal/glial cells using specific induction media. We have evaluated neuronal and glial proteins (Nestin, Tuj-I, betaIII Tubulin, tyrosine hydroxylase [TH], MAP-2, and GFAP) by using flow cytometry, Western blots, and RT-PCR. We found that MSC constituently express native immature neuronal proteins such as Nestin and Tuj-1. After only five passages, MSC can already express more mature neuronal or glial proteins, such as TH, MAP-2, and GFAP, without any specific induction. We noticed an increase in the expression of more mature neuronal/glial proteins (TH, MAP-2, and GFAP) after exposure to neural induction medium, thus confirming the differentiation of MSC into neurons and astrocytes. The constitutive expression of Nestin or Tuj-1 by MSC suggests that these cells are "multidifferentiated" cells and thus can retain the ability for neuronal differentiation, enhancing their potentiality to be employed in the treatment of neurological diseases.  相似文献   

3.
The characteristics and multilineage differentiation potential of bone marrow mesenchymal stem cells (BM MSC) remain controversial. This study aimed to characterize human BM MSC isolated by plastic adherent or antibody selection and their neuronal differentiation potential using growth factors or chemical inducing agents. MSC were found to express low levels of neuronal markers: neurofilament-M, beta tubulin III, and neuron specific enolase. Under a serum- and feeder cell-free condition, basic fibroblast growth factor, epidermal growth factor, and platelet-derived growth factor induced neuronal morphology in MSC. In addition to the above markers, these cells expressed neurotransmitters or associated proteins: gamma-aminobutyric acid, tyrosine hydroxylase and serotonin. These changes were maintained for up to 3 months in all bone marrow specimens (N = 6). In contrast, butylated hydroxyanisole and dimethylsulfoxide were unable to induce sustained neuronal differentiation. Our results show that MSC isolated by two different procedures produced identical lineage differentiation with defined growth factors in a serum- and feeder cell-free condition.  相似文献   

4.
BACKGROUND: The multipotency of stromal cells has been studied extensively. It has been reported that mesenchymal stromal cells (MSC) are capable of differentiating into cells of multilineage. Different methods and reagents have been used to induce the differentiation of MSC. We investigated the efficacy of different growth factors in inducing MSC differentiation into neurons. METHODS: MSC from human BM were isolated and cultured in media supplemented with 10% FBS. These cells were identified and later induced to differentiate into neuron-like cells using different neurotrophic factors. Three different growth factors were used, either alone or in combination: brain-derived neurotrophic factor, epidermal growth factor and neural growth factor. RESULTS: After 10 days of culture, MSC showed neuron-like morphologic changes. Immunostaining showed that these cells expressed markers for neurons (growth-associated protein-43, neuron-specific nuclear protein and neurofilament 200 kDa) and expression of these markers suggested the transition of immature stages to more mature stages of neuron-like cells. DISCUSSION: Our results show that BM-derived MSC can differentiate not only into target cells of mesodermal origin but also neuron-like cells of ectodermal origin. The findings show that a combination of growth factors is more effective in inducing MSC into neuron-like cells.  相似文献   

5.
Objectives: Bone marrow‐derived mesenchymal stem cells (BM‐MSC) have been widely used for cell therapy and tissue engineering purposes. However, there are still controversies concerning safety of application of these cells after in vitro expansion. Therefore, we aimed to investigate the characteristics of rabbit BM‐MSC during long‐term culture. Materials and methods: In this study, we have examined growth kinetics, morphological changes, differentiation potential and chromosomal abnormalities, as well as tumour formation potential of rabbit BM‐MSC in long‐term culture. Results and conclusion: We found that shortly after isolation, proliferation rate of rabbit BM‐MSC decreases until they enter a dormant phase. During this period of quiescence, the cells are large and multinucleate. After some weeks of dormancy we found that several small mononuclear cells originated from each large multinucleate cell. These newly formed cells proliferated rapidly but had inferior differentiation potential. Although they were immortal, they did not have the capability for tumour formation in soft agar assay or in nude mice. This is the first report of spontaneous, non‐tumorigenic immortalization of BM‐MSC in rabbits. The phenomenon raises more concern for meticulous monitoring and quality control for using rabbit BM‐MSC in cell‐based therapies and tissue engineering experiments.  相似文献   

6.
Many studies have drawn attention to the emerging role of MSC (mesenchymal stem cells) as a promising population supporting new clinical concepts in cellular therapy. However, the sources from which these cells can be isolated are still under discussion. Whereas BM (bone marrow) is presented as the main source of MSC, despite the invasive procedure related to this source, the possibility of isolating sufficient numbers of these cells from UCB (umbilical cord blood) remains controversial. Here, we present the results of experiments aimed at isolating MSC from UCB, BM and UCM (umbilical cord matrix) using different methods of isolation and various culture media that summarize the main procedures and criteria reported in the literature. Whereas isolation of MSC were successful from BM (10:10) and (UCM) (8:8), only one cord blood sample (1:15) gave rise to MSC using various culture media [DMEM (Dulbecco's modified Eagle's medium) +5% platelet lysate, DMEM+10% FBS (fetal bovine serum), DMEM+10% human UCB serum, MSCGM®] and different isolation methods [plastic adherence of total MNC (mononuclear cells), CD3+/CD19+/CD14+/CD38+‐depleted MNC and CD133+‐ or LNGFR+‐enriched MNC]. MSC from UCM and BM were able to differentiate into adipocytes, osteocytes and hepatocytes. The expansion potential was highest for MSC from UCM. The two cell populations had CD90+/CD73+/CD105+ phenotype with the additional expression of SSEA4 and LNGFR for BM MSC. These results clearly exclude UCB from the list of MSC sources for clinical use and propose instead UCM as a rich, non‐invasive and abundant source of MSC.  相似文献   

7.
BACKGROUND: Mesenchymal stromal cells (MSC) isolated from adult human BM are characterized by their fibroblast-like morphology, adherent growth and capacity to differentiate into adipocytes, osteocytes, chondrocytes, cardiomyocytes and neuroprogenitors. After culturing these cells in vitro, they express the cell-surface molecules CD44, CD90, SH2 and SH3, and are negative for CD34 and the hematopoietic marker CD45. The aim of this study was to characterize the in vivo phenotype of MSC relative to the expression of CD34 and CD45. METHODS: BM mononuclear cells were stained with Ab against both molecules and separated into the CD34(+), CD34(-), CD45(+) CD34(+), CD45(high+) CD34(-), CD45(med,low+) CD34(-) and CD45(-) CD34(-) subpopulations, which were then cultured under the same conditions and analyzed for growth of MSC. RESULTS: A small population of MSC arose from the CD45(+) CD34(+) fraction, although the majority was obtained from the CD45(-) CD34(-) subpopulation. MSC from all fractions could be differentiated into adipocytes and osteocytes. In addition, MSC from the CD34(+) and CD34(-) fractions were shown to differentiate into chondrocytes. After in vitro culture, MSC from both fractions possessed the same phenotype, which was negative for CD34 and CD45. DISCUSSION: MSC from the CD45(+) CD34(+) fraction change their phenotype under in vitro conditions.  相似文献   

8.

Objectives

Recent studies have reported the existence of stem cells in ovarian tissue that show enhanced proliferative and differentiation potential compared to other adult tissues. Based on this evidence, we hypothesized that ovarian tissue contained mesenchymal‐like stem cells (MSC) that could be isolated using a novel rapid plastic adhesion technique.

Materials and methods

We established MSC lines derived from ovarian and adipose tissue based on their ability to rapidly adhere to plastic culture dishes in the first 3 hours after plating and studied their potentiality in terms of molecular markers and differentiation capacity.

Results

Morphological and kinetic properties of in vitro cultured ovarian MSC were similar to adipose‐derived MSC, and both reached senescence after similar passage numbers. Ovarian‐derived MSC expressed mesenchymal (CD90 and CD44) but not haematopoietic markers (CD34 and CD45), indicating similarity to adipose‐derived MSC. Moreover, ovarian‐derived MSC expressed NANOG, TERT, SOX2, OCT4 and showed extensive capacity to differentiate not only into adipogenic, osteogenic and chondrogenic tissue but also towards neurogenic and endodermal lineages and even precursors of primordial germ cells.

Conclusion

These results show for the first time the derivation of ovarian cells with the molecular properties of MSC as well as wide differentiation potential. Canine ovarian tissue is accessible, expandable, multipotent and has high plasticity, holding promise for applications in regenerative medicine.
  相似文献   

9.
BACKGROUND: Previous adult stem cells studies have provided evidence that BM mesenchymal stem cells (MSC) exhibit multilineage differentiation capacity. These properties of MSC prompted us to explore the neural potential of MSC with a view to their use for the treatment of demyelinating disorders, such as multiple sclerosis. Indeed, issues such as the identification of a subset of stem cells that is neurally fated, methods of expansion and optimal stage of differentiation for transplantation remain poorly understood. METHODS: In order to isolate mouse (m) MSC from BM, we used and compared the classic plastic-adhesion method and one depleting technique, the magnetic-activated cell sorting technique. RESULTS: We established and optimized culture conditions so that mMSC could be expanded for more than 360 days and 50 passages. We also demonstrated that undifferentiated mMSC express the neural markers nestin, MAP2, A2B5, GFAP, MBP, CNPase, GalC, O1 under standard culture conditions before transplantation. The pluripotent stem cell marker Oct-4 and the embryonic stem cell marker Rex-1 are spontaneously expressed by untreated mMSC. The lineage-negative mMSC (CD5- CD11b- Ly-6G- Ter119- CD45R- c-kit/CD117-) overexpressed Oct-4, O1 and A2B5 in the first days of culture compared with the non-sorted MSC. Finally, we identified a distinct subpopulation of mMSC that is primed towards a neural fate, namely Sca-1+/nestin+ mMSC. DISCUSSION: These results should facilitate the optimal timing of harvesting a neurally fated subpopulation of mMSC for transplantation into animal models of human brain diseases.  相似文献   

10.
Deng YB  Liu XG  Liu ZG  Liu XL  Liu Y  Zhou GQ 《Cytotherapy》2006,8(3):210-214
BACKGROUND: Transplantation of mesenchymal stem cells (MSC) in rodent models has proved to be an effective therapeutic approach for spinal cord injury (SCI). However, further studies in primate models are still needed before clinical application of MSC to patients. METHODS: MSC were isolated from rhesus monkey BM and induced ex vivo to differentiate into neural lineage cells. Induced cells were labeled with Hoechst 33342 and injected into the injured sites of rhesus SCI models. Function of the injured spinal cord was assessed using Tarlov behavior assessment, sensory responses and electrophysiologic tests of cortical somatosensory-evoked potential (CSEP) and motor-evoked potential (MEP). In vivo differentiation of the implanted cells was demonstrated by the presence of neural cell markers in Hoechst 33342-labeled cells. The re-establishment of the axonal pathway was demonstrated using a true blue (TB) chloride retrograde tracing study. RESULTS: Monkeys achieved Tarlov grades 2-3 and nearly normal sensory responses 3 months after cell transplantation. Both CSEP and MEP showed recovery features. The presence of the neural cell markers neurofilament (NF), neuro-specific enolase (NSE) and glial fibrillary acidic protein (GFAP) was observed in approximately 10% of Hoechst 33342-labeled cells. TB, originally injected at the caudal side of injured sites, was traceable in the rostral thoracic spinal cord, red nucleus and sensory motor cortex. DISCUSSION: Our results suggest that the implantation of MSC-derived cells elicits de novo neurogenesis and functional recovery in a non-human primate SCI model and should harness the clinical application of BM MSC in SCI patients.  相似文献   

11.
Bone marrow (BM) derived mesenchymal stem cells (MSC) are pluripotent cells which can differentiate into osteogenic, adipogenic and other lineages. In spite of the broad interest, the information about the changes in BM cell composition, in particularly about the variation of MSC number and their properties in relation to the age of the donor is still controversial. The aim of this study was to investigate the age associated changes in variations of BM cell composition, phenotype and differentiation capacities of MSC using a rat model. Cell populations were characterized by flow cytometry using light scattering parameters, DNA content and a set of monoclonal antibodies. Single cell analysis was performed by conventional fluorescent microscopy. In vitro culture of MSC was established and their phenotype and capability for in vitro differentiation into osteogenic and adipogenic cells was shown. Age related changes in tibiae and femurs, amount of BM tissue, BM cell composition, proportions of separated MSC and yield of MSC in 2 weeks of in vitro culture were found. At the same time, neither change in phenotype no in differentiation capacities of MSC was registered. Age-related changes of the number of MSC should be taken into account whenever MSC are intended to be used for investigations.  相似文献   

12.
BACKGROUND: Mesenchymal stem cells (MSC) are multipotent progenitors retaining the capability to undergo multilineage differentiation, mostly towards all the mesodermal cellular lineages. MSC growing under standard conditions are composed of two main subpopulations with a characteristic distribution in the morphologic flow cytometric scatter: RS (recycling stem) cells (small, agranular) and m (mature) MSC (large, moderately granular cells). METHODS: MSC obtained from BM of healthy donors and expanded in culture were characterized by evaluating both the expression of conventional markers and differentiation potential. We used CFSE, a lipophilic dye that is taken up by cell membranes, to investigate separately the proliferative activity of RS cells and mMSC subsets. RESULTS: With flow cytometric analysis, RS cells and mMSC showed nearly the same immunophenotypic pattern, even if a significantly smaller percentage of RS cells expressed some of the classic mesenchymal Ag. The RS cell fraction was confirmed to have a higher proliferative potential and such a feature was particularly evident under certain culture conditions. DISCUSSION: CFSE has been shown as a reliable method for studying the proliferative activity of MSC subpopulations identified by flow cytometric analysis. The acquisition parameter strategy is crucial for the accuracy of the analysis.  相似文献   

13.
BACKGROUND: Human mesenchymal stem cells (hMSC) have been isolated and characterized extensively for a variety of clinical applications. Yet it is unclear how the phenomenon of hMSC plasticity can be safely and reasonably exploited for therapeutic use. METHODS: We have generated mesenchymal stem cells (MSC) from normal human BM and identified a novel cell population with a transformed phenotype. This cell population was characterized by morphologic, immunophenotypic, cytogenetic analyzes and telomerase expression. Its tumorigenicity in NOD/SCID mice was also studied. RESULTS: A subpopulation of cells in hMSC culture was noted to appear morphologically distinct from typical MSC. The cells were spherical, cuboidal to short spindle in shape, adherent and exhibited contact independent growth. Phenotypically the cells were CD133(+), CD34(-), CD45(-), CD90(low), CD105(-), VEGFR2(+). Cytogenetic analysis showed chromosome aneuploidy and translocations. These cells also showed a high level of telemerase activity compared with typical MSC. Upon transplantation into NOD/SCID mice, multiple macroscopic solid tumors formed in multiple organs or tissues. Histologically, these tumors were very poorly differentiated and showed aggressive growth with large areas of necrosis. DISCUSSION: The possible explanations for the origin of this cell population are: (1) the cells represent a transformed population of MSC that developed in culture; (2) abnormal cells existed in the donor BM at rare frequency and subsequently expanded in culture. In either case, the MSC culture may provide a suitable environment for transformed cells to expand or propagate in vitro. In summary, our data demonstrate the potential of transformed cells in hMSC culture and highlight the need for karyotyping as a release criteria for clinical use of MSC.  相似文献   

14.
Human placenta is an attractive source of mesenchymal stem cells (MSC) for regenerative medicine. The cell surface markers expressed on MSC have been proposed as useful tools for the isolation of MSC from other cell populations. However, the correlation between the expression of MSC markers and the ability to support tissue regeneration in vivo has not been well examined. Here, we established several MSC lines from human placenta and examined the expression of their cell surface markers and their ability to differentiate toward mesenchymal cell lineages. We found that the expression of CD349/frizzled‐9, a receptor for Wnt ligands, was positive in placenta‐derived MSC. So, we isolated CD349‐negative and ‐positive fractions from an MSC line and examined how successfully cell engraftment repaired fractured bone and recovered blood flow in ischemic regions using mouse models. CD349‐negative and ‐positive cells displayed a similar expression pattern of cell surface markers and facilitated the repair of fractured bone in transplantation experiments in mice. Interestingly, CD349‐negative, but not CD349‐positive cells, showed significant effects on recovering blood flow following vascular occlusion. We found that induction of PDGFβ and bFGF mRNAs by hypoxia was greater in CD349‐negative cells than in CD349‐positive cells while the expression of VEGF was not significantly different in CD349‐negative and CD349‐positive cells. These findings suggest the possibility that CD349 could be utilized as a specialized marker for MSC isolation for re‐endothelialization. J. Cell. Physiol. 226: 224–235, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
AIM:To investigate the interaction between mesenchymal stem cells(MSCs) and bone grafts using two different cultivation methods:static and dynamic.METHODS:MSCs were isolated from rat bone marrow.MSC culture was analyzed according to the morphology,cell differentiation potential,and surface molecular markers.Before cell culture,freeze-dried bone(FDB) was maintained in culture for 3 d in order to verify culture medium pH.MSCs were co-cultured with FDB using two different cultivation methods:static co-culture(two-dimensional) and dynamic co-culture(threedimensional).After 24 h of cultivation by dynamic or static methods,histological analysis of Cell adhesion on FDB was performed.Cell viability was assessed by the Trypan Blue exclusion method on days 0,3 and 6 after dynamic or static culture.Adherent cells were detached from FDB surface,stained with Trypan Blue,and quantified to determine whether the cells remained on the graft surface in prolonged non-dynamic culture.Statistical analyses were performed with SPSS and a P < 0.05 was considered significant.RESULTS:The results showed a clear potential for adipogenic and osteogenic differentiation of MSC cultures.Rat MSCs were positive for CD44,CD90 and CD29 and negative for CD34,CD45 and CD11bc.FDBs were maintained in culture for 3 d and the results showed there was no significant variation in the culture medium pH with FDB compared to pure medium pH(P > 0.05).In histological analysis,there was a significant difference in the amount of adhered cells on FDB between the two cultivation methods(P < 0.05).The MSCs in the dynamic co-culture method demonstrated greater adhesion on the bone surface than in static co-culture method.On day 0,the cell viability in the dynamic system was significantly higher than in the static system(P < 0.05).There was a statistical difference in cell viability between days 0,3 and 6 after dynamic culture(P < 0.05).In static culture,cell viability on day 6 was significantly lower than on day 3 and 0(P < 0.05).CONCLUSION:An alternative cultivation method was developed to improve the MSCs adhesion on FDB,demonstrating that dynamic co-culture provides a superior environment over static conditions.  相似文献   

16.
Bone marrow mesenchymal stromal cells (BM MSCs) represent a heterogeneous population of progenitors with potential for generation of skeletal tissues. However the identity of BM MSC subpopulations is poorly defined mainly due to the absence of specific markers allowing in situ localization of those cells and isolation of pure cell types. Here, we aimed at characterization of surface markers in mouse BM MSCs and in their subsets with distinct differentiation potential. Using conditionally immortalized BM MSCs we performed a screening with 176 antibodies and high-throughput flow cytometry, and found 33 markers expressed in MSCs, and among them 3 were novel for MSCs and 13 have not been reported for MSCs from mice. Furthermore, we obtained clonally derived MSC subpopulations and identified bipotential progenitors capable for osteo- and adipogenic differentiation, as well as monopotential osteogenic and adipogenic clones, and thus confirmed heterogeneity of MSCs. We found that expression of CD200 was characteristic for the clones with osteogenic potential, whereas SSEA4 marked adipogenic progenitors lacking osteogenic capacity, and CD140a was expressed in adipogenic cells independently of their efficiency for osteogenesis. We confirmed our observations in cell sorting experiments and further investigated the expression of those markers during the course of differentiation. Thus, our findings provide to our knowledge the most comprehensive characterization of surface antigens expression in mouse BM MSCs to date, and suggest CD200, SSEA4 and CD140a as markers differentially expressed in distinct types of MSC progenitors.  相似文献   

17.
Choong PF  Mok PL  Cheong SK  Then KY 《Cytotherapy》2007,9(3):252-258
BACKGROUND: The unique potential of mesenchymal stromal cells (MSC) has generated much research interest recently, particularly in exploring the regenerative nature of these cells. Previously, MSC were thought to be found only in the BM. However, further studies have shown that MSC can also be isolated from umbilical cord blood, adipose tissue and amniotic fluid. In this study, we explored the possibility of MSC residing in the cornea. METHODS: Human cornea tissues were chopped to fine pieces and cultured in DMEM supplemented with 10% FBS. After a few days, the crude pieces of cornea were removed. Isolated keratocytes that were adherent to tissue culture flasks were grown until confluency before being passaged further. The immunophenotype was evaluated by flow cytometry. Assays were performed to differentiate cultured cells into adipocytes and osteocytes. RESULTS: Isolated corneal keratocytes exhibited a fibroblastoid morphology and expressed CD13, CD29, CD44, CD56, CD73, CD90, CD105 and CD133, but were negative for HLA-DR, CD34, CD117 and CD45. These properties are similar to those of BM-MSC (BM-MSC). In addition, corneal keratocytes were able to differentiate into adipocytes and osteocytes. DISCUSSION: Our results indicate that corneal keratocytes have MSC-like properties similar to those of BM-MSC. This study opens up the possibility of using BM-MSC in corneal tissue engineering and regeneration. Furthermore, discarded corneal tissue can also be used to generate MSC for tissue engineering purposes.  相似文献   

18.
19.
Human umbilical cord blood (CB) is a potential source for mesenchymal stem cells (MSC) capable of forming specific tissues, for example, bone, cartilage, or muscle. However, difficulty isolating MSC from CB (CB‐MSC) has impeded their clinical application. Using more than 450 CB units donated to two public CB banks, we found that successful cell recovery fits a hyper‐exponential function of time since birth with very high fidelity. Additionally, significant improvement in the isolation of CB‐MSC was achieved by selecting cord blood units having a volume ≥90 ml and time ≤2 h after donor's birth. This resulted in 90% success in isolation of CB‐MSC by density gradient purification and without a requirement for immunoaffinity methods as previously reported. Using MSC isolated from bone marrow (BM‐MSC) and adipose tissue (AT‐MSC) as reference controls, we observed that CB‐MSC exhibited a higher proliferation rate and expanded to the order of the 1 × 109 cells required for cell therapies. CB‐MSC showed karyotype stability after prolonged expansion. Functionally, CB‐MSC could be more readily induced to differentiate into chondrocytes than could BM‐MSC and AT‐MSC. CB‐MSC showed immunosuppressive activity equal to that of BM‐MSC and AT‐MSC. Collectively, our data indicate that viable CB‐MSC could be obtained consistently and that CB should be reconsidered as a practical source of MSC for cell therapy and regenerative medicine using the well established CB banking system. J. Cell. Biochem. 112: 1206–1218, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

20.
There is increasing evidence that human mesenchymal stem cells (hMSCs) can be a valuable, transplantable source of hepatocytes. Most of the hMSCs preparations used in these studies were likely heterogeneous cell populations, isolated by adherence to plastic surfaces or by density gradient centrifugation. Therefore, the participation of other unknown trace cell populations cannot be rigorously discounted. Here we report the isolation and establishment of a cloned human MSC line (chMSC) from human bone marrow primary culture, through which we confirmed the hepatic differentiation capability of authentic hMSCs. chMSCs expressed markers of mesenchymal cells, but not markers of hematopoietic stem cells. In vitro, chMSCs can differentiate into either mesenchymal cells or cells exhibiting hepatocyte‐like phenotypes. When transplanted intrasplentically into carbon tetrachloride‐injured livers of SCID mice, EGFP‐tagged chMSCs engrafted into the host liver parenchyma, exhibited typical hepatocyte morphology, form a three‐dimensional architecture, and differentiate into hepatocyte‐like cells expressing human albumin and α‐1‐anti‐trypsin. By confocal microscopy, ultrafine intercellular nanotubular structures were visible between adjacent transplanted and host hepatocytes. We postulate that these structures may assist in the phenotype conversion of chMSCs, possibly by exchange of cytoplasmic components between native hepatocytes and transplanted cells. Thus, a clonal pure population of hMSCs, which can be expanded in culture, may have potential as a cellular source for substitution damaged cells in hepatic injury. J. Cell. Biochem. 108: 693–704, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号