首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of 12 pyrimidine derivatives were prepared and testedin vitro against growth, sporulation and nucleic acid content ofFusarium oxysporum f. sp.lycopersici andHelminthosporium oryzae. Introduction of a thiazole ring together with two aryl groups into 2-aminopyrimidine brought about drastic toxicity for both fungi. Pyrimidine derivatives with aryl groups alone were less toxic. Nitro groups were found to enhance the toxicity of the pyrimidine derivatives especially when substituted in the ortho-position of the aryl groups. Inhibition of nucleic acid synthesis of both fungi was attributed mainly to the presence of the thiazole ring.  相似文献   

2.
Detection of a new chloroperoxidase in Pseudomonas pyrrocinia   总被引:2,自引:0,他引:2  
A new chloroperoxidase could be detected in Pseudomonas pyrrocinia ATCC 15,958, a bacterium that produces the antifungal antibiotic pyrrolnitrin. This enzyme was separated from a ferriprotoporphyrin IX containing bromoperoxidase which was also produced by this bacterium. The enzyme is capable of catalyzing the chorination of indole to 7-chloroindole. This procaryotic chloroperoxidase requires the presence of H2O2 and can also brominate monochlorodimedone, but cannot catalyze its chlorination. This enzyme is the first chloroperoxidase described from procaryotic sources.  相似文献   

3.
The first bacterial chloroperoxidase that is capable of catalyzing the chlorination of indole to 7-chloroindole was detected in Pseudomonas pyrrocinia ATCC 15958, a bacterium that produces the antifungal antibiotic pyrrolnitrin (Wiesner, W., van Pée, K.H., and Lingens, F. (1986) FEBS Lett. 209, 321-324). Here we describe the purification and characterization of this bacterial non-heme chloroperoxidase. The enzyme was purified by DEAE-cellulose chromatography at different pH values, molecular sieve chromatography, and Bio-Gel HTP hydroxylapatite. After the last purification step, chloroperoxidase was homogeneous by polyacrylamide gel electrophoresis and ultracentrifugation. Based on gel filtration and ultracentrifugation results, the molecular weight of the enzyme was 64,000 +/- 3,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a single band with the mobility of a 32,000 molecular weight species. Therefore, in solution at neutral pH, this chloroperoxidase is a dimer. The enzyme did not exhibit any absorbance in the visible region of the spectrum. The isoelectric point was 4.1. Chloroperoxidase was specific for I-, Br-, and Cl- and was not inhibited by azide, but was inhibited by cyanide and F-. This procaryotic chloroperoxidase catalyzed the bromination of monochlorodimedone but not its chlorination and has no peroxidase or catalase activity. The pH optimum of the enzyme was between 4.0 and 4.5, and the enzyme was stable between pH 3.5 and 8.5 and showed no loss of activity when incubated at 60 degrees C for 2 h. Chloroperoxidase also chlorinated 4-(2-amino-3-chlorophenyl) pyrrole to yield aminopyrrolnitrin, the immediate precursor of pyrrolnitrin. This suggests very strongly that chloroperoxidase is involved in the biosynthesis of the antibiotic pyrrolnitrin.  相似文献   

4.
Resonance Raman spectra of the heme protein chloroperoxidase in its native and reduced forms and complexed with various small ions are obtained by using laser excitation in the Soret region (350-450 nm). Additionally, Raman spectra of horseradish peroxidase, cytochrome P-450cam, and cytochrome c, taken with Soret excitation, are presented and discussed. The data support previous findings that indicate a strong analogy between the active site environments of chloroperoxidase and cytochrome P-450cam. The Raman spectra of native chloroperoxidase are found to be sensitive to temperature and imply that a high leads to low spin transition of the heme iron atom takes place as the temperature is lowered. Unusual peak positions are also found for native and reduced chloroperoxidase and indicate a weakening of porphyrin ring bond strengths due to the presence of a strongly electron-donating axial ligand. Enormous selective enhancements of vibrational modes at 1360 and 674 cm-1 are also observed in some low-spin ferrous forms of the enzyme. These vibrational frequencies are assigned to primary normal modes of expansion of the prophyrin macrocycle upon electronic excitation.  相似文献   

5.
We have designed and synthesized a series of structurally novel hydroxamic acid-based histone deacetylase (HDAC) inhibitors characterized by a zinc chelating head group attached directly to a thiazole ring. The thiazole ring connects to a piperazine spacer, which is capped with a sulfonamide group. These novel molecules potently inhibit an HDAC enzyme mixture derived from HeLa cervical carcinoma cells and show potent antiproliferative activity against the breast cancer cell line MCF7.  相似文献   

6.
A bacterial non-heme chloroperoxidase from Serratia marcescensW 250 was immobilized in calcium alginate gel. Methods for stabilization of the immobilized enzyme were developed, and some kinetic parameters of the immobilized preparations were determined. The enzyme encapsulated into the gel granules in the presence of potassium ferricyanide followed by treatment with glutaraldehyde demonstrated the highest stability under the reaction conditions.  相似文献   

7.
Chloroperoxidase,a peroxidase with potential   总被引:1,自引:0,他引:1  
Summary Chloroperoxidase is an extracellular heme glycoprotein produced by the imperfect fungusCaldariomyces fumago. The enzyme can catalyse chlorination reactions as well as act as a catalase or a peroxidase. As a peroxidase, it has a wide substrate specificity and we are interested in some applied aspects of this activity, requiring the production and purification of moderate quantities of the enzyme. High levels of chloroperoxidase are produced in a fructose synthetic medium, and highest enzyme production occurs in a low-shear environment. fungal pellets produce enzyme continuously at low medium replacement rates and at up to 0.6 g enzyme per 1: chloroperoxidase is essentially the only extracellular enzyme produced. Enzyme purification is uncomplicated and gives good yields of high purity. Pure enzyme is stable for weeks at room temperature and under pH control. Chloroperoxidase can be ionically bound to aminopropyl glass, then covalently immobilized by glutaraldehyde crosslinking. Immobilized preparations have been washed and re-used five times, and are most stable at pH 5.5-6. Like many peroxidases, chloroperoxidase will oxidize phenols and phenolics, often causing a precipitate, and can totally remove phenols at low aqueous concentrations. Chloroperoxidase incubation with the petroporphyrin component of crude oil asphaltene (fraction 5) causes a reduction or removal of the Soret band (410 nm) and the -peak (573 nm). This petroporphyrin fraction is enriched with vanadium which poisons the chemical catalyst used in cracking crude oil.  相似文献   

8.
R Makino  R Chiang  L P Hager 《Biochemistry》1976,15(21):4748-4754
The oxidation-reduction potential of chloroperoxidase, an enzyme which catalyzes peroxidative chlorination, bromination, and iodination reactions, has been investigated. In addition to catalyzing biological halogenation reactions, chloroperoxidase is unusual in that the carbon monoxide complex of ferrous chloroperoxidase shows the typical long wavelength Soret absorption associated with P-450 hemoproteins. The pH dependence of the chloroperoxidase oxidation-reduction potential shows a discontinuity around pH 4.7. Similarly, measurements of the affinity of ferrous chloroperoxidase for carbon monoxide monitored both by spectroscopic and potentiometric titration exhibit a discontinuity in the pH 4.7 region. Oxidation-reduction potential measurements on chloroperoxidase in a CO atmosphere also show a discontinuous pH profile. These results suggest that ferrous chloroperoxidase undergoes reversible modification at low pH and that these changes are reflected in the oxidation-reduction potential. The oxidation-reduction potential of chloroperoxidase at pH 6.9 is - 140 mV, close to that measured for cytochrome P-450cam in the presence of substrate. The oxidation-reduction potential of chloroperoxidase at pH 2.7, the pH optimum for enzymatic chlorination, is +150 mV. The oxidation-reduction potentials of the halide complexes of chloroperoxidase (chloride, bromide, and iodide) are essentially identical with the potential measurements on the native enzyme. These observations suggest that, although halide anions bind to the enzyme, they probably do not bind as an axial ligand to the heme ferric iron.  相似文献   

9.
Abstract

N-Oxidation of arylamines to their corresponding nitrosobenzenes using a new chloroperoxidase purified from Musa paradisiaca stem juice has been examined. The enzymatic characteristics of the stem chloroperoxidase using 4-chloroaniline as substrate were determined. The Km values for 4-chloroaniline and H2O2 were 770 μM and 154 μM respectively, while the pH and temperature optima were 4.4 and 30°C respectively. The substrate specificities of the enzyme for the arylamines 3,4-dichloroamine, p-aminobenzoic acid, p-toluidine, p-anisidine, m-anisidine, p-aminophenol, o-aminophenol and m-aminophenol have been characterized. The feasibility of using concentrated M. paradisiaca stem juice for the specific conversion of 4-chloroaniline to 4-chloronitrosobenzene has been demonstrated. This enzyme can be used for the N-oxidation of other arylamines.  相似文献   

10.
Both the kinetics of ferric chloroperoxidase reduction by dithionite and the binding of molecular oxygen to ferrous chloroperoxidase have been studied. The oxyferrous chloroperoxidase decays spontaneously to the ferric enzyme. In addition the corresponding rapid-scan spectra have been recorded. The reduction reaction is caused by SO-.2 with a rate constant of (7.7 +/- 1.0) X 10(4) M-1 S-1. Oxygen binding occurs with a rate constant of (5.5 +/- 1.0) X 10(5) M-1 S-1 over the pH range 3.5-6. Oxyferrous chloroperoxidase has a Soret absorption peak at 428 nm and two partially resolved peaks at 555 nm and 588 nm. Isosbestic points occur at the following wavelengths: between ferrous and oxyferrous chloroperoxidase at 419, 545, 555 and 580 nm; between oxyferrous and ferric chloroperoxidase at 419, 487, 540, 609 and 682 nm.  相似文献   

11.
l-2-Amino-Δ2-thiazoline-4-carboxylic acid hydrolase (ATC hydrolase) was purified and characterized from the crude extract of Escherichia coli, in which the gene for ATC hydrolase of Pseudomonas sp. strain ON-4a was expressed. The results of SDS–polyacrylamide gel electrophoresis and gel filtration on Sephacryl S-200 suggested that the ATC hydrolase was a tetrameric enzyme consisted of identical 25-kDa subunits. The optimum pH and temperature of the enzyme activity were pH 7.0 and 30–35°C, respectively. The enzyme did not require divalent cations for the expression of the activity, and Cu2+ and Mn2+ ions strongly inhibited the enzyme activity. An inhibition experiment by diethylpyrocarbonic acid, 2-hydroxy-5-nitrobenzyl bromide, and N-bromosuccinimide suggested that tryptophan, cysteine, or/and histidine residues may be involved in the catalytic site of this enzyme. The enzyme was strictly specific for the l-form of d,l-ATC and exhibited high activity for the hydrolysis of l-ATC with the values of K m (0.35 mM) and V max (69.0 U/mg protein). This enzyme could not cleave the ring structure of derivatives of thiazole, thiazoline, and thiazolidine tested, except for d,l- and l-ATC. These results show that the ATC hydrolase is a novel enzyme cleaving the carbon–sulfur bond in a ring structure of l-ATC to produce N-carbamoyl-l-cysteine.  相似文献   

12.
NADPH-dependent oxidation of 1,3-butadiene by mouse liver microsomes or H2O2-dependent oxidation by chloroperoxidase produced both butadiene monoxide and crotonaldehyde; methyl vinyl ketone and 2,3- and 2,5- dihydrofuran were not detected. The crotonaldehyde to butadiene monoxide ratio remained constant over time in both the microsomal and the chloroperoxidase reactions; however, much more crotonaldehyde was produced by chloroperoxidase than microsomes; crotonaldehyde was not detected when reference samples of butadiene monoxide were used in control incubations containing NADPH and microsomes or H2O2 and chloroperoxidase. Moreover, incubations of 1,3-butadiene with horseradish peroxidase and H2O2, or microsomes and H2O2 or arachidonic acid did not result in the oxidation of 1,3-butadiene. In microsomes, metabolite formation was dependent on incubation time, NADPH, and protein concentrations and did not change when the 1,3-butadiene pressure was varied between 24 and 52 cm Hg. Inclusion of the cytochrome P450 inhibitor 1-benzylimidazole inhibited 1,3-butadiene metabolism, but inclusion of KCN, catalase, or superoxide dismutase had no effect. These results support the role of cytochrome P450 in 1,3-butadiene oxidation by mouse liver microsomes. The formation of crotonaldehyde but not methyl vinyl ketone by cytochrome P450 or chloroperoxidase indicates regioselectivity in the oxygen transfer from the hemoproteins to 1,3-butadiene. The intermediates formed may undergo either ring closure to form butadiene monoxide or a hydrogen shift to form 3-butenal which tautomerizes to produce crotonaldehyde. Evidence for this tautomerization was obtained by the finding that 3-buten-1-ol, an alternative precursor of 3-butenal, was oxidized to crotonaldehyde under incubation conditions similar to that used for 1,3-butadiene.  相似文献   

13.
Steroidal and non-steroidal aromatase inhibitors target the suppression of estrogen biosynthesis in the treatment of breast cancer. Researchers have increasingly focused on developing non-steroidal derivatives for their potential clinical use avoiding steroidal side-effects.Non-steroidal derivatives generally have planar aromatic structures attached to the azole ring system. One part of this ring system comprises functional groups that inhibit aromatization through the coordination of the haem group of the aromatase enzyme. Replacement of the triazole ring system and development of aromatic/cyclic structures of the side chain can increase selectivity over aromatase enzyme inhibition.In this study, 4-(aryl/heteroaryl)-2-(pyrimidin-2-yl)thiazole derivatives were synthesized and physical analyses and structural determination studies were performed. The IC50 values were determined by a fluorescence-based aromatase inhibition assay and compound 1 (4-(2-hydroxyphenyl)-2-(pyrimidine-2-yl)thiazole) were found potent inhibitor of enzyme (IC50:0.42?nM). Then, their antiproliferative activity over MCF-7 and HEK-293 cell lines was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Compounds 1, 7, 8, 13, 15, 18, 21 were active against MCF-7 breast cancer cells. Lastly, a series of docking experiments were undertaken to analyze the crystal structure of human placental aromatase and identify the possible interactions between the most active structure and the active site.  相似文献   

14.
For the first time, a halogenating enzyme which is not known to produce halogenated metabolites has been isolated from a bacterial strain. The gene encoding the nonheme chloroperoxidase (CPO-L) from Streptomyces lividans TK64 was cloned, and its gene product was characterized. S. lividans TK64 produced only very small amounts of the enzyme. After cloning of the gene into Streptomyces aureofaciens Tü24-88, the enzyme was overexpressed up to 3,000-fold. Based on the overexpression, a simple purification procedure using acid precipitation and hydrophobic interaction chromatography was developed. Thus, 54 mg of homogeneous CPO-L could be obtained from 27 g (wet weight) of mycelium. The native enzyme has a molecular weight of 64,000 and consists of two identical subunits. The enzyme does not exhibit an absorption peak in the Soret region of the optical spectrum. X-ray fluorescence spectroscopy revealed that the enzyme does not contain any metal ions in equimolar amounts. CPO-L showed cross-reaction with antibodies raised against the nonheme chloroperoxidase from Pseudomonas pyrrocinia but not with antibodies raised against CPO-T from S. aureofaciens Tü24. CPO-L exhibits substrate specificity only for chlorination, not for bromination. Therefore, monochlorodimedone is only brominated by CPO-L, whereas indole is brominated and chlorinated. The functional chloroperoxidase gene was located on a 1.9-kb SalI DNA fragment. DNA sequence analysis revealed an open reading frame encoding a predicted polypeptide of 276 amino acids. The overall identity of the amino acid sequence to that of chloroperoxidase from P. pyrrocinia was 71%, whereas that to bromoperoxidase BPO-A2 from S. aureofaciens ATCC 10762 was only 42%.  相似文献   

15.
The chloroperoxidase from the mold Caldariomyces fumago was entrapped into reversed micelles composed of aqueous buffer, cetyltrimethylammonium chloride or bromide, pentanol and octane. The surfactant serves a dual function: i) it stabilizes the reversed micelle, and ii) the halide counter ion is used as a substrate for the enzyme. 2-Monochlorodimedon and 1,3-dihydroxybenzene were halogenated with this system, giving their 2-halo and 4-halo derivatives, respectively. The reaction rates were about twice as high as in aqueous media. Enzyme activity was maximal at high water content of the micelles and at relatively low pentanol concentration. The enzyme was inactivated by high concentrations of hydrogen peroxide.  相似文献   

16.
L B Dugad  X Wang  C C Wang  G S Lukat  H M Goff 《Biochemistry》1992,31(6):1651-1655
Chloroperoxidase, a glycoprotein from the mold Caldariomyces fumago, has been investigated in its ferric low-spin cyanide-ligated form through use of nuclear Overhauser effect (NOE) spectroscopy to provide information on the heme pocket electronic/molecular structure. Spin-lattice relaxation times for the hyperfine-shifted heme resonances were found to be three times less than those in horseradish peroxidase. This must reflect a slower electronic relaxation rate for chloroperoxidase than for horseradish peroxidase as a consequence of axial ligation of cysteine in the former versus histidine in the latter enzyme. Isoenzymes A1 and A2 of chloroperoxidase show the largest chemical shift differences near the heme propionate on the basis of NOE measurements. This suggests that the primary structure differences for the two isoenzymes are communicated to the heme group through the ring propionate substituents. A downfield peak has been detected in chloroperoxidase with chemical shift, T1, and line width characteristics similar to those of the C epsilon-H proton of the distal histidine residue. The NOE pattern and T1's of the peaks in the 0.0 to -5.0 ppm upfield region are consistent with the presence of an arginine amino acid residue in the heme pocket near either the 1-CH3 or 3-CH3 group. Existence of catalytically important distal histidine and arginine amino acid residues in chloroperoxidase shows it to be structurally similar to peroxidases rather than to the often compared monooxygenase, cytochrome P-450. This result supports the earlier conclusions of Sono et al. [Sono, M., Dawson, J.H., Hall, K., & Hager, L.P. (1986) Biochemistry 25, 347-356].  相似文献   

17.
Azide is a well-known inhibitor of heme–enzymes. Herein, we report the counter-intuitive observation that at some concentration regimes, incorporation of azide in the reaction medium enhances chloroperoxidase (CPO, a heme–enzyme) mediated one-electron abstractions from several substrates. A diffusible azidyl radical based mechanism is proposed for explaining the phenomenon. Further, it is projected that the finding could have significant impact on routine in situ or in vitro biochemistry studies involving heme–enzyme systems and azide.  相似文献   

18.
In the presence of chloroperoxidase, indole was oxidized by H2O2 to give oxindole as the major product. Under most conditions oxindole was the only product formed, and under optimal conditions the conversion was quantitative. This reaction displayed maximal activity at pH 4.6, although appreciable activity was observed throughout the entire pH range investigated, namely pH 2.5-6.0. Enzyme saturation by indole could not be demonstrated, up to the limit of indole solubility in the buffer. The oxidation kinetics were first-order with respect to indole up to 8 mM, which was the highest concentration of indole that could be investigated. On the other hand, 2-methylindole was not affected by H2O2 and chloroperoxidase, but was a strong inhibitor of indole oxidation. The isomer 1-methylindole was a poor substrate for chloroperoxidase oxidation, and a weak inhibitor of indole oxidation. These results suggest the possibility that chloroperoxidase oxidation of the carbon atom adjacent to the nitrogen atom in part results from hydrogen-bonding of the substrate N-H group to the enzyme active site.  相似文献   

19.
Several 2,3-unsaturated carboxylic acids, such as trans-cinnamic acid and its derivatives, were found to be halogenated by chloroperoxidase of Caldariomyces fumago in the presence of hydrogen peroxide and either Cl- or Br-. Cinnamic acid, 4-hydroxycinnamic acid, 4-methoxycinnamic acid, and 3,4-dimethoxycinnamic acid were suitable substrates of chloroperoxidase, and were converted to 2-halo-3-hydroxycarboxylic acid, 2,3-dihydroxycarboxylic acid, decarboxylated halohydrin, or decarboxylated halocompound. However, 4-nitrocinnamic acid and 4-chlorocinnamic acid having electron-attracting groups did not serve as a substrate of the enzyme. The enzyme also did not act on acrylic acid, acrylamide, crotonic acid, fumaric acid, etc. From these data, the enzymatic reactions of chloroperoxidase, concerning the substrate specificity, stereoselectivity, and the reaction mechanism, are discussed on the basis of current knowledge regarding the reaction mechanism of the enzyme. Also they are compared with the chemical reactions of molecular halogen and hypohalous acid.  相似文献   

20.
Caldariomyces fumago chloroperoxidase degrades monofluorophenols at both pH 3 and pH 6. 4-Fluorophenol is most readily degraded and its oxidation is most efficient at pH 6. GC-MS analyses of the reaction products revealed compounds relating to the reaction of fluorophenol radical. The degradation of fluorinated compounds is of significant environmental interest and this versatile enzyme may by employed to treat contaminated soil or water prior to discharge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号