首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aims to determine how the interaction of Ly49 receptors with MHC class I molecules shapes the development of the Ly49 repertoire. We have examined the percentage of NK cells that expressed Ly49A, Ly49G2, and Ly49D in single and double Ly49A/C-transgenic mice on four different MHC backgrounds, H-2(b), H-2(d), H-2(b/d), and beta(2)-microglobulin(-/-). The results show that the total numbers of NK cells were not different among the strains. The prior expression of a Ly49 receptor capable of binding to self MHC class I altered the percentage of NK cells expressing endogenous Ly49A, Ly49G2, and Ly49D even in mice in which no MHC ligand was present for the latter receptors. The NK cells in the Ly49-transgenic mice expressed the same level of endogenous Ly49 receptors as wild-type mice of a similar MHC background. In contrast, the number of NK T cells was reduced in mice in which the Ly49 transgene could bind to a MHC class I molecule. The onset of Ly49 receptor expression on NK cells during ontogeny was not altered in the presence of transgenic Ly49 receptors. These data support a sequential model and argue against a selection model for Ly49 repertoire development on NK cells.  相似文献   

2.
The NK cell inhibitory receptor Ly49A recognizes the mouse MHC class I molecule H-2D(d) and participates in the recognition of missing self. Previous studies indicated that the determinant recognized by Ly49A exists in alpha1/alpha2 domain of H-2D(d). Here we have substituted polymorphic as well as conserved residues of H-2D(d) alpha1/alpha2 domain (when compared with H-2K(d), which does not interact with Ly49A). We then tested the ability of the H-2D(d) mutants to interact with Ly49A by soluble Ly49A tetramer binding and NK cell cytotoxicity inhibition assays. Individual introduction of mutations converting the H-2D(d) residue into the corresponding H-2K(d) residue (N30D, D77S, or A99F) in H-2D(d) partially abrogated the interaction between Ly49A and H-2D(d). Introduction of the three mutations into H-2D(d) completely abolished Ly49A recognition. Individual introduction of D29N or R35A mutation into the residues of H-2D(d) that are conserved among murine MHC class I severely impaired the interaction. The crystal structure of H-2D(d) reveals that D77 and A99 are located in the peptide binding groove and that N30, D29, and R35 are in the interface of the three structural domains of MHC class I: alpha1/alpha2, alpha3, and beta(2)-microglobulin. These data suggest that Ly49A can monitor mutations in MHC class I inside and outside of the peptide binding groove and imply that inhibitory MHC class I-specific receptors are sensitive to mutations in MHC class I as well as global loss of MHC class I. Our results also provide insight into the molecular basis of Ly49A to distinguish MHC class I polymorphism.  相似文献   

3.
A novel murine NK cell-reactive mAb, AT8, was generated. AT8 recognizes Ly49G from 129/J, BALB/c, and related mouse strains, but does not bind to Ly49G(B6). Costaining with AT8 and a Ly49G(B6)-restricted Ab (Cwy-3) provides the first direct evidence that Ly49G protein is expressed from both alleles on a significant proportion of NK cells from four different types of F(1) hybrid mice. The observed level of biallelic Ly49G expression reproducibly followed the product rule in both freshly isolated and cultured NK cells. Surprisingly, the percentage of NK cells expressing both Ly49G alleles could be dramatically increased in vitro and in vivo through IL-2R- and IFN receptor-dependent signaling pathways, respectively. Unexpectedly, Ly49G(B6+) NK cells in an H-2(d), but not H-2(b), background were more likely to lyse D(d+) and Chinese hamster ovary tumor cells than Ly49G(BALB/129+) NK cells. Furthermore, Ly49G(B6+) NK cells also proliferated to a higher degree in response to poly(I:C) than NK cells expressing a non-Ly49G(B6) allele in an H-2(d), but not H-2(b), background. These results suggest that Ly49G(B6) has a lower affinity for H-2D(d) than Ly49G(BALB/129), and the genetic background calibrates the responsiveness of NK cells bearing self-specific Ly49. Other H-2D(d) receptors on the different Ly49G(+) NK cell subsets were unequally coexpressed, possibly explaining the disparate responses of Ly49G(B6+) NK cells in different hybrid mice. These data indicate that the stochastic mono- and biallelic expression of divergent Ly49G alleles increases the range of MHC affinities and the functional potential in the total NK cell population of heterozygous mice.  相似文献   

4.
Natural killer (NK) cells play a vital role in the detection and destruction of virally infected and tumor cells during innate immune responses. The highly polymorphic Ly49 family of NK receptors regulates NK cell function by sensing major histocompatibility complex class I (MHC-I) molecules on target cells. Despite the determination of two Ly49-MHC-I complex structures, the molecular features of Ly49 receptors that confer specificity for particular MHC-I alleles have not been identified. To understand the functional architecture of Ly49-binding sites, we determined the crystal structures of Ly49C and Ly49G and completed refinement of the Ly49C-H-2K(b) complex. This information, combined with mutational analysis of Ly49A, permitted a structure-based classification of Ly49s that we used to dissect the binding site into three distinct regions, each having different roles in MHC recognition. One region, located at the center of the binding site, has a similar structure across the Ly49 family and mediates conserved interactions with MHC-I that contribute most to binding. However, the preference of individual Ly49s for particular MHC-I molecules is governed by two regions that flank the central region and are structurally more variable. One of the flanking regions divides Ly49s into those that recognize both H-2D and H-2K versus only H-2D ligands, whereas the other discriminates among H-2D or H-2K alleles. The modular design of Ly49-binding sites provides a framework for predicting the MHC-binding specificity of Ly49s that have not been characterized experimentally.  相似文献   

5.
Ly49D is a natural killer (NK) cell activation receptor that is responsible for differential mouse inbred strain-determined lysis of Chinese hamster ovary (CHO) cells. Whereas C57BL/6 NK cells kill CHO, BALB/c-derived NK cells cannot kill because they lack expression of Ly49D. Furthermore, the expression of Ly49D, as detected by monoclonal antibody 4E4, correlates well with CHO lysis by NK cells from different inbred strains. However, one discordant mouse strain was identified; C57L NK cells express the mAb 4E4 epitope but fail to lyse CHO cells. Herein we describe a Ly49 molecule isolated from C57L mice that is recognized by mAb 4E4 (anti-Ly49D). Interestingly, this molecule shares extensive similarity to Ly49D(B6) in its extracellular domain, but its cytoplasmic and transmembrane domains are identical to the inhibitory receptor Ly49A(B6), including a cytoplasmic ITIM. This molecule bears substantial overall homology to the previously cloned Ly49O molecule from 129 mice the serologic reactivity and function of which were undefined. Cytotoxicity experiments revealed that 4E4(+) LAK cells from C57L mice failed to lyse CHO cells and inhibited NK cell function in redirected inhibition assays. MHC class I tetramer staining revealed that the Ly49O(C57L)-bound H-2D(d) and lysis by 4E4(+) C57L LAK cells is inhibited by target H-2D(d). The structural basis for ligand binding was also examined in the context of the recent crystallization of a Ly49A-H-2D(d) complex. Therefore, this apparently "chimeric" Ly49 molecule serologically resembles an NK cell activation receptor but functions as an inhibitory receptor.  相似文献   

6.
The Ly49 receptor family plays an important role in the regulation of murine natural killer (NK) cell effector function. They recognize cell surface-expressed class I MHC (MHC-I) and are functionally equivalent to the killer Ig-related receptors (KIRs) in human NK cells. Ly49s exist in activating and inhibitory forms with highly homologous extracellular domains, displaying greater variability in the stalk regions. Inhibitory Ly49s can recognize self-MHC-I and therefore mediate tolerance to self. The role of activating Ly49 receptors is less clear. Some activating Ly49 receptors have been shown to recognize MHC-I molecules. The binding affinity of activating Ly49 receptors with MHC-I is currently unknown, and we sought to examine the affinities of two highly related receptors, an activating and an inhibitory Ly49 receptor, for their shared MHC-I ligands. The ectodomain of inhibitory Ly49G of the BALB/c mouse strain is highly similar to the Ly49W activating receptor in the nonobese diabetic (NOD) mouse. Recombinant soluble Ly49G and W were expressed, refolded, and analyzed for binding affinity with MHC-I by surface plasmon resonance. We found that Ly49G and Ly49W bound with similar affinity to the same MHC-I molecules. These results are a first determination of an activating Ly49 receptor affinity for MHC-I and show that, unlike prior results obtained with activating and inhibitory KIR receptors, functional homologues to Ly49 receptors, activating and inhibitory Ly49, can recognize common MHC-I ligands, with similar affinities.  相似文献   

7.
MHC class I molecules strongly influence the phenotype and function of mouse NK cells. NK cell-mediated lysis is prevented through the interaction of Ly49 receptors on the effector cell with appropriate MHC class I ligands on the target cell. In addition, host MHC class I molecules have been shown to modulate the in vivo expression of Ly49 receptors. We have previously reported that H-2Dd and H-2Dp MHC class I molecules are able to protect (at the target cell level) from NK cell-mediated lysis and alter the NK cell specificity (at the host level) in a similar manner, although the mechanism behind this was not clear. In this study, we demonstrate that the expression of both H-2Dd and H-2Dp class I molecules in target cells leads to inhibition of B6 (H-2b)-derived Ly49A+ NK cells. This inhibition could in both cases be reversed by anti-Ly49A Abs. Cellular conjugate assays showed that Ly49A-expressing cells indeed bind to cells expressing H-2Dp. The expression of Ly49A and Ly49G2 receptors on NK cells was down-regulated in H-2Dp-transgenic (B6DP) mice compared with nontransgenic B6 mice. However, B6DP mice expressed significantly higher levels of Ly49A compared with H-2Dd-transgenic (D8) mice. We propose that both H-2Dd and H-2Dp MHC class I molecules can act as ligands for Ly49A.  相似文献   

8.
The Ly49A NK cell receptor interacts with MHC class I (MHC-I) molecules on target cells and negatively regulates NK cell-mediated target cell lysis. We have recently shown that the MHC-I ligand-binding capacity of the Ly49A NK cell receptor is controlled by the NK cells' own MHC-I. To see whether this property was unique to Ly49A, we have investigated the binding of soluble MHC-I multimers to the Ly49 family receptors expressed in MHC-I-deficient and -sufficient C57BL/6 mice. In this study, we confirm the binding of classical MHC-I to the inhibitory Ly49A, C and I receptors, and demonstrate that detectable MHC-I binding to MHC-I-deficient NK cells is exclusively mediated by these three receptors. We did not detect significant multimer binding to stably transfected or NK cell-expressed Ly49D, E, F, G, and H receptors. Yet, we identified the more distantly related Ly49B and Ly49Q, which are not expressed by NK cells, as two novel MHC-I receptors in mice. Furthermore, we show using MHC-I-sufficient mice that the NK cells' own MHC-I significantly masks the Ly49A and Ly49C, but not the Ly49I receptor. Nevertheless, Ly49I was partly masked on transfected tumor cells, suggesting that the structure of Ly49I is compatible in principal with cis binding of MHC-I. Finally, masking of Ly49Q by cis MHC-I was minor, whereas masking of Ly49B was not detected. These data significantly extend the MHC-I specificity of Ly49 family receptors and show that the accessibility of most, but not all, MHC-I-binding Ly49 receptors is modulated by the expression of MHC-I in cis.  相似文献   

9.
NK cells become functionally competent to be triggered by their activation receptors through the interaction of NK cell inhibitory receptors with their cognate self-MHC ligands, an MHC-dependent educational process termed "licensing." For example, Ly49A(+) NK cells become licensed by the interaction of the Ly49A inhibitory receptor with its MHC class I ligand, H2D(d), whereas Ly49C(+) NK cells are licensed by H2K(b). Structural studies indicate that the Ly49A inhibitory receptor may interact with two sites, termed site 1 and site 2, on its H2D(d) ligand. Site 2 encompasses the α1/α2/α3 domains of the H2D(d) H chain and β(2)-microglobulin (β2m) and is the functional binding site for Ly49A in effector inhibition. Ly49C functionally interacts with a similar site in H2K(b). However, it is currently unknown whether this same site is involved in Ly49A- or Ly49C-dependent licensing. In this study, we produced transgenic C57BL/6 mice expressing wild-type or site 2 mutant H2D(d) molecules and studied whether Ly49A(+) NK cells are licensed. We also investigated Ly49A- and Ly49C-dependent NK licensing in murine β2m-deficient mice that are transgenic for human β2m, which has species-specific amino acid substitutions in β2m. Our data from these transgenic mice indicate that site 2 on self-MHC is critical for Ly49A- and Ly49C-dependent NK cell licensing. Thus, NK cell licensing through Ly49 involves specific interactions with its MHC ligand that are similar to those involved in effector inhibition.  相似文献   

10.
NK cells maintain self-tolerance through expression of inhibitory receptors that bind MHC class I (MHC-I) molecules. MHC-I can exist on the cell surface in several different forms, including "peptide-receptive" or PR-MHC-I that can bind exogenous peptide. PR-MHC-I molecules are short lived and, for H-2K(b), comprise approximately 10% of total MHC-I. In the present study, we confirm that signaling through the mouse NK inhibitory receptor Ly49C requires the presence of PR-K(b) and that this signaling is prevented when PR-K(b) is ablated by pulsing with a peptide that can bind to it with high affinity. Although crystallographic data indicate that Ly49C can engage H-2K(b) loaded with high-affinity peptide, our data suggest that this interaction does not generate an inhibitory signal. We also show that no signaling occurs when the PR-K(b) complex has mouse beta(2)-microglobulin (beta(2)m) replaced with human beta(2)m, although replacement with bovine beta(2)m has no effect. Furthermore, we show that beta(2)m exchange occurs preferentially in the PR-K(b) component of total H-2K(b). These conclusions were reached in studies modulating the sensitivity to lysis of both NK-resistant syngeneic lymphoblasts and NK-sensitive RMA-S tumor cells. We also show, using an in vivo model of lymphocyte recirculation, that engrafted lymphocytes are unable to survive NK attack when otherwise syngeneic lymphocytes express human beta(2)m. These findings suggest a qualitative extension of the "missing self" hypothesis to include NK inhibitory receptors that are restricted to the recognition of unstable forms of MHC-I, thus enabling NK cells to respond more quickly to events that decrease MHC-I synthesis.  相似文献   

11.
Natural killer (NK) cells play a crucial role in the detection and destruction of virally infected and tumor cells during innate immune responses. The cytolytic activity of NK cells is regulated through a balance of inhibitory and stimulatory signals delivered by NK receptors that recognize classical major histocompatabilty complex class I (MHC-I) molecules, or MHC-I homologs such as MICA, on target cells. The Ly49 family of NK receptors (Ly49A through W), which includes both inhibitory and activating receptors, are homodimeric type II transmembrane glycoproteins, with each subunit composed of a C-type lectin-like domain tethered to the membrane by a stalk region. We have determined the crystal structure, at 3.0 A resolution, of the murine inhibitory NK receptor Ly49I. The Ly49I monomer adopts a fold similar to that of other C-type lectin-like NK receptors, including Ly49A, NKG2D and CD69. However, the Ly49I monomers associate in a manner distinct from that of these other NK receptors, forming a more open dimer. As a result, the putative MHC-binding surfaces of the Ly49I dimer are spatially more distant than the corresponding surfaces of Ly49A or NKG2D. These structural differences probably reflect the fundamentally different ways in which Ly49 and NKG2D receptors recognize their respective ligands: whereas the single MICA binding site of NKG2D is formed by the precise juxtaposition of two monomers, each Ly49 monomer contains an independent binding site for MHC-I. Hence, the structural constraints on dimerization geometry may be relatively relaxed within the Ly49 family. Such variability may enable certain Ly49 receptors, like Ly49I, to bind MHC-I molecules bivalently, thereby stabilizing receptor-ligand interactions and enhancing signal transmission to the NK cell.  相似文献   

12.
We have established H-2D(d)-transgenic (Tg) mice, in which H-2D(d) expression can be extinguished by Cre recombinase-mediated deletion of an essential portion of the transgene (Tg). NK cells adapted to the expression of the H-2D(d) Tg in H-2(b) mice and acquired reactivity to cells lacking H-2D(d), both in vivo and in vitro. H-2D(d)-Tg mice crossed to mice harboring an Mx-Cre Tg resulted in mosaic H-2D(d) expression. That abrogated NK cell reactivity to cells lacking D(d). In D(d) single Tg mice it is the Ly49A+ NK cell subset that reacts to cells lacking D(d), because the inhibitory Ly49A receptor is no longer engaged by its D(d) ligand. In contrast, Ly49A+ NK cells from D(d) x MxCre double Tg mice were unable to react to D(d)-negative cells. These Ly49A+ NK cells retained reactivity to target cells that were completely devoid of MHC class I molecules, suggesting that they were not anergic. Variegated D(d) expression thus impacts specifically missing D(d) but not globally missing class I reactivity by Ly49A+ NK cells. We propose that the absence of D(d) from some host cells results in the acquisition of only partial missing self-reactivity.  相似文献   

13.
Members of the rodent Ly49 receptor family control NK cell responsiveness and demonstrate allele specificity for MHC class I (MHC-I) ligands. For example, the rat Ly49i2 inhibitory NK cell receptor binds RT1-A1(c) but not other rat MHC class Ia or Ib molecules. RT1-A1(c) preferentially binds peptides with proline at the second, or P2, position, which defines it as an HLA-B7 supertype MHC-I molecule. Previously, our laboratory showed that mutations within the MHC-I supertype-defining B-pocket of RT1-A1(c) could lead to alterations in P2 anchor residues of the peptide repertoire bound by RT1-A1(c) and loss of recognition by Ly49i2. Although suggestive of peptide involvement, it was unclear whether the peptide P2 anchor residue or alteration of the RT1-A1(c) primary sequence influenced Ly49i2 recognition. Therefore, we directly investigated the role of the P2 anchor residue of RT1-A1(c)-bound peptides in Ly49i2 recognition. First, fluorescent multimers generated by refolding soluble recombinant RT1-A1(c) with individual synthetic peptides differing only at the P2 anchor residue were examined for binding to Ly49i2 NK cell transfectants. Second, cytotoxicity by Ly49i2-expressing NK cells toward RMA-S target cells expressing RT1-A1(c) bound with peptides that only differ at the P2 anchor residue was evaluated. Our results demonstrate that Ly49i2 recognizes RT1-A1(c) bound with peptides that have Pro or Val at P2, whereas little or no recognition is observed when RT1-A1(c) is complexed with peptide bearing Gln at P2. Thus, the identity of the P2 peptide anchor residue is an integral component of MHC-I recognition by Ly49i2.  相似文献   

14.
NK cells reject non-self hematopoietic bone marrow (BM) grafts via Ly49 receptor-mediated MHC class I-specific recognition and calibration of receptor expression levels. In this paper we investigated how Ly49+ subset frequencies were regulated dependent on MHC class I expression. The development of donor and host Ly49A+ (recognizes H-2Dd and H-2Dk ligands) and Ly49C/I+ (Ly49CBALB/c recognizes H-2Kb, H-2Kd, and H-2Dd, and Ly49CB6 recognizes only H-2Kb) NK cell frequencies were monitored for 120 days in murine-mixed allogeneic BM chimeras. C57BL/6 (H-2b) BM was transplanted into BALB/c (H-2d) mice and vice versa. Peripheral NK cell populations were examined every 5 days. Chimerism was found to be stable with 80-90% donor NK cells. In contrast to syngeneic controls reexpressing pretransplant patterns, donor and host NK cells revealed new and mainly reduced subset frequencies 55 days after allogeneic transplantation. Recipient NK cells acquired these later than donor NK cells. In H-2d --> H-2b chimeras Ly49A+, Ly49C/I+, and Ly49A+/Ly49C/I+ proportions were mainly diminished upon interaction with cognate ligands. Also in H-2b --> H-2d chimeras, Ly49A+ and Ly49A+/Ly49C/I+ subsets were reduced, but there was a transient normalization of Ly49C/I+ proportions in the noncognate host. After 120 days all subsets were reduced. Therefore, down-regulation of developing Ly49A+ and Ly49C/I+ chimeric NK cell frequencies by cognate ligands within 7-8 wk after BM transplantation may be important for successful engraftment.  相似文献   

15.
To investigate the role of MHC class I on in vitro differentiation of natural killer (NK) cells, a CD44low/-CD2-classlow population was isolated from mouse bone marrow. This population, which lacked expression of NK-1.1, Ly49A, Ly49C/I, and Ly49G, generated populations of NK-1.1+ NK cells expressing Ly49A, Ly49C/I, or Ly49G when cocultured for 13 days with syngeneic supportive stromal cells in the presence of interleukin 2. Ly49A and Ly49C/I were absent on the progeny of progenitors tested after 7 days of culture but were expressed as a late event together with low-level expression of NK-1.1, from day 8 of culture. The addition of anti-H-2b monoclonal antibody to cultures at day 0 inhibited proliferation of progenitors supported by either syngeneic, allogeneic, or H-2b-deficient stromal cells, thus suggesting that the effect was not exerted on stromal cells. Additional analyses demonstrated that class Ilow progenitors generated class I+ cells on which the anti-H-2b monoclonal antibody exerted its inhibitory effect.  相似文献   

16.
NK cell recognition of targets is strongly affected by MHC class I specific receptors. The recently published structure of the inhibitory receptor Ly49A in complex with H-2Dd revealed two distinct sites of interaction in the crystal. One of these involves the alpha1, alpha2, alpha3, and beta2-microglobulin (beta2m) domains of the MHC class I complex. The data from the structure, together with discrepancies in earlier studies using MHC class I tetramers, prompted us to study the role of the beta2m subunit in MHC class I-Ly49 interactions. Here we provide, to our knowledge, the first direct evidence that residues in the beta2m subunit affect binding of MHC class I molecules to Ly49 receptors. A change from murine beta2m to human beta2m in three different MHC class I molecules, H-2Db, H-2Kb, and H-2Dd, resulted in a loss of binding to the receptors Ly49A and Ly49C. Analysis of the amino acids involved in the binding of Ly49A to H-2Dd in the published crystal structure, and differing between the mouse and the human beta2m, suggests the cluster formed by residues Lys3, Thr4, Thr28, and Gln29, as a potentially important domain for the Ly49A-H-2Dd interaction. Another possibility is that the change of beta2m indirectly affects the conformation of distal parts of the MHC class I molecule, including the alpha1 and alpha2 domains of the heavy chain.  相似文献   

17.
Ly49A, an inhibitory C-type lectin-like mouse natural killer cell receptor, functions through interaction with the major histocompatibility complex class I molecule, H-2D(d). The x-ray crystal structure of the Ly49A.H-2D(d) complex revealed that homodimeric Ly49A interacts at two distinct sites of H-2D(d): Site 1, spanning one side of the alpha1 and alpha2 helices, and Site 2, involving the alpha1, alpha2, alpha3, and beta(2)m domains. Mutants of Ly49A, H-2D(d), and beta(2)-microglobulin at intermolecular contacts and the Ly49A dimer interface were examined for binding affinity and kinetics. Although mutations at Site 1 had little affect, several at Site 2 and at the dimer interface hampered the Ly49A.H-2D(d) interaction, with no effect on gross structure or T cell receptor interaction. The region surrounding the most critical residues (in H-2D(d), Asp(122); in Ly49A, Asp(229), Ser(236), Thr(238), Arg(239), and Asp(241); and in beta(2)-microglobulin, Gln(29) and Lys(58)) of the Ly49A.H-2D(d) interface at Site 2 includes a network of water molecules, suggesting a molecular basis for allelic specificity in natural killer cell recognition.  相似文献   

18.
Murine natural killer (NK) cells express inhibitory Ly49 receptors for MHC class I molecules, which allows for “missing self” recognition of cells that downregulate MHC class I expression. During murine NK cell development, host MHC class I molecules impose an “educating impact” on the NK cell pool. As a result, mice with different MHC class I expression display different frequency distributions of Ly49 receptor combinations on NK cells. Two models have been put forward to explain this impact. The two-step selection model proposes a stochastic Ly49 receptor expression followed by selection for NK cells expressing appropriate receptor combinations. The sequential model, on the other hand, proposes that each NK cell sequentially expresses Ly49 receptors until an interaction of sufficient magnitude with self-class I MHC is reached for the NK cell to mature. With the aim to clarify which one of these models is most likely to reflect the actual biological process, we simulated the two educational schemes by mathematical modelling, and fitted the results to Ly49 expression patterns, which were analyzed in mice expressing single MHC class I molecules. Our results favour the two-step selection model over the sequential model. Furthermore, the MHC class I environment favoured maturation of NK cells expressing one or a few self receptors, suggesting a possible step of positive selection in NK cell education. Based on the predicted Ly49 binding preferences revealed by the model, we also propose, that Ly49 receptors are more promiscuous than previously thought in their interactions with MHC class I molecules, which was supported by functional studies of NK cell subsets expressing individual Ly49 receptors.  相似文献   

19.
Murine NK cells express the Ly-49 family of class I MHC-binding receptors that control their ability to lyse tumor or virally infected host target cells. X-ray crystallography studies have identified two predominant contact sites (sites 1 and 2) that are involved in the binding of the inhibitory receptor, Ly-49A, to H-2D(d). Ly-49G2 (inhibitory) and Ly-49D (activating) are highly homologous to Ly-49A and also recognize H-2D(d). However, the binding of Ly-49D and G(2) to H-2D(d) is of lower affinity than Ly-49A. All Ly-49s contain N-glycosylation motifs; however, the importance of receptor glycosylation in Ly-49-class I interactions has not been determined. Ly-49D and G(2) contain a glycosylation motif (NTT (221-223)), absent in Ly-49A, adjacent to one of the proposed binding sites for H-2D(d) (site 2). The presence of a complex carbohydrate group at this critical site could interfere with class I binding. In this study, we are able to demonstrate for the first time that Ly-49D binds H-2D(d) in the presence of mouse beta(2)-microglobulin. We also demonstrate that glycosylation of the NTT (221-23) motif of Ly-49D inteferes with recognition of H-2D(d). Alteration of the Ly-49D-NTT (221-23) motif to abolish glycosylation at this site resulted in enhanced H-2D(d) binding and receptor activation. Furthermore, glycosylation of Ly-49G2 at NTT (221-23) also reduces receptor binding to H-2D(d) tetramers. Therefore, the addition of complex carbohydrates to the Ly-49 family of receptors may represent a mechanism by which NK cells regulate affinity for host class I ligands.  相似文献   

20.
Rodent Ly49 exhibit allele-specific MHC I recognition, yet the interaction site, site 2, encompassing the area below the MHC peptide-binding groove, the alpha3 domain, and associated beta(2) microglobulin, is highly conserved among rat and mouse MHC I alleles. We previously demonstrated that allele-specific Ly49 recognition can be affected by polymorphisms specifically in the peptide anchor-binding and supertype-defining B pocket of MHC I, possibly through differential conformations assumed by solvent-exposed interaction residues when articulating with this pocket. Through mutagenesis of RT1-A1(c) and H-2D(d), we map for the first time the interaction site(s) on rat MHC I mediating rat Ly49i2 recognition and the previously unexamined Ly49G(BALB/c) interaction with H-2D(d). We demonstrate that rat Ly49i2 and mouse Ly49G use both unique and common interactions at three MHC I H chain subsites to mediate functional binding and allele-specific recognition. We find that the F subsite, formed by solvent-exposed residues below the more conserved C-terminal anchor residue-binding F pocket, acts as an anchoring location for both Ly49i2 and Ly49G, whereas these receptors exhibit distinctive reliance on solvent-exposed residues articulating with the polymorphic anchor-binding and supertype-defining pocket(s) at subsite B, as well as on interaction residues at subsite C in the MHC I alpha3 domain. Our findings, combined with previous Ly49A/H-2D(d) and Ly49C/H-2K(b) cocrystal data, suggest how allele-specific MHC I conformations and Ly49 polymorphisms may affect Ly49 placement on MHC I ligands and residue usage at site 2, thereby mediating allele-specific recognition at the highly conserved MHC I interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号