首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of 194 neurons was recorded in three subdivisions of the medial geniculate body (74 neurons in the ventral, 62 in the medial and 44 neurons in the dorsal subdivision, i.e. vMGB, mMGB and dMGB) of guinea pigs anesthetized with ketamine-xylazine. The discharge properties of neurons were evaluated by means of peristimulus time histograms (PSTHs), interval histograms (INTHs) and auto-correlograms (ACGs). In the whole MGB, the most frequent PSTH responses to pure tone stimuli were onset (43%) or chopper (32%). The onset responses were mostly present in the vMGB, whereas chopper responses dominated in the dMGB. In the whole MGB Poisson-like and bimodal INTHs were found in 46% and 40% of neurons, respectively. The mMGB revealed fewer bimodal and more symmetrical types of INTH. In the whole MGB, 60% of units were found to have ACGs typical for short bursts (<100 ms), 23% for long bursts (>100 ms) and 15% of units fired without bursts. Neurons in the vMGB were characterized by short bursting, whereas those in the mMGB and dMGB expressed more activity in the long bursts. The results demonstrate that the type of information processing in the vMGB, which belongs to the "primary" auditory system, is different from that in two other subdivisions of the MGB.  相似文献   

2.
Correlation between activities of neurons in the right and left lateral hypothalamus of a rabbit recorded during quiet wakefulness, after 24-h food deprivation, and after satiation was studies by plotting cross- and autocorrelation histograms. A predominant order in correlated bilateral discharges of hypothalamic neurons was revealed in hungry animals: in a significantly greater number of cases (59%) the left-side discharges led the right-side ones with time delays to 200 ms (peaks at 30 and 160 ms). The opposite order of discharges was less common (21%). In the state of hunger, the probability of appearance of theta-range frequencies in correlated neuronal discharges increased (from 11 to 29%).  相似文献   

3.
Rate-coding in spinal motoneurons was studied using high-frequency magnetic stimulation of the human motor cortex. The subject made a weak contraction to cause rhythmic (i.e., tonic) discharge of a single motor unit in flexor (or extensor) carpi radialis or tibialis anterior, while the motor cortical representation of that muscle was stimulated with brief trains of pulses from a Pyramid stimulator (4 Magstim units connected by 3 BiStim modules). An "m@n" stimulus train consisted of m number of pulses (1-4), with an interpulse interval (IPI) of n ms (1-6). Peristimulus time histograms were constructed for each stimulus condition of a given motor unit, and related to the average rectified surface electromyography (EMG) from that muscle. Surface EMG responses showed markedly more facilitation than single-pulse stimulation, with increasing numbers of pulses in the train; responses also tended to increase in magnitude for the longer IPI values (4 and 6 ms) tested. Motor-unit response probability increased in a manner comparable to that of surface EMG. In particular, motoneurons frequently responded twice to a given stimulus train. In addition to recruitment of new motor units, the increased surface EMG responses were, in part, a direct consequence of short-term rate-coding within the tonically discharging motoneuron. Our results suggest that human corticomotoneurons are capable of reliably following high-frequency magnetic stimulation rates, and that this activity pattern is carried over to the spinal motoneuron, enabling it to discharge at extremely high rates for brief periods of time, a pattern known to be optimal for force generation at the onset of a muscle contraction.  相似文献   

4.
Single units of the goldfish torus semicircularis (TS) were recorded in response to pure tones. Response areas (RA) were obtained by recording the number of spikes evoked by tones in a range of frequencies and levels within the units' dynamic range. RAs gave estimates of best sensitivity (BS), characteristic frequency (CF), most excitatory frequency at each level (BF), and Q10dB. Peri-stimulus-time histograms (PSTH), interspike interval histograms (ISIH), and period histograms were obtained at various frequencies and levels to describe the units' temporal response patterns.The distribution of CF is nonuniform with modes at 155, 455, and 855 Hz. The distribution of the coefficient of synchronization to standard tones is also nonuniform, revealing a dichotomy between units with little or no phase-locking and those that phase-lock strongly. PSTHs for units without significant phase-locking vary widely and include patterns resembling those of the mammalian auditory brainstem. Compared with saccular afferents, torus units tend to have lower spontaneous rates, greater sensitivity, and sharper tuning. Unlike saccular afferents, BF is independent of level for most torus units. Some torus units are similar to saccular afferents while others reveal significant transformations of information between the periphery and the midbrain.Abbreviations BF best frequency - BS best sensitivity - CF characteristic frequency - ISIH inter-spike interval histogram - PSTH peri-stimulus-time histogram - RA response area - TS torus semicircularis  相似文献   

5.
Responses to repetitive stimulation were monitored at several retinal levels in the eyecup of the mudpuppy Necturus maculosus. When alternating sequences of low-intensity small and large spots were presented, two effects were found, which could be localized to the proximal retina: (a) response decrement (RD), in which, after the first small spot response, subsequent small spot responses are decreased in amplitude and (b) transient response enhancement (TRE), in which the first small spot response after a large spot sequence is larger than preceding or subsequent small spot responses. RD and TRE are absent or weak in sustained on or off responses (horizontal and bipolar cells, and ON and OFF ganglion cell post-stimulus time histograms (PSTH) but are particularly well developed in the on/off responses of the proximal retina (proximal negative response, M-wave, PSTHs of ON/OFF ganglion cells, and intracellular responses from on/off neurons and Muller cells). RD and TRE appear to arise from a stimulus-evoked slow depolarization in on/off neurons that interacts with the amplitude of succeeding responses. We conclude that RD and TRE are a form of neural adaptation that is largely specific to the on/off channels of the proximal retina.  相似文献   

6.
An understanding of recruitment is important for estimating population growth and viability, and their implications for conservation. We present the first results regarding the life history, maternal behavior and infant development of the critically endangered blue-eyed black lemur (Eulemur flavifrons) of Madagascar. The species breeds seasonally, with births occurring at the end of the dry season, between late August and October. Over two successive birth seasons in 2006 and 2007, we observed a total of 13 lactating females and 22 infants from six groups. We inferred age at first reproduction as 3 years, and calculated the birth rate as 1.0 infant per female per year with a mean inter-birth interval of 358 ± 24.81 days (319-410 days). Infants spent the first 3 weeks of life constantly with their mothers; locomotor independence and ingestion of solid food began at week 10, and the infants were weaned by week 25. After week 28, infants spent less than 20% of their time in contact with their mothers. Over the study period infant mortality was 22.7%, with predation and sickness observed as causes. Our results suggest that overall recruitment is relatively slow, which has implications for the species' survival, particularly given their restricted and threatened habitat.  相似文献   

7.
The effects of norepinephrine (NE), histamine (HIST), glutamate, and adenosine, singly and in combinations, on the accumulation of adenosine 3,5-monophosphate (cyclic AMP) in slices of rabbit cerebral cortex were examined using tissue from animals 4 days before to 38 days after birth. A response to NE became visible 2 days before birth and increased to - maximum at 7 days after birth before declining toward the small adult value during the second post-natal week. During this period NE was at least twice as efficacious as isoproterenol, and both - and -adrenergic antagonists had prominent inhibitory effects. Responses to HIST were already apparent 4 days before birth and increased in an irregular fashion thereafter, sometimes exceeding the adult value during the second post-natal week. The response to adenosine was not visible until birth and gradually increased toward the adult value during the entire period examined. Synergistic responses to various combinations of the three agents were first detected at 2 to 4 days before birth. The degree of synergism was larger during the neonatal period than that found in adult tissue; no synergism between HIST and adenosine persisted in the adult. During the first post-natal week, L-glutamate produced very large increases of cyclic AMP accumulation in the presence of either adenosine or histamine plus theophylline; smaller but substantial responses occurred in combination with NE. Responses to glutamate declined progressively after about the tenth post-natal day.  相似文献   

8.
Neurotropin (Nippon Zoki Co, Ltd) effects on firing patterns of the CA 3 hippocampus neurons in rabbits under a 24-h food deprivation was studied. Neuronal firing was recorded in a state of hunger (40 neurons) and under neurotropin (27 neurons) injected through a catheter implanted into the lateral brain ventricles. Initially, in 20% of neurons histograms had a bimodal interspike interval distribution: 1.5-25 ms and 100-400 ms. Neurotropin (50 microliters) increased the baseline spike rate regularity of hippocampus neurons. Histograms had a monomodal interspike interval distribution. Neurotropin (70 microliters) inhibited firing patterns and histograms, had trimodal interspike interval distribution: 1.5-5 ms; 250-400 ms and 1000 ms. Thus, these data suggested the involvement of neuro-immuno-modulator mechanisms in organization of firing patterns in rabbits.  相似文献   

9.
There were studied characteristics of gamma-oscillations in responses of neurons of the lateral geniculate body (LGB) in cat to exposure in their receptive fields (RF) of half-tone and binary test images. The gamma-oscillations were observed in 38.8% of cases (69 cells). The spectral characteristics (SC) (the band 20–100 Hz) of the neuronal responses to adequate stimuli (on- and off-responses correspondingly of on- and off-neurons) were analyzed. The total of 5930 poststimulus histograms (PSTH) of responses constructed from 177 900 neuronal impulse responses were considered. The mean value of the SC dominant frequencies of the whole sample of the neuronal responses amounted to 44.74 ± 21.46 Hz. In this cell sample, the neurons were revealed, which generated oscillations with markedly different frequencies in response to the same stimuli. Based on this property, three types of neurons were determined, with the mean oscillation frequencies of 26.95 ± 4.35, 52.02 ± 9.05, and 85.79 ± 7.19 Hz. The histograms of distribution of peak frequency values in SC of the neuronal responses and of index values of these oscillation peaks also revealed three maxima that corresponded to the frequencies of the three described types of neurons. The mean values of dominant frequencies of gamma-oscillations in responses of all three types of neurons remained constant (within the limits of dispersion) at changes of spatial-brightness parameters of test stimuli as well as at changes of the neuronal excitation level (the number of impulses in responses). The oscillation index values of dominant frequencies depended on parameters of the test images and correlated with the neuronal excitation level (the coefficient of correlation was 0.78 from data of 5930 CX). The suggestion is made about the existence in the neuronal network of the synchronization mechanisms functioning on the principle of multiple synchronization.   相似文献   

10.
Stressors are frequently encountered during the pregnancies of farm animals. However, very few studies have investigated the effects of repeated stress in pregnant females on their offspring. Forty-eight ewes at 2.5 months of pregnancy were selected for their high or low cortisol response to isolation. Half of the ewes were subjected, twice a week during the last 5 weeks of gestation, to isolation. The first isolation bout of each week consisted only of isolation from conspecifics, while the second bout of each week consisted of isolation in the presence of a dog. The cortisol responses of ewes were measured during the treatment. The other half of the ewes was drafted and released without further disturbance. The emotional reactivity of the lambs to a light contrast test, a startling stimulus test and a social isolation test were studied at 25 days of age. The lambs were retested at 8 months of age in the same tests and also in a novel arena and a novel object tests. Cardiac responses to the startling stimulus were studied at 8 months of age. Basal cortisol concentrations and cortisol response after the isolation test were studied at both ages and cortisol response to ACTH was studied at 25 days of age. Ewes repeatedly exposed to the treatment of isolation plus presence of a dog habituated to the treatment. Moreover, the initial differences between the high and low reactivity ewes were not apparent when the stress treatment was subsequently imposed. Lambs prenatally stressed were heavier at birth than control lambs. The prenatally stressed lambs showed more exploration and locomotion in the behavioural tests at 8 months of age but not at 25 days of age. At 25 days of age, the basal cortisol concentrations were higher in the prenatally stressed lambs compared to the control lambs. Whereas these results suggest that mild prenatal stress of lambs has no adverse effect on the behavioural and cortisol responses to a range of stressors, there is evidence that this treatment increases birth weight and exploratory behaviour of prenatally stressed lambs. Clearly these results require confirmation.  相似文献   

11.
Characteristics of slow global and of unit activity in the dorsomedial thalamic nucleus were studied at various times after destruction of nuclei of the basolateral amygdala in semichronic experiments on anesthetized rats. Destruction of this kind was found to cause periodic transformation of the neuronal discharge into rhythmic bursts of spikes, and into the development of bursts of paroxysmal activity in the form of groups of four to six pointed waves with a mean duration of 60.5±20.6 msec, appearing with a frequency of 1.5±0.3 Hz. A change in the coefficient of correlation was found between the duration of bursts and their frequency during the 20–22-sec period of their generation. Interference was demonstrated between bursts and orthodromic focal potentials, evoked by stimulation of the anterior periamygdalar cortex and anterior amygdalar region. Neurons were described with long (up to 1 sec) responses to stimulation of the periamygdalar cortex and amygdalar region, in the form of regular bursts of spikes or tonic activation, correlating with the appearance of a rhythmic after-discharge. Bursts of this kind, which were most marked during the first 3 or 4 days after destruction of the basolateral amygdala, were observed to begin to disappear toward the end of the first postoperative week. It is suggested that one mechanism of the change in the adaptive behavior of animals with destruction of the amygdala is a disturbance, linked with the bursts, of the relay and integrative functions of the dorsomedial thalamic nucleus.  相似文献   

12.
Individual follicles were monitored by ultrasonography in 15 mares during the transitional period preceding the first ovulation of the year and in 9 mares during the first interovulatory interval. During the transitional period, 7 mares developed 1-3 anovulatory follicular waves characterized by a dominant follicle (maximum diameter greater than or equal to 38 mm) that had growing, static, and regressing phases. The emergence of a subsequent wave (anovulatory or ovulatory) did not occur until the dominant follicle of the previous wave was in the static phase. After the emergence of the subsequent wave, the previous dominant follicle regressed. The mean (+/- s.d.) length of the interval between successive waves was 10.8 +/- 2.2 days. Before the emergence of waves (identified by a dominant follicle), follicular activity seemed erratic and follicles did not reach greater than 35 mm. During the interovulatory interval, 6 mares developed 2 waves (an anovulatory wave and a subsequent ovulatory wave) and 3 mares developed only 1 detected wave (the ovulatory wave). The ovulatory follicle at the end of the transitional period reached 20 mm earlier (Day - 15), grew slower (2.6 +/- 0.1 mm/day; mean +/- s.e.m.) but reached a larger diameter on Day - 1 (50.5 +/- 1.1 mm) than for the ovulatory follicle at the end of the interovulatory interval (Day - 10, 3.6 +/- 0.2 mm/day, 44.4 +/- 1.0 mm, respectively; P less than 0.05 for each end point). The interval from cessation of growth of the largest subordinate follicle to the occurrence of ovulation was longer (P less than 0.05) for end of the transitional period (9.5 +/- 0.7 days) than for the end of the interovulatory interval (6.8 +/- 0.6 days). Results demonstrated the occurrence of rhythmic follicular waves during some transitional periods and the occurrence of 2 waves during some of the first oestrous cycles of the year.  相似文献   

13.
This study describes a technique which allows continuous recording of MUA (Multiple Unit Activity), from the NPO (Preoptic Nucleus), DAP (Dorsal Aortic blood Pressure) and ECG (Electrocardiogram) in freely swimming rainbow trout. From the 21 trout tested, six trout (29%) clearly showed rhythmic patterns of MUA during the five post-operative days (D2-D6). The mean length of rhythmic MUA was about 18 hr (range 6-33 hr) among the six trout during the recording days. Periodic MUA occurred approximately eight times/hr and lasted about 2 min. The maximal frequency of discharges was 20-30 spikes per sec. No change occurred in the mean level of blood pressure from the first operative day to the following post-operative days, where rhythmic MUA appeared or reappeared. These results demonstrate the existence of biorhythmicity within the NPO of freely swimming trout and suggest parallel oscillations in neurohormones secretion.  相似文献   

14.
We performed measurement of mechanical atrioventricular conduction time intervals in human fetuses assessed by Doppler echocardiography and provided reference values. We found that atrioventricular conduction time interval was prolonged with gestational age and decreased with increasing fetal heart rate. No correlation between gestational age and heart rate was found. Using normal limits established by this study, mechanical atrioventricular interval >135 ms in the 20(th) week and/or >145 ms in the 26(th) week of gestation could be suspected of having the first-degree AV block. We compared reference values with fetuses of mothers with anti-SSA Ro/SSB La autoantibodies, being in risk of isolated congenital heart block development. One of 21 fetuses of mothers with positive autoantibodies was affected by prolonged atrioventricular interval according to the established limits, with sinus rhythm after the birth.  相似文献   

15.
Ontogenetic mechanisms of memory formation were studied using an experimental model of conditioned reflex to time, i.e., trace acquisition of a stimulation rhythm by hippocampal CA1 neurons of young (1-4 weeks old) and adult rabbits (5-6 months old). It was found that age-related development of learning ability includes several stages: complete absence of memory traces (6-7 days old), rapid acquisition without consolidation (8-14 days old), and formation of perfect memory (25-30 days old). Both specific and nonspecific changes in spontaneous activity of neurons were observed. Changes in the rate of discharges related to rhythmic stimulation were accompanied by changes in spontaneous activity. With the development of an animal, spike activity increased in parallel with improving of the functional properties of neurons, their structural organization, formation of the afferent contacts in the hippocampus completed after a period of three weeks from birth, and formation of metabolic processes, modulatory systems, and traffic function of hippocampal neurons. A capability for plastic reorganization is of great importance for adaptation mechanisms and conditioned behavior of a developing animal in accordance with structural maturation and development of the functional regulation of neuronal reactivity in the hippocampus.  相似文献   

16.
In the rat hippocampus, during the first postnatal week, network activity is characterized by GABA-driven giant depolarizing potentials (GDPs) associated with calcium signals that are readily blocked when the GABAA antagonist bicuculline is applied to the bath. Towards the end of the first postnatal week, in concomitance with the shift of GABA responses from the depolarizing to the hyperpolarizing direction, functional glutamatergic connections start appearing. At this developmental stage, application of bicuculline blocks GABAA-mediated inhibition and induces the appearance of interictal epileptiform discharges. In the present experiments, we have used a high spatio-temporal resolution imaging system to compare, on a time scale of tens of ms, the onset and propagation of fast calcium transients generated within a GABAergic or glutamatergic network. We found that, during the first postnatal week, calcium signals associated to evoked GDPs arise from the activation of a local circuitry of neurons spanning the stratum radiatum and the pyramidal layer. Similar activation patterns were elicited by focal application of GABA in the presence of kynurenic acid, a broad spectrum ionotropic glutamatergic antagonist, and were blocked by bicuculline. During the second postnatal week, in the presence of bicuculline, calcium signals associated with interictal discharges evoked by stimulation of glutamatergic fibres propagated along the well-defined three-synaptic pathway from the dentate gyrus to the CA1 hippocampal area.  相似文献   

17.
The concentration and the total content of norepinephrine (NE) in the kidney were measured in Sprague-Dawley rats from 3 to 120 days after birth. Renal NE concentration was relatively low until the end of the second week, when it rose abruptly to adult levels; total NE content per kidney increased steadily throughout development. The effects of perinatal methadone treatment on renal NE development were examined by administering the drug either directly to the pups from 1 to 19 days after birth, or to the mother from 10 days of gestation to 20 days after birth. Both treatments resulted in significant deficits of body weight and kidney weight. Maternal methadone caused a significant deficit in renal NE which was most pronounced at two weeks of postnatal age; direct methadone had less effect on renal NE. These results suggest that renal sympathetic neurotransmission may become mature two weeks after birth and indicate further that maternal methadone interfares with this maturation.  相似文献   

18.
Summary A modification of Weiser's (1973) cell isolation method was used in order to study the developmental pattern of various intestinal enzyme activities in villus and crypt cells of normal rats from 5 days after birth until 8 weeks. Alkaline phosphatase and enterokinase activities were always located in the upper villus zone during postnatal development. Enterokinase activity was higher in the upper villus cells during the third week of life than after this period. Aminopeptidase activity was located in the crypt cells during the first week, its maximum activity remained in this area until the third week. At this time, sucrase activity appeared in the crypt cells, then aminopeptidase and sucrase activities rose to the villus zone during the fourth week. Amylase activity was detected along the entire crypt-villus axis 5 days after birth, reaching maximum activity in crypt cells at the end of the first week and in the upper villus cells after the fourth week. In contrast with the other enzymes studied almost all amylase activity was soluble in the youngest animals whereas at weaning most of the activity appeared in a particulate form in the villus cells. But in the crypt cells the ratio between particulate and soluble form remained unchanged until the adult stage. Various hypotheses are advanced to explain the patterns of evolution of the different enzymes.  相似文献   

19.
The structural and functional development of the striated ducts and convoluted granular tubules (CGT) of the rat submandibular gland (SMG) were studied by electron microscopy and alkaline protease chemistry. Development of the SMG was followed from 14 days of gestation through 30 weeks of age. The specialized morphology of the basal aspect of the striated duct cells arises from cellular extensions which are first seen at 20 days of gestation. These processes elongate and intertwine with similar processes from adjacent cells, and as the cells enlarge the processes are compressed together giving the appearance of "infolding" of the basal plasma membrane. Mitochondria migrate to the basal part of the cell and are seen in close relationship to the cellular extensions throughout the development of these cells. Development of the striated duct is complete by one week after birth. The CGT develop from the proximal portions of intralobular striated ducts. At one week after birth, cells of the proximal striated duct demonstrate apical vacuoles. By two weeks after birth these vacuoles are replaced by distinct zymogen-like granules. There is a progressive accumulation of large numbers of secretory granules in the CGT cells as the animals age. However, rough endoplasmic reticulum is a relatively inconspicuous cellular component throughout development. The accumulation of alkaline protease activity in the gland closely parallels the pattern of granule accumulation.  相似文献   

20.
Lithium-pilocarpine status epilepticus (SE) resulted in delayed changes of single cortical interhemisperic (transcallosal) responses in immature rats. Low-frequency stimulation inducing depression and/or potentiation was studied to analyze possible dynamic changes in cortical responses. Status was elicited in 12-day-old (SE12) or 25-day-old (SE25) rats. Control siblings received saline instead of pilocarpine. Interhemispheric responses were elicited by stimulation of the sensorimotor region of the cerebral cortex 3, 6, 9, 13, or 26 days after status. A series of 5 biphasic pulses with intensity equal to twofold threshold were used for stimulation. The interval between pulses was 100, 125, 160, 200 or 300 ms, eight responses were always averaged. Peak amplitude of the first positive, first negative and second positive waves was measured and responses to the second, third, fourth and fifth pulse were compared with the first one. Animals after status epilepticus as well as lithium-paraldehyde controls exhibit a frequency depression at nearly all the intervals studied. An outlined increase of responses in SE rats in comparison with the controls three days after SE stayed just below the level of statistical significance. In addition, animals in the SE12 group exhibited potentiation of responses at this interval after SE. With longer intervals after SE, the relation between SE and control animals changed twice resulting in a tendency to lower amplitude of responses in SE than in control rats 26 days after SE. Rats in the SE25 group exhibited higher responses than controls 13 days after status, but this difference was not present at the longest interval after SE. Low-frequency stimulation did not reveal increased cortical excitability as a long-lasting consequence of status epilepticus induced in immature rats. In addition, the outlined differences between SE and control rats changed with the time after SE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号